
Can Genetic Programming Do
Manifold Learning Too?

Andrew Lensen[0000−0003−1269−4751], Bing Xue, and Mengjie Zhang

School of Engineering and Computer Science,
Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

{andrew.lensen,bing.xue,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Exploratory data analysis is a fundamental aspect of knowl-
edge discovery that aims to find the main characteristics of a dataset.
Dimensionality reduction, such as manifold learning, is often used to re-
duce the number of features in a dataset to a manageable level for human
interpretation. Despite this, most manifold learning techniques do not ex-
plain anything about the original features nor the true characteristics of
a dataset. In this paper, we propose a genetic programming approach to
manifold learning called GP-MaL which evolves functional mappings
from a high-dimensional space to a lower dimensional space through the
use of interpretable trees. We show that GP-MaL is competitive with
existing manifold learning algorithms, while producing models that can
be interpreted and re-used on unseen data. A number of promising future
directions of research are found in the process.

Keywords: Manifold Learning · Genetic Programming · Dimensionality
Reduction · Feature Construction.

1 Introduction

Manifold learning has risen to prominence in recent years due to significant im-
provement in autoencoders and the widespread use of the t-Distributed Stochas-
tic Neighbour Embedding (t-SNE) visualisation algorithm [11]. Manifold learn-
ing is the main area in the non-linear dimensionality reduction literature, and
consists of algorithms which seek to discover an embedded (non-linear) mani-
fold within a high-dimensional space so that the manifold can be represented
in a much lower-dimensional space. Hence, they aim to perform dimensional-
ity reduction while preserving as much of the structure of the high-dimensional
space.

Within manifold learning, there are two broad categories of algorithms: those
that produce a mapping between the high and low-dimensional spaces (“mapping
methods”), and those which provide only the found embedding1 (“embedding
methods”). Mapping methods are particularly attractive, as they allow future
examples to be processed without re-running the algorithm, and they have the
potential to be interpretable, which is often desirable in machine learning tasks.

1 An embedding here refers to the low-dimensional representation of the structure
present in a dataset.

ar
X

iv
:1

90
2.

02
94

9v
1

 [
cs

.N
E

]
 8

 F
eb

 2
01

9

2 Andrew Lensen, Bing Xue, and Mengjie Zhang

Genetic Programming (GP) is well known for producing functions which map
inputs (the domain) to outputs (the codomain) using tree-based GP [15]. GP
appears to have several promising characteristics for solving this problem:

– It is a global learner, and so should be less prone to producing partial-
manifolds (i.e. local minima) unlike many existing methods which use gra-
dient descent or other approaches;

– As it uses a population-based search method, it does not require a differen-
tiable fitness function (unlike auto-encoders, t-SNE, etc.) and so could be
used with a range of optimisation criteria; and

– It is intrinsically suited to producing interpretable mappings, as tree-based
GP in particular can be understood by evaluating the tree from bottom to
top. A wide range of tools are also available for producing interpretable GP
models, including automatic program simplification and parsimony pressure.

Despite these traits, we are not aware of any work that uses GP to learn a
manifold by mapping an input dataset to a set of lower-dimensional outputs.

1.1 Goals

In this work, we propose the first approach to using GP to perform Manifold
Learning (GP-MaL). In particular, we will:

1. Propose a multi-tree GP representation and function and terminal sets for
performing manifold learning;

2. Construct an appropriate fitness function to evaluate how effectively a GP
individual preserves the structure of the high-dimensional space;

3. Evaluate how GP-MaL fares compared to existing manifold learning algo-
rithms on a variety of classification tasks; and

4. Investigate the viability of GP-MaL for producing interpretable mappings of
manifolds.

2 Background

2.1 Dimensionality Reduction

Broadly speaking, dimensionality reduction (DR) is the task of reducing an exist-
ing feature space into a lower-dimensional one, which can be better understood
and processed more efficiently and effectively [9]. Two main approaches in DR
are feature selection (FS) and feature extraction/construction [9]. While FS ap-
proaches — which select a small subset of the original features — are sufficient
when a dataset has significant intrinsic redundancy/irrelevancy, there is a limit
to how much the dimensionality can be reduced by FS alone. For example, if
we want to reduce the dimensionality to two or three features, using FS alone
is likely to poorly retain the structure of the dataset. In such a scenario, fea-
ture extraction/construction methods are able to reduce dimensionality more
effectively by combining aspects of the original features in some manner.

Can Genetic Programming Do Manifold Learning Too? 3

One of the most well-known FC methods is Principle Component Analysis
(PCA) [5]. PCA produces components (constructed features) which are linear
combinations of the original features, such that each successive component has
the largest variance possible while being orthogonal to the preceding compo-
nents. Variance is a fundamental measurement of the amount of information in
a feature, and so PCA is optimal for performing linear dimensionality reduction
under this framework. However, linear combinations are not sufficient when data
has a complex underlying structure; linear methods tend to focus on maintain-
ing global structure while struggling to maintain local neighbourhood structure
in the constructed feature space [11]. Thus, there is a clear need for nonlinear
dimensionality reduction, of which a major research area is manifold learning.

2.2 Manifold Learning

Manifold learning algorithms are based on the assumption that the majority of
real-world datasets have an intrinsic redundancy in how they represent informa-
tion they contain through their features. A manifold is the inherent underlying
structure which contains the information held within that dataset, and often
this manifold can be represented using a smaller number of features than that
of the original feature set [1]. Thus, manifold learning algorithms attempt to
learn/extract this manifold into a lower-dimensional space. PCA, for example,
can be seen as a linear manifold learning algorithm; of course, most real-world
manifolds are strongly non-linear [1].

Multidimensional Scaling (MDS) [6] was one of the first approaches to man-
ifold learning proposed, and attempts to maintain between-instance distances
as well as possible from the high to the low dimensional space. Metric MDS
often uses a loss function called stress, which is then minimised using a majoriz-
ing function from convex analysis. Another well-known, more recent method is
Locally-Linear Embedding (LLE) [17], which describes each instance as a linear
combination of its neighbours 2, and then seeks to maintain this combination in
the low-dimensional space using eigenvector-based optimisation. MDS performs
a non-parametric transformation of the original feature space, and so is not in-
terpretable with respect to the original features; LLE is also difficult to interpret
given it is based on preserving neighbourhoods.

t-Distributed Stochastic Neighbor Embedding (t-SNE) [11] is considered by
many to be the state-of-the-art method for performing visualisation (i.e. 2D/3D
manifold learning); it models the original feature space as a joint probability
distribution in terms of how close an instances’ neighbours are and then attempts
to produce the same joint distribution in the low-dimensional space by using
KullbackLeibler divergence to measure the similarity of the two distributions.
However, t-SNE was developed purely for visualisation (2/3D dimensionality
reduction) and so it is not specifically designed as a general manifold learning
algorithm [11]. It is also similar to MDS in that it produces an embedding with no
mapping back to the original features. Finally, autoencoders are often regarded

2 Here, neighbours refer to the closest instances to a point by (Euclidean) distance.

4 Andrew Lensen, Bing Xue, and Mengjie Zhang

to do a type of manifold learning [1], but again they tend to be quite opaque
in the meaning of their learnt representation, while requiring significantly more
computational resources than the classical manifold learning methods.

2.3 Related Work

Evolutionary Computation (EC) has seen very recent use in evolving autoen-
coders for image classification tasks using Genetic Algorithms [19], GP [16], and
Particle Swarm Optimisation [18]. Historically, auto-encoders have had to be
manually designed or require significant domain knowledge to get good results,
and so automatic evolution of auto-encoder structure is a clear improvement.
However, these methods are still a somewhat indirect use of EC for representa-
tion/manifold learning, as they do not allow an EC method to directly learn the
underlying structure as our proposed GP approach may.

GP has also been used for visualisation (i.e. the 2D form of manifold learn-
ing) in a supervised learning context using a multi-objective fitness function to
optimise both classification performance and clustering-based class separability
measures [2]. Recently, a GP method was proposed to evolve features for fea-
ture selection algorithm testing [8], which also used a multi-tree representation,
but used a specialised fitness function to encourage redundant feature creation
based on mutual information (MI). The use of GP for visualisation of solutions
for production scheduling problems has also been recently investigated [13]. GP
has also been applied to other tangential unsupervised learning tasks for feature
creation, such as clustering [7], as well as extensive use in supervised learning
domains [20,12]. Clearly, GP has shown significant potential as a feature con-
struction method, and so it is hoped that it can be extended to directly perform
manifold learning as well.

3 GP for Manifold Learning (GP-MaL)

The proposed method, GP-MaL, will be introducted in three stages. Firstly,
the design of the terminal and function set is discussed. Then, a fitness function
appropriate for manifold learning is formulated and explained. Finally, a method
to improve the computational efficiency of GP-MaL (while maintaining good
performance) is developed.

3.1 GP Representation

In this work, we utilise a multi-tree GP representation, whereby each tree repre-
sents a single dimension in the output (low-dimensional) space. While multi-tree
GP is known to scale poorly as the number of trees (t) increases, manifold learn-
ing usually assumes a low output dimensionality (e.g. t < 10). The terminal set
consists of the d scaled real-valued input features, as well as random constants
drawn from U [−1,+1] to allow for variable sub-tree weighting. The output of

Can Genetic Programming Do Manifold Learning Too? 5

Table 1: Summary of the function set used in GP-MaL.

Category Arithmetic Non-Linear Conditional

Function + × 5+ Sigmoid ReLU Max Min If
No. of Inputs 2 2 5 1 1 2 2 3
No. of Outputs 1 1 1 1 1 1 1 1

each tree is not scaled or normalised in any way as this may introduce bias to
the evolved trees or affect tree interpretability.

The function set (Table 1) chosen is inspired by existing feature construction
and manifold learning literature. It includes the standard “+” and “×” arith-
metic operators to allow simple combinations of features/sub-trees, as well as a
“5+” operator which sums over five inputs3 to encourage the use of many input
features on large datasets. Subtraction and division were not included as they
are the complements of addition and subtraction and so are redundant in the
“way” in which they combine sub-trees. To encourage the learning of non-linear
manifolds, two common non-linear activation functions from auto-encoders were
added: the sigmoid and rectified linear unit (ReLU) operators. The function set
also includes two conditional (non-differentiable!) operators, “max” and “min”,
which may allow GP to produce more advanced functions. Finally, the “if” func-
tion is also included, which takes three inputs a, b, c and outputs b if a > 0 or c
otherwise, to allow for more flexible conditions to be learnt.

Mutation is performed by selecting a random tree in a GP individual, and
then selecting a random sub-tree to mutate within that tree, as standard. Crossover
is performed in a similar way, by selecting a random tree from each candidate
individual, and then performing standard crossover.

3.2 Fitness Function

A common optimisation strategy among manifold learning algorithms is to en-
courage preserving the high-dimensional neighbourhood around each instance in
the low-dimensional space. For example, MDS attempts to maintain distances
between points, whereas t-SNE uses a probabilistic approach to model how re-
lated different points are, and attempts to produce an embedding with a similar
joint probability distribution. We refrain from using a distance-based approach
due to the associated issues with the curse of dimensionality [4], and instead try
to preserve the ordering of neighbours from the high to low dimensions.

Consider an instance I which has ordered neighbours N = {N1, N2, ..., Nn−1}
for n instances neighbours in the high-dimensional space, and neighbours N ′ in
the low-dimensional space. If we were to perfectly retain all structure in the
dataset, then the ordering of N ′ must be identical to that of N , i.e. N = N ′. In
other words, the quality of the low-dimensional space can be measured by how
similar N ′ is to N . In this work, we propose measuring similarity by how far
each instances’ neighbours deviate in their ordering in the low-dimensional space

3 Five inputs were found to be a good balance between encouraging wider trees and
minimising computing resources required.

6 Andrew Lensen, Bing Xue, and Mengjie Zhang

compared to the high-dimensional space. For example, if N = {N1, N2, N3} and
N ′ = {N2, N3, N1}, the neighbours deviate by 2, 1, and 1 positions respectively.
Clearly, the larger the deviation, the more inaccurately the orderings have been
retained. Let Pos(a,X) give the index of a in the ordering of X. We propose
the following similarity measure:

Similarity(N,N ′) =
∑
a∈N

Agreement(|Pos(a,N)− Pos(a,N ′)|) (1)

where Agreement is a function that gives higher values for smaller deviations.
GP-MaL uses an Agreement function based on a Gaussian weighting to allow
for small deviations without significant penalty, while still penalising large de-
viations harshly. In this work, a Gaussian with a µ of 0 and θ = 20 is used. θ
controls how harshly deviations are punished – in preliminary testing we found a
high θ gave best results as it created a smoother fitness landscape. The weighting
for a given deviation dev is 1− prob(−dev,+dev), i.e. the area of the Gaussian
not in this range. In this way, when there is no deviation, the weighting is 1
(perfect), whereas when it is maximally deviated the weighting tends to 0.

The complete fitness function is the normalised similarity across all instances
in the dataset (X):

Fitness =
1

n2

∑
I∈X

Similarity(NI , N
′

I) (2)

Fitness is in the range [0, 1] and should be maximised.

3.3 Tackling the Computational Complexity

Unfortunately, computing the above fitness requires ordering every instance’s
neighbours by their distances in the low-dimensional space, at a cost ofO(n log(n)
using a comparison sort. This gives a net complexity of O(n2 log(n)) for each
individual in the population. This scales poorly with the number of instances in
the dataset. Consider a given neighbour Nb, which comes after Na and before
Nc. Even if we do not optimise the deviation of Nb, it seems likely that it will
still be near Na and Nc in the low-dimensional ordering, as it is likely to have
similar feature values to Na and Nc and hence will have a similar output from
the evolved function. Based on this observation, we can omit some neighbours
from our similarity function in order to reduce the computational complexity.
Clearly, removing any neighbours will slightly reduce the accuracy of the fitness
function, but this is made up by the significantly decreased computational cost
(similar to surrogate model approaches). An example of this can be seen in Fig.
1, where the number of edges are decreased significantly by only considering the
two nearest neighbours. Despite this, the global structure of the graph is still
preserved well, with E and G only having two edges to the rest of the (distant)
nodes, and C, D, and F sharing many edges as they are in close proximity.

When considering which neighbours to omit, it is more important to consider
the closer neighbours’ deviations, in order to preserve local structure, as this is

Can Genetic Programming Do Manifold Learning Too? 7

most likely to preserve useful information about relationships in the data. How-
ever, it is still important to consider more distant neighbours, so that the global
structure is also preserved. Based on this, we propose choosing neighbours more
infrequently the further down the nearest-neighbour list they are. One approach
is to choose the first k neighbours, followed by k of the next 2k neighbours
(evenly spaced), then k of the next 4k, etc. This gives η neighbours according
to the following equation:

η = k log2(
n

k
+ 1) (3)

thus η is proportional to log(n) (k � n). The complexity per GP individual
is then O(η log(η)) = O(log(n) log(log(n))), which gives a sublinear complexity.
In preliminary testing, we found using k = 10 to give only minor differences
in learning performance which was significantly outweighed by the ability to
train for many more generations in the same computational time. We use this
approach in all experiments in this paper. While k could be perhaps be decreased
further, it would not reduce computational time significantly, as tree evaluation
is now the main cost of the evolutionary process.

4 Experiment Design

To evaluate the quality of our proposed GP-MaL algorithm, we focus mainly
on the attainable accuracy on classification datasets using the evolved low-
dimensional datasets. High classification accuracy generally requires as much
of the structure of the dataset to be retained as possible in order to find the
best decision boundaries between classes, and so is a useful proxy for measuring
the amount of retained structure. We refrain from using the fitness function (or
similar optimisation criteria) to measure the manifold “quality” so as not to in-
troduce bias towards any specific manifold learning method. The scikit-learn [14]
implementation of the Random Forest (RF) classification algorithm (with 100

A

B

C

D

E

F

G

(a) Complete graph: 42 directed edges.

A

B

C

D

E

F

G

(b) Pruned graph: each node is connected
to its two nearest neighbours. 14 edges.

Fig. 1: Pruning of a graph to reduce computational complexity.

8 Andrew Lensen, Bing Xue, and Mengjie Zhang

Table 2: Classification datasets used for experiments. Most datasets are sourced
from the UCI repository [3] which contains original accreditations.

Dataset Instances Features Classes Dataset Instances Features Classes

Wine 178 13 3 COIL20 1440 1024 20

Movement Libras 360 90 15 Madelon 2600 500 10

Dermatology 358 34 6 Yale 165 1024 15

Ionosphere 351 34 2 MFAT 2000 649 10

Image

Segmentation
2310 19 7

MNIST

2-class
2000 784 2

Table 3: GP Parameter Settings.

Parameter Setting Parameter Setting

Generations 1000 Population Size 1024

Mutation 20% Crossover 80%

Elitism top 10 Selection Type Tournament

Min. Tree Depth 2 Max. Tree Depth 8

Tournament Size 7 Pop. Initialisation Half-and-half

trees) is used as it is a widely used algorithm with high classification accuracy, is
stable across a range of datasets, and has reasonably low computational cost [21].
While other algorithms could also be compared, we found the results to be gener-
ally consistent across algorithms, and so do not include these for brevity. 10-fold
cross-validation is used to evaluate every generated low-dimensional dataset, and
40 evolved datasets (40 GP runs) are used for each tested dataset in order to
account for evolutionary stochasticity.

The characteristics of the ten datasets we used for our experiments are shown
in Table 2. A range of datasets from varying domains were chosen with different
numbers of features, instances, and classes.

We compare the proposed GP-MaL method to a number of baseline mani-
fold learning methods: PCA (as a linear baseline), MDS (which uses a similar
optimisation criteria), LLE (a popular MaL method) and t-SNE (state of the
art for 2D/3D manifold learning). Scikit-learn [14] was used for all the baseline
methods, except for t-SNE, with default settings. For t-SNE, we used van der
Maaten’s more efficient Barnes-Hut implementation [10]. For each method and
dataset, we produce transformed datasets for two, three, five, and the cube root
(CR) of the number of original features. Two/three features are useful for visu-
alisation but are unlikely to be sufficient to preserve all structure, whereas the
cube root approach was found in preliminary testing to be the point at which all
tested methods could capture maximal structure from the datasets. Five features
are used as a “middle-ground”. As all of these implementations have stochastic
components, we also ran each 40 times for each dataset.

We use standard GP parameter settings, as per Table 3. One notable setting
is that we use 1000 generations; as we are interested primarily in exploring the
potential of GP for this task, we are not particularly concerned with optimising
the number of generations for best efficiency; this will be explored in future work.

Can Genetic Programming Do Manifold Learning Too? 9

5 Results and Analysis

The full set of results for each method and dataset are shown in Table 4. For
each baseline method on each dataset, we label the result with a “+” if the
baseline was significantly better than GP-MaL, a “−” if it was significantly
worse. If neither of these notations appear, there was no significant difference
in the results. We used one-tailed Mann-Whitney U tests with a 95% confidence
interval to compute significance. For convenience, a summary of these results
are provided in Table 5 by totalling the number of “wins” (significantly bet-
ter), “losses” (significantly worse) and “draws” (no significant difference) the
proposed GP-MaL method has compared with each baseline. We compare GP-
MaL’s performance to PCA and MDS, and LLE and t-SNE in the following
subsections, as these pairs of methods exhibit similar patterns.

5.1 GP-MaL compared to PCA & MDS

GP-MaL has a clear advantage over PCA when the most significant amount of
feature reduction — to two or three features — is required. Given that PCA is
a linear manifold learning method, it is not surprising that GP-MaL is able to
preserve more structure in 2 or 3 dimensions by performing more complex, non-
linear reductions. At higher dimensions, the gap narrows somewhat, as at 5 or
CR features there are enough available output dimensions in order to make linear
combinations able to model the underlying structure of the data more accurately.
PCA weights every input feature in each component it creates, which means the
way in which it models this structure is rather opaque when there are many
input features. The MDS results have a similar pattern to the PCA ones, except
that MDS and GP-MaL are quite even on 3 and 5 features. It is interesting to
note that MDS uses a similar optimisation criterion to GP-MaL, but struggles
significantly more at 2 features.

5.2 GP-MaL compared to LLE & t-SNE

Overall, GP-MaL is the most consistent of all the methods across the different
numbers of features produced. LLE wins on one more dataset than GP-MaL for
2 features, but otherwise GP-MaL has a clear advantage with 7 wins on 3/5/CR
features. The performance of LLE fluctuates quite widely across the datasets,
and generally loses to PCA as the number of features is increased.

While GP-MaL is clearly worse than t-SNE on the 2 and 3D results, it out-
performs t-SNE on 5 or CR features. On the Ionosphere and COIL20 datasets,
t-SNE’s performance actually decreases as the number of output features are
increased, which means it is much more sensitive to the number of components
that the user chooses than GP-MaL; GP-MaL almost strictly improves as more
output features are produced, which is what we generally expect from dimen-
sionality reduction techniques.

In a number of cases, t-SNE does actually outperform GP-MaL while us-
ing fewer features — however, consider that t-SNE (and LLE) are embedding

10 Andrew Lensen, Bing Xue, and Mengjie Zhang

Table 4: Experiment Results. GPM refers to the proposed GP-MaL method. The
number after each method specifies the dimensionality of the low-dimensional
manifold; “cr” means the cube root approach determined the dimensionality.

Method Wine Move. Derm. Iono. Image. COIL20 Mad. Yale MFAT MNIST

GPM2 0.955 0.485 0.914 0.826 0.797 0.628 0.605 0.382 0.639 0.909

PCA2 0.764− 0.405− 0.769− 0.776− 0.675− 0.647+ 0.572− 0.244− 0.643 0.906−
MDS2 0.711− 0.476− 0.723− 0.837+ 0.716− 0.732+ 0.574− 0.339− 0.687+ 0.909

LLE2 0.659− 0.499+ 0.803− 0.833 0.809+ 0.850+ 0.601− 0.120− 0.843+ 0.980+

tSNE2 0.718− 0.782+ 0.852− 0.890+ 0.921+ 0.948+ 0.712+ 0.455+ 0.935+ 0.986+

GPM3 0.964 0.579 0.924 0.872 0.892 0.773 0.688 0.472 0.765 0.925

PCA3 0.793− 0.608+ 0.780− 0.877 0.805− 0.823+ 0.681− 0.374− 0.749− 0.932+

MDS3 0.726− 0.594+ 0.774− 0.910+ 0.883− 0.849+ 0.677− 0.404− 0.830+ 0.932+

LLE3 0.667− 0.513− 0.824− 0.847− 0.831− 0.923+ 0.648− 0.297− 0.847+ 0.984+

tSNE3 0.712− 0.768+ 0.847− 0.756− 0.924+ 0.952+ 0.731+ 0.394− 0.935+ 0.987+

GPM5 0.960 0.673 0.951 0.915 0.958 0.847 0.864 0.553 0.888 0.940

PCA5 0.913− 0.705+ 0.899− 0.923+ 0.911− 0.887+ 0.881+ 0.531− 0.885 0.945+

MDS5 0.732− 0.719+ 0.817− 0.928+ 0.901− 0.886+ 0.685− 0.564+ 0.881− 0.948+

LLE5 0.683− 0.684+ 0.825− 0.817− 0.837− 0.930+ 0.665− 0.456− 0.870− 0.985+

tSNE5 0.718− 0.747+ 0.835− 0.714− 0.930− 0.878+ 0.763− 0.532− 0.939+ 0.987+

GPMcr 0.962 0.681 0.941 0.899 0.891 0.913 0.863 0.661 0.935 0.952

PCAcr 0.789− 0.704+ 0.852− 0.879− 0.804− 0.950+ 0.857− 0.648− 0.939+ 0.957+

MDScr 0.725− 0.722+ 0.792− 0.920+ 0.884− 0.911 0.670− 0.651 0.889− 0.957+

LLEcr 0.669− 0.685 0.814− 0.803− 0.828− 0.924+ 0.679− 0.577− 0.912− 0.984+

tSNEcr 0.710− 0.759+ 0.853− 0.713− 0.925+ 0.730− 0.765− 0.650− 0.944+ 0.987+

Table 5: Summary of Experiment Results. The number of “wins”, “losses”, and
“draws” are shown for GP-MaL compared to each baseline.

Baseline Wins Losses Draws Baseline Wins Losses Draws

PCA2 8 1 1 PCA3 6 3 1

MDS2 6 3 1 MDS3 5 5 0

LLE2 4 5 1 LLE3 7 3 0

tSNE2 2 8 0 tSNE3 4 6 0

PCA5 4 5 1 PCAc 6 4 0

MDS5 5 5 0 MDSc 5 3 2

LLE5 7 3 0 LLEc 7 2 1

tSNE5 6 4 0 tSNEc 6 4 0

method which do not have to manipulate the original feature space to produce
the output feature space (i.e. it is not a functional mapping). It is clearly more
difficult to evolve such a mapping, but also has significant benefits in that GP-
MaL’s output dimensions can be interpreted in terms of how they combine the

Can Genetic Programming Do Manifold Learning Too? 11

original features, which is often as important as visualisation alone in exploratory
data analysis. This behaviour will be explored further in Section 6.

5.3 Summary

GP-MaL shows promising performance for an initial attempt at directly using
GP for manifold learning, winning against all baselines on at least two of the
four configurations tested. While GP-MaL faltered somewhat on some datasets
such as MNIST, it achieved much better performance on other lower-dimensional
datasets such as Wine and Dermatology. This suggests that with further improve-
ments to its learning capacity, GP-MaL may have the potential to outperform
existing methods on these higher-dimensional datasets too.

Another important consideration is the interpretability of the models pro-
duced by each baseline. t-SNE, LLE, MDS, and PCA (to a lesser extent) are
almost black-boxes as they give little information about how the manifolds in
the data are represented in terms of the original features. Interpretability is an
increasing concern in data mining, and feature reduction is often touted as a
way to improve it; we will examine in the following section if GP-MaL can be
interpreted any more easily than these existing methods.

6 Further Analysis

6.1 GP-MaL for Data Visualisation

A common use of manifold learning techniques such as t-SNE and PCA is for
visualisation of datasets in two- or three-dimensions. Figs. 2 and 3 plot the two-
dimensional outputs of each manifold learning method for two datasets that
GP-MaL performed best on (Dermatology) and worst on (COIL20) respectively.
To show the potential of each method, we used the result that had the highest
classification accuracy for plotting.

On the Dermatology dataset, GP-MaL clearly separates each class better
than the baseline manifold methods. PCA, MDS, and t-SNE struggle to seper-
ate the purple, green, and pink classes apart, whereas GP-MaL is able to sepa-
rate them while keeping them reasonably close to signify their similarities. t-SNE
splits both the purple and blue classes into two disjoint groups with other classes
appearing in the middle of the split. LLE clearly struggles to give a good visu-
alisation at all — it is only able to split the blue class from the others.

On the COIL20 dataset, LLE is able to separate the classes somewhat more
effectively along one dimension, but still fails to produce a reasonable visualisa-
tion. t-SNE clearly does very well, but does continue to separate some classes
into disjoint clusters (all of the green ones). It is not clear which of GP-MaL,
PCA, and MDS produces the best result; MDS tends to incorrectly separate
some classes like t-SNE, whereas GP-MaL and PCA have poorer separation of
different classes overall. Unlike the other methods, the two dimensions produced
by GP-MaL can be interpreted in terms of how they use the original features —
this will be explored further in the next subsection.

12 Andrew Lensen, Bing Xue, and Mengjie Zhang

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

dermatology

(a) GP-MaL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

GPMaL2f-best

40 20 0 20 40
6

4

2

0

2

4

6

dermatology

(b) PCA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

GPMaL2f-best

40 20 0 20 40
6

4

2

0

2

4

6
PCA2f-best

5 0 5
40

30

20

10

0

10

20

30

40

dermatology

(c) MDS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

GPMaL2f-best

40 20 0 20 40
6

4

2

0

2

4

6
PCA2f-best

5 0 5
40

30

20

10

0

10

20

30

40
MDS2f-best

0.0 0.1 0.2 0.3

0.125

0.100

0.075

0.050

0.025

0.000

0.025

dermatology

(d) LLE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

GPMaL2f-best

40 20 0 20 40
6

4

2

0

2

4

6
PCA2f-best

5 0 5
40

30

20

10

0

10

20

30

40
MDS2f-best

0.0 0.1 0.2 0.3

0.125

0.100

0.075

0.050

0.025

0.000

0.025

LLE2f-best

20 10 0 10 20

6

4

2

0

2

4

6

dermatology

(e) tSNE

Fig. 2: The two created features on Dermatology dataset, coloured by class label.

2.5 5.0 7.5 10.0 12.5

2

4

6

8

10

12

COIL20

(a) GP-MaL

2.5 5.0 7.5 10.0 12.5

2

4

6

8

10

12

GPMaL2f-best

5.0 2.5 0.0 2.5 5.0 7.5

6

4

2

0

2

4

6

COIL20

(b) PCA

2.5 5.0 7.5 10.0 12.5

2

4

6

8

10

12

GPMaL2f-best

5.0 2.5 0.0 2.5 5.0 7.5

6

4

2

0

2

4

6

PCA2f-best

10 5 0 5 10

10

5

0

5

10

COIL20

(c) MDS

2.5 5.0 7.5 10.0 12.5

2

4

6

8

10

12

GPMaL2f-best

5.0 2.5 0.0 2.5 5.0 7.5

6

4

2

0

2

4

6

PCA2f-best

10 5 0 5 10

10

5

0

5

10

MDS2f-best

0.10 0.05 0.00 0.05

0.00

0.02

0.04

0.06

0.08

0.10

0.12

COIL20

(d) LLE

2.5 5.0 7.5 10.0 12.5

2

4

6

8

10

12

GPMaL2f-best

5.0 2.5 0.0 2.5 5.0 7.5

6

4

2

0

2

4

6

PCA2f-best

10 5 0 5 10

10

5

0

5

10

MDS2f-best

0.10 0.05 0.00 0.05

0.00

0.02

0.04

0.06

0.08

0.10

0.12
LLE2f-best

75 50 25 0 25 50
60

40

20

0

20

40

60

COIL20

(e) tSNE

Fig. 3: The two created features on COIL20 dataset, coloured by class label.

Can Genetic Programming Do Manifold Learning Too? 13

6.2 Tree Interpretability

Part of an individual evolved on the MFAT dataset is shown in Fig. 4. While the
left tree is quite large (containing 73 features), the right tree is very simple: it
adds two features together, and outputs the sum. This gives a strong indication
that these features are very important for modelling the underlying structure of
the data. While the left tree is harder to analyse, it is useful to note that four of
the children of the root node are again very simple: three features (two of which
are transformed non-linearly) and a constant weighting. This again suggests that
these features particularly model the instances in the MFAT dataset, with X292
appearing in both trees. X292 and X294 are the first and third Karhunen-Loève
coefficients extracted from the original images; these coefficients are extracted
in a similar way to PCA, so it makes sense that GP would recognise these to
be very useful features: being the first and third coefficients, they represent a
significant amount of the variance present in this dataset.

(a) (b)

Fig. 4: An example of two simplified trees (features) evolved on the MFAT
dataset, giving 65% classification accuracy. Only the top of the left tree is shown.

Fig. 5 shows another example GP individual evolved on the 500-dimensional
Madelon dataset, with five trees used. Of the five trees, four are simple enough
to be human-interpretable, with the fifth being somewhat larger, but still inter-
pretable at the root. Trees 5b – 5e each combine between three and five features
in ways that make sense, but which would not be able to be represented by
many existing manifold learning methods. For example, consider Tree 5c, which

14 Andrew Lensen, Bing Xue, and Mengjie Zhang

min

5+ min

+ X475

-0.157

if min sig X48

-0.683

X84

+ X286

X48

0.352

X167

X318

+ X475

X418 if

mul -0.694

0.703+ mul

mul mul max min

X324 min ReLU X374 + 3+ 0.344

X3240.000 min sig

mul X91

min mul

0.829 2+ X479 3+

X13

-0.704

X48

X117

0.827

X258

X169 + if 4+ 0.512

X83

0.594

X146

X284

X227

X340

X285

X39

-0.347

(a)

min

5+ min

+ X475

-0.157

if min sig X48

-0.683

X84

+ X286

X48

0.352

X167

X318

+ X475

X418 if

mul -0.694

0.703+ mul

mul mul max min

X324 min ReLU X374 + 3+ 0.344

X3240.000 min sig

mul X91

min mul

0.829 2+ X479 3+

X13

-0.704

X48

X117

0.827

X258

X169 + if 4+ 0.512

X83

0.594

X146

X284

X227

X340

X285

X39

-0.347

(b)

if

X138 X475 sig

X475

(c) (d)

X455

(e)

Fig. 5: An example of five simplified trees (features) evolved on the Madelon
dataset, giving 87.8% classification accuracy. Tree (a) was truncated to save
space, but the full tree in the box to the right to show that is is reasonably
small. The original dataset had 500 features.

uses either the original value of X475, or a non-linear sigmoid transformation of
X475 depending on the value of X138. This suggests that there is a particular
feature interaction between X138 and X475 which may be important to the
underlying structure of the dataset. In fact, X475 is the feature which has the
second-highest information gain (IG) on this dataset4. Tree 5e is just a single
selected feature — X455 clearly is important in the manifold of this dataset.

Although Tree 5a is clearly more complex, the top of the tree still provides
an interesting picture of the most important aspects of the dataset. For example,
if X48 is a very low value, then this is simply the output of the tree. Examining
X48 more closely reveals that it is in the top 3% of features in terms of IG, and
that at its smallest values it always predicts the positive class. Also of note is
that X475 appears twice again in the top of this tree as well as in Tree 5c.

4 Information gain (mutual information) is often used in feature selection for classifi-
cation to measure the dependency between a feature and the class label.

Can Genetic Programming Do Manifold Learning Too? 15

Summary: As the focus of this work was to show the potential of GP for direct
manifold learning, no parsimony pressure (or other such methods) were applied
to encourage simple trees. Nevertheless, aspects of the evolved individuals can
be analysed with ease and provide insight into the structure of the datasets. This
is a clear advantage over existing manifold learning techniques which are black
(or very grey) boxes, and bodes well for future work. The use of GP also has
the nice upside of allowing the evolved trees to be re-used on future examples
without having to perform the whole manifold learning process again (as t-SNE
or the other methods would require).

7 Conclusion

Manifold learning has become significantly more popular in recent years due to
the emergence of autoencoders and visualisation techniques such as t-SNE. De-
spite this, the learnt manifolds tend to be completely or nearly uninterpretable
with respect to the original feature space. With interpretability being a key goal
in exploratory data mining, we proposed a new GP method called GP-MaL for
directly performing manifold learning in this paper. Appropriate terminal and
function sets were presented, along with a fitness function tailored to the task,
and further techniques for reducing computational complexity. We showed that
GP-MaL was competitive, and in some cases clearly better than, existing mani-
fold learning methods, and was generally more stable across that datasets tested.
GP-MaL was also shown to produce interpretable models that help the user to
gain concrete insight into their dataset, unlike many existing manifold learning
methods. The potential of GP-MaL for visualisation purposes was highlighted.
Furthermore, the functional nature of the models produced by GP-MaL allows
it to be applied to future data without re-training. As the first work using GP
for directly performing manifold learning, these findings showcase the potential
of GP to be applied further to this domain.

GP-MaL is quite flexible, and could easily be extended further with other
function sets and fitness functions (that do not have to be differentiable!). We
also hope to explore a multi-objective approach in the future that balances the
often-conflicting objectives of maintaining global and local structure. It is also
clear that techniques to encourage simpler/more concise trees such as parsimony
pressure would further improve the usefulness of GP-MaL.

References

1. Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: A review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

2. Cano, A., Ventura, S., Cios, K.J.: Multi-objective genetic programming for feature
extraction and data visualization. Soft Comput. 21(8), 2069–2089 (2017)

3. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017), http:
//archive.ics.uci.edu/ml

4. François, D., Wertz, V., Verleysen, M.: The concentration of fractional distances.
IEEE Trans. Knowl. Data Eng. 19(7), 873–886 (2007)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

16 Andrew Lensen, Bing Xue, and Mengjie Zhang

5. Jolliffe, I.T.: Principal component analysis. In: International Encyclopedia of Sta-
tistical Science, pp. 1094–1096. Springer (2011)

6. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (Mar 1964)

7. Lensen, A., Xue, B., Zhang, M.: New representations in genetic programming for
feature construction in k-means clustering. In: Proceedings of the 11th Interna-
tional Conference on Simulated Evolution and Learning (SEAL). Lecture Notes in
Computer Science, vol. 10593, pp. 543–555. Springer (2017)

8. Lensen, A., Xue, B., Zhang, M.: Automatically evolving difficult benchmark feature
selection datasets with genetic programming. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO. pp. 458–465. ACM (2018)

9. Liu, H., Motoda, H.: Feature selection for knowledge discovery and data mining,
vol. 454. Springer Science & Business Media (2012)

10. van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. Journal of
Machine Learning Research 15(1), 3221–3245 (2014)

11. van der Maaten, L., Hinton, G.E.: Visualizing high-dimensional data using t-SNE.
Journal of Machine Learning Research 9, 2579–2605 (2008)

12. Neshatian, K., Zhang, M., Andreae, P.: A filter approach to multiple feature con-
struction for symbolic learning classifiers using genetic programming. IEEE Trans.
Evolutionary Computation 16(5), 645–661 (2012)

13. Nguyen, S., Zhang, M., Alahakoon, D., Tan, K.C.: Visualizing the evolution of com-
puter programs for genetic programming [research frontier]. IEEE Computational
Intelligence Magazine 13(4), 77–94 (2018)

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

15. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
lulu.com (2008)

16. Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J.: Structurally layered
representation learning: Towards deep learning through genetic programming. In:
Genetic Programming - 21st European Conference, EuroGP 2018, Parma, Italy,
April 4-6, 2018, Proceedings. pp. 271–288 (2018)

17. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. Science 290(5500), 2323–2326 (2000)

18. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: A particle swarm optimization-
based flexible convolutional auto-encoder for image classification.
IEEE Transactions on Neural Networks and Learning Systems (2018).
https://doi.org/10.1109/TNNLS.2018.2881143

19. Sun, Y., Yen, G.G., Yi, Z.: Evolving unsupervised deep neural networks for learn-
ing meaningful representations. IEEE Transactions on Evolutionary Computation
(2018). https://doi.org/10.1109/TEVC.2018.2808689

20. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and
selection in classification on high-dimensional data. Memetic Computing 8(1), 3–15
(2016)

21. Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-
of-the-art classification algorithms. Expert Systems with Applications 82, 128–150
(2017)

https://doi.org/10.1109/TNNLS.2018.2881143
https://doi.org/10.1109/TEVC.2018.2808689

	Can Genetic Programming Do Manifold Learning Too?

