Skip to main content

Complex Network Analysis of a Genetic Programming Phenotype Network

  • Conference paper
  • First Online:
Book cover Genetic Programming (EuroGP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11451))

Included in the following conference series:

Abstract

The genotype-to-phenotype mapping plays an essential role in the design of an evolutionary algorithm. Since variation occurs at the genotypic level but fitness is evaluated at the phenotypic level, this mapping determines how variations are effectively translated into quality improvements. We numerically study the redundant genotype-to-phenotype mapping of a simple Boolean linear genetic programming system. In particular, we investigate the resulting phenotypic network using tools of complex network analysis. The analysis yields a number of interesting statistics of this network, considered both as a directed as well as an undirected graph. We show by numerical simulation that less redundant phenotypes are more difficult to find as targets of a search than others that have much more genotypic abundance. We connect this observation with the fact that hard to find phenotypes tend to belong to small and almost isolated clusters in the phenotypic network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kell, D.B.: Genotype-phenotype mapping: genes as computer programs. Trends Genet. 18(11), 555–559 (2002)

    Article  Google Scholar 

  2. de Visser, J.A.G.M., Krug, J.: Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15, 480–490 (2014)

    Article  Google Scholar 

  3. Schaper, S., Louis, A.A.: The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima. PLoS One 9(2), e86635 (2014)

    Article  Google Scholar 

  4. Catalan, P., Wagner, A., Manrubia, S., Cuesta, J.A.: Adding levels of complexity enhances robustness and evolvability in a multilevel genotype-phenotype map. J. R. Soc. Interface 15(138), 20170516 (2018)

    Article  Google Scholar 

  5. Banzhaf, W.: Genotype-phenotype-mapping and neutral variation—a case study in Genetic Programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 322–332. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_276

    Chapter  Google Scholar 

  6. Smith, T., Husbands, P., O’Shea, M.: Neutral networks and evolvability with complex genotype-phenotype mapping. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 272–281. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44811-X_29

    Chapter  Google Scholar 

  7. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evol. Comput. 11(4), 381–415 (2003)

    Article  Google Scholar 

  8. Hu, T., Banzhaf, W., Moore, J.H.: The effect of recombination on phenotypic exploration and robustness in evolution. Artif. Life 20(4), 457–470 (2014)

    Article  Google Scholar 

  9. Hu, T., Payne, J., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple scales: a quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming. Genet. Program. Evolvable Mach. 13(3), 305–337 (2012)

    Article  Google Scholar 

  10. Newman, M.E.J., Engelhardt, R.: Effects of selective neutrality on the evolution of molecular species. Proc. R. Soc. B 265(1403), 1333–1338 (1998)

    Article  Google Scholar 

  11. Wagner, A.: Robustness, evolvability, and neutrality. Fed. Eur. Biochem. Soc. Lett. 579(8), 1772–1778 (2005)

    Article  Google Scholar 

  12. van Nimwegen, E., Crutchfield, J.P., Huynen, M.A.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. 96(17), 9716–9720 (1999)

    Article  Google Scholar 

  13. Galvan-Lopez, E., Poli, R.: An empirical investigation of how and why neutrality affects evolutionary search. In: Cattolico, M. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1149–1156 (2006)

    Google Scholar 

  14. Hu, T., Banzhaf, W.: Neutrality and variability: two sides of evolvability in linear genetic programming. In: Proceedings of the 18th Genetic and Evolutionary Computation Conference (GECCO), pp. 963–970 (2009)

    Google Scholar 

  15. Hu, T., Banzhaf, W.: Neutrality, robustness, and evolvability in genetic programming. In: Riolo, R., Worzel, B., Goldman, B., Tozier, B. (eds.) Genetic Programming Theory and Practice XIV. GEC, pp. 101–117. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97088-2_7

    Chapter  Google Scholar 

  16. Nickerson, K.L., Chen, Y., Wang, F., Hu, T.: Measuring evolvability and accessibility using the Hyperlink-Induced Topic Search algorithm. In: Proceedings of the 27th Genetic and Evolutionary Computation Conference (GECCO), pp. 1175–1182 (2018)

    Google Scholar 

  17. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-31030-5

    Book  MATH  Google Scholar 

  18. Barábasi, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  19. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  20. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Robustness, evolvability, and accessibility in linear genetic programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 13–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20407-4_2

    Chapter  Google Scholar 

  21. Hu, T., Banzhaf, W.: Quantitative analysis of evolvability using vertex centralities in phenotype network. In: Proceedings of the 25th Genetic and Evolutionary Computation Conference (GECCO), pp. 733–740 (2016)

    Google Scholar 

  22. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006). http://igraph.org

    Google Scholar 

  23. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  24. Masuda, N., Porter, M.A., Lambiotte, R.: Random walk and diffusion in networks. Phys. Rep. 716, 1–58 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Grant RGPIN-2016-04699 to T.H., and the Koza Endowment fund provided to W.B. by Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, T., Tomassini, M., Banzhaf, W. (2019). Complex Network Analysis of a Genetic Programming Phenotype Network. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2019. Lecture Notes in Computer Science(), vol 11451. Springer, Cham. https://doi.org/10.1007/978-3-030-16670-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16670-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16669-4

  • Online ISBN: 978-3-030-16670-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics