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Abstract. The Biosphere is a bountiful source of inspiration for the bio-
logically inclined scientist, though one may be seized by the twists and
turns of its complexity. Artificial Life emerged from the conundrum of
condensing this overwhelming intricacy into a tractable volume of data.

To tackle the distant challenge of studying the long-term dynamics
of artificial ecosystems, we focused in this work our efforts on plant-
plant interactions in a simplified 3D setting. Through an extension of
K. Sims’ directed graphs, we devised a polyvalent genotype for artifi-
cial plants development. These individuals compete and collaborate with
one another in a shared plot of earth subjected to dynamically chang-
ing environmental conditions. We illustrate and analyze how the use of
multi-objective fitnesses generated a panel of diverse morphologies and
strategies. Furthermore, we identify two driving forces of the emerge of
self-reproduction and investigate their effect on self-sustainability.

Keywords: Artificial plants · Ecosystems ·
Autonomous reproduction · Self-sustainability

1 Introduction

Natural ecosystems are staggering by virtue of their intricate interactions net-
works and seemingly endless detail levels. Adaptation, co-evolution and arming 
races are a small subset of the myriad evolutionary strategies observed in the 
world. In order to translate this onto an artificial medium, one has to address 
three key issues. The first is finding functional, adaptive and yet computation-
ally tractable representations for both the genomic and phenotypic aspects of the 
‘creatures’. Then, genetic variation and discrimination methods, the keystones 
of Darwin’s natural selection process, ought to be devised. Ultimately, environ-
mental pressure, whether coming from the inanimate (abiotic) or living (biotic) 
surroundings, should be strong enough so that diversity can emerge without 
excessively narrowing the viable behaviors range.
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A number of models have been devised to tackle the problem of artificial
morphogenesis starting with the L-Systems which successfully generated plant
morphologies in both 2-D [1] and 3-D environments [2], as well as mobile crea-
tures [3]. In a similar fashion, the directed graphs from [4], define distinct organs
and the relationship between them, allowing for very compact encoding of motile
morphologies. Closer to biology is the use of Genetic Regulatory Networks to
control cellular building blocks. By using such a finer-grained representation it
was shown possible to evolve cell clusters towards specific shapes [5] or generate
creatures with self-organized organs in non-trivial environments [6].

With rules as simple as the one in the Game of Life [7], elaborate ecosystems
emerged with no reliance on evolutionary techniques. Other contributions simu-
lated self-reproducing computer programs into a 2D memory grid where the organ-
isms had their duplication mechanism embedded into their life-cycle [8]. Further
complexification of the phenotypic space led to ecosystems such as [9,10] where
the environment was a 2D continuous grid and the ‘animals’ had to manage their
reproduction cycle by actively searching for mates in their surroundings.

In case of co-evolution or competition (e.g. [11]), there is a biotic component
to the ecosystem in the sense that from the viewpoint of an individual, every
other entity is a hard-to-control part of its environment. When considering the
abiotic, i.e. non-living, component of earth’s ecosystems, it has been shown that,
with only water availability and temperatures, it is possible to model most of
the biodiversity observed in nature [12]. The same holds true for artificial simu-
lations where the impact of environmental factors can be a driving force for the
speciation process [2]. Additionally, dynamically changing the local constraints
pushes individuals out of local minimums and promotes adaptability [13].

Our objective is to design a virtual ecosystem which tackles all three points
by modeling both plants and animals in a shared environment thus inducing
complex interactions and survival/reproduction strategies starting, in this paper,
with the growth of vegetals. To this end we first detail, in Sect. 2, the use of both
an extended version of the directed graphs (hereafter named ‘Graphtals’) from
[4], which produces functional morphologies in the face of unknown (a)biotic con-
straints, and a novel reproduction scheme with self-controlled speciation capa-
bilities. We then move on to exploring, in Sect. 3, various outcomes stemming
from this implementation in terms of growth and adaptation strategies as well
as the impact of the evolution process itself before highlighting the necessary
extensions to this model.

2 Self-reproducing Vegetals

Starting from the breakdown of the various components of an individual plants
genome (Sect. 2.1), we expand upon how organs interact with one another to
promote the whole organisms well-being and survival capacities (Sect. 2.2). A
detailed presentation of a speciation-oriented approach to self-controlled, self-
reproduction follows in Sect. 2.3. We conclude this overview of the model by
the external components of the system, i.e. the environment (Sect. 2.4) and the
englobing ecosystem (Sect. 2.5).



Fig. 1. Base graphtal in all following experiments

2.1 Graphtal Fields

As in [14], our genotype is composed of both structural (Fig. 1) and behavioral
instructions. Each node ni describes an abstract sub-organ and is composed of an
id and a set of parameters nd

i specifying its skill which in turn defines its shape
(sphere, box, cylinder). Furthermore, it also codes for the initial dimensions,
density, color and maximal growth factor of the corresponding organ.

Behavior is controlled by two tuples A,S ∈ [0, 1]
E

with E the number of
elements (limited to water and glucose in this work). A models an organ’s balance
between production and consumption: a value of 0 (resp. 1) indicates a source
(resp. sink) for this specific element. S enables quiescent behavior by imposing
a threshold below which no growth or budding actions can be performed.

A link li : n1 → n2 expresses a growth relationship from n1 (the parent
node noted li) to n2 (the ‘child’ node noted lo) and, also, contains a set of
parameters noted ld describing the position on the parent’s surface and the
relative orientation. A special field r is used to regulate recurrent connections
by imposing a maximal depth (r > 0) or indicate a terminal node (r = −1).

To easily code for the highly regular structures observed in nature, each link
can select a repetition pattern from:

– none: no repetition
– radial(V , N): N-1 copies evenly rotated around V

– random(N,S): N-1 copies randomly placed

Ultimately, a handful of plant-wide parameters are stored separately. Namely
the growth speed and maximal size factor, the individual’s sex and two sets of
parameters dW and {µ, σi, σo} that will be detailed more thoroughly in following
sections.



2.2 Metabolism

At the beginning of a simulation, plants’ seeds are filled with a limited amount
of nutrients, i.e. water and glucose, to start the growth process but longer-
term survival requires a strategy to maintain comfortable resource levels. Organs
die from starvation if any of their nutrient reserves are exhausted and a plant
is considered dead when it contains less than two organs as it can no longer
sustain itself. No programmed death is implemented in either the genotype or
the simulation. In these experiments, the environment contains only two types
of resources from which nutrients can be extracted: water and light.

The first one is extracted through below-ground root hair and must be dis-
patched through the plant and more importantly to the leaves. Indeed these
later require both resources to produce glucose according to Eq. (1).

Gi = .025 ∗ Si ∗ L.Ni (1)

where L points to the sun, Si is the leaf’s photoreceptive surface and Ni the z

axis in its local coordinates system.
Resources distribution is implemented through a decentralized mechanism

which follows the gradient of nutrient. Every simulation step, organs share a
portion of their reserves according to the transport Eq. (2) with e ∈ g, w a
nutrient.

de
A→B =

ke
AB ∗ stored(A) ∗ needs(B)∑

o∈C(A)

needs(o)
(2)

where needs(x) (resp stored(x)) is the need (resp. stored amount) in nutrients
in an organ x, C(x) the set of organs connected to x and A,B two organs so
that 0 ≤ needs(A) < needs(B) ≤ 1 ∧ B ∈ C(A). The ke

AB term is a refractory
coefficient dependant on the types of A and B.

2.3 Autonomous Reproduction

One of the most powerful tools available to Life is its ability to adapt through the
process of natural selection. Over the course of history numerous propagation
scheme have been developed. In this work, we chose to focus on sexual repro-
duction because of its greater degree of interactions and inter-species diversity.

To this end, we improved upon the previous work in [14] by including genomic
components devoted to reproduction: sex, compatibility metrics {µ, σi, σo} and
sexual organs. These interact with one another according to Algorithm 1. Given
G1 = (N1, L1) and G2 = (N2, L2), two genomes, the alignment procedure creates
three subsets:

– Ma = {{l1, l2}, lid1 = lid2 ∧ li1 = li2 ∧ lo1 = lo2}
– Mia = {{l1, l2}, lid1 = lid2 ∧ (li1 �= li2 ∨ lo1 �= lo2)}
– Mi = {l1 ∈ L1, � ∃l2 ∈ L2, l

id
1 = lid2 } ∪ {l2 ∈ L2, � ∃l1 ∈ L1, l

id
2 = lid1 }



Data: P, set of plants
M ← {p ∈ P/p is male};
for m ∈ M do

Gm ← genotype(m);
for sm, stamen ∈ m do

f ← random female, with pistils, in range of m;
Gf ← genotype(f);
A ← align(Gm, Gf );
Cmf ← compatibility(A, Gf );
if random toss with probability Cmf then

delete sm;
pf ← random pistil from f ;
pf ← Fruit(Mutate(Cross(A, Gm, Gf )));

end

end

end

Algorithm 1. Mating process

Fig. 2. Genetic compatibility function

which highlight the structural similarities between both individuals. The genetic
distance d is then computed based on the average field-by-field difference of
comparable node and link data, i.e. those in Ma and Mia. Links in Mi are given
the maximal distance of 1. The total sum is given by Eq. (3).

d(l1, l2) =
1

3
(d(li1, l

i
2) + d(lo1, l

o
2) + d(ld1 , ld2))

D(G1, G2) = |Mi| +
∑

{l1,l2}∈Ma∪Mia

d(l1, l2)
(3)

This crossover operator differs from those commonly found in the literature
[4,6,15] on three points: (1) it can fail early on, (2) is biased by the female

genome and (3) has low resistance to large structural differences. The ratio-
nale behind point 3 is that, instead of devising a robust operator that can pro-
duce a somewhat viable offspring from two completely unrelated individuals,



a minimalist alignment procedure is better suited to sexual reproduction of same
species creatures in which the population is mostly homogeneous. Indeed, point
1 guarantees that the more both genomes are different the less likely it is that
crossing will be attempted at all. The decision of aborting or proceeding with
the reproduction is left to the female individual as, in this sexual scheme, it will
have to provide the fruit in resources.

Having the compatibility function embedded into the genome gives each
species a segregation scheme which is of utmost importance as the number of
nodes/links is not fixed, thus requiring the optimal genetic distance to be adapted
as evolution goes. Furthermore having both in-/out-breeding coefficients allow
for the specification of the search spaces with adaptive plants accepting a broader
range of incoming genetic material while more conservative ones could instead
focus on controlled inbreeding to solidify their alleles.

2.4 Environment

Selective pressure should emerge on its own from the interaction between self-
interested individuals. However the environment could play a pivotal role in
guiding the complexification process whether by imposing harsh restrictions on
the amount of available resources or by displaying a range of (from a creature’s
point of view) semi-random dynamics.

For this work, the only varying part of the environment is the sun, which
produces season cycles through the following set of parameters: day (100 simu-
lation steps) and year (300 days) lengths, latitude (π/4) and declination (π/8),
i.e. typical values for a temperate climate. Additionally, the ground was a W =
10 m flat square with a constant supply of water.

2.5 Ecosystem

A complete ecosystem is composed of both a description of the environment
(currently not evolved) and a set of plants ‘templates’. Each of these latter
represents whole species whose strategies for survival will be pitted against one
another in their shared piece of earth.

The procedure to translate these templates into a densely populated ecosys-
tem is straightforward. First the environment is divided into as many cells as the
requested number of plants (100 in this experiment) and the largest seed size is
tested against half the cell size. If this fails, the whole ecosystem is deemed non-
viable and the simulation is aborted, thus preventing plants from having too large
initial reserves. Otherwise, each cell is subdivided once more in four and a plant is
placed in a single subcell with a random genome from the set of templates and a
random vertical rotation. This leaves enough room for autonomous reproduction
to place offspring even when the initial population has not entirely died out.

In the current experimental settings, the number of plants is set to 100 and
only one species is considered. Furthermore, every random number used during
the simulation (plants position, rotations, iterations, etc.) is generated from a
fixed seed provided by the genotype (not evolved but randomly set).



3 Colonization Dynamics

3.1 Evolution Protocol

This work comes within the scope of studying long-term evolutionary trends in
elaborate 3D ecosystems. However, evolving, from scratch, such systems with
a non-trivial degree of complexity would require a prohibitive amount of com-
putational resources. Stemming from this intent, the following experiment was
designed to generate usable individuals to seed an environment with. Viable
plants would thus have to develop strategies to both survive and reproduce so
that their genetic material does not die off.

The evolution protocol relied on evolution programming where plants’ geno-
mes underwent single point, equiprobable, mutation on all of the fields mentioned
in Sect. 2.1. Evaluating a genotype implies populating an empty environment
as described in Sect. 2.5 and then stepping back for a maximum of N = 60000
simulation steps (2 simulated years) to see whether autonomous dynamics would
emerge.

In order to limit the search space to the genetic fields of the plants, the
environment was kept constant in all runs. As we aimed for both efficiency and
diversity, we devised a range of fitness functions F∗ as described below.

ν =
1

NP

Fb = ν
∑

t∈N

∑

p∈P

biomass(p, t)

Fp = ν
∑

t∈N

∑

p∈P

production(t, p)

Fc =
ν

W 2

∑

t∈N

surface(t)

Fa = ν
∑

p∈P

lifespan(p) ∗ 2−αp

where surface(t) corresponds to the total surface covered by plants at time t
and αp is designed to provide a smoother gradient towards reproduction. Plainly
put, these aim at producing plants which are: (Fb) large, (Fp) many-leaved, (Fc)
wide, (Fa) fast reproducers. Given that every fitness is likely to be exploited into
non-desired behaviors, a fifth one Fm is introduced that evaluates genomes on
all four criteria at the same time.

Furthermore, in order to prevent local optimum a novelty metric is used as
proposed in [16]. An individual’s ‘footprint’, i.e. its synthetic behavioral descrip-
tion, is (Fa, Fb, Fp, R, G, S), with R the number of successful autonomous
reproductions, G the number of autonomous generations and S the seed size.



Fig. 3. Examples of the morphologies developed. (a) to (g) are at the 20th day and (h)
is at the 30th. From left to right: Genome, Single individual, Ecosystem. The fitness
that produced this individual is indicated in the caption with Fma indicating the age
criterion of the multi-objective fitness Fm. Videos of these individuals’ full ecosystem
can be seen on https://vimeo.com/album/5075632.

An autonomous reproduction, in this context, is defined as two individuals
(m, p) embedded in a simulation deciding on generating an offspring through
the process described in Algorithm 1. The autonomous generation gc of such
an offspring is gc = max(gm, gp) + 1, where gm (resp. gp) is the autonomous
generation of the mother m (resp. father p).



In each scenario, plants are evaluated on two to five criteria using a tourna-
ment selection where 3 participants are randomly selected from the population
and compete on a random objective as described in [6].

Ten runs per fitness were dispatched on a cluster of Bi-Intel(r) IVYBRIDGE
2,8 Ghz 10-cores and were re-launched as soon as they completed an evolution
(250 generations) with a maximal, total, duration of five hours.

3.2 Morphologies

While three out the five fitnesses performed an average of two evolutions in the
given time frame (Fa = 2.4, Fc = 2.5, Fm = 1.8), the remaining two behaved very
differently: while Fb produced 8.4 ‘champions’ per run, Fp did not manage to
bring a single one to the 250 generations threshold (min = 93, max = 199). This
can be explained by observing the evaluation times of those final individuals
which range from 12 ms up to 10+ minutes.

In order to gain a further grasp on the situation, we manually examined the
phenotype of the 40 best champions (out of a total of 215) that is 5 for every
single objective fitness and another 5 for each criterion in Fm. Summarized in
Fig. 3 are the morphologies of the most interesting creatures.

As one can see these evolutions produced very different strategies to cope with
the environment and their respective fitness. Variation in the sun’s position and
the plants’ relative orientation led to either having large leaves so that production
is maximized during short favorable moments Fig. (3a,c,e), or numerous, evenly
spread, leaves so that sunlight can be efficiently gathered throughout the day by
different parts of the plant Fig. (3d,f,h).

Root morphology was not thoroughly investigated, due to the uniform water
distribution exerting only very limited evolutionary pressure, and most indi-
vidual manage with a simple root trunk connected to a handful of capillary
tubes Fig. (3b,d,f). Some even went as far as to completely forsake the former
Fig. (3a,e,g).

As the autonomous reproduction process starts from flowers, their growth
is of utmost importance for a species’ permanence. All plants except two from
Fig. 3 actually generate at least one such organ, though only Fig. 3g,e,a manage
to bring them to maturity.

3.3 Strategies

From these morphologies and their associated dynamics graphs, we can extract
three main strategies: quiescence, expansion and reproduction as illustrated in
Fig. 4. The first one (in red) is quite straightforward in its survival method. One
can see on the graphs that after a short burst of activity, early on in the simu-
lation, this type of individuals goes into a quiescent state, keeping its metabolic
value in a comfortable range so that most plants make it to the end of simula-
tion. The expansionist (in blue) however, adopts a radically different approach:
instead it tries to reach as fast as it can a mature state which can, depending on



Fig. 4. Typical examples of the three strategies’ dynamics. Individuals are taken from
Fig. 3 with the red, green and blue curves corresponding to Fig. 3f,g and e (Color figure
online)

the plant, take up to a full year. This allows the ecosystem to compensate for
the extremely high mortality rate: in the example depicted, 96% of the popula-
tion dies in the first hundred days. Finally, the reproduction strategy (in green)
relies on having the smallest possible morphology, i.e. a small seed and a single
root hair directly connected to the leaf. Resources are mostly directed towards
producing mature fruits as quickly as can be, thus maintaining a population in
a safe range ([60, 80] in this case).

It is interesting to compare these behaviors with those obtained in [2] where
varying environmental factors led to the emerge of the CSR triangle [17]. Indeed,
a plant population under favorable conditions should evolve towards individual
competition while with decreasing resources availability a slower, more conser-
vative, metabolism is expected. If exposed to recurrent, localized uncontrolled
deaths, the ruderals would thrive with their fast life cycle and colonization app-
roach.

The fact that all three strategies emerged within identical environments
shows that, on the one hand, the genetic search space is large enough to contain
very distinct viable genomes even before being subjected to an evolutionary pro-
cess. On the other hand, it also warms about a possibly too large search space
with functional genotypes separated by wide unfit combinations.



Fig. 5. Repartition of average organ count per fitness across all runs.

3.4 Influence of Evaluation Criteria

We now turn our attention to the evolution procedure itself and more specifically
the contribution of our fitness functions set. The diversity of criteria used induced
a similar amount of variability in the obtained genomes as one can see the range
of morphologies and behavior obtained. All fitnesses, however, did not perform
equally both in terms of complexity (see Fig. 5) and relevance. Indeed, while Fb

produced plants that could grow at a sustained pace, they proved quite simplistic,
morphologically speaking, with almost 60% of the champions growing less than
five organs. Given that every random graphtal starts with this specific amount,
it shows that evolution discovered that the bigger one wants to grow, the smaller
the genotype.

A similar trend can be observed in Fa, though with a slight offset caused by
the necessity of having sexual organs. The global strategy for this fitness is as
described in details for individual Fig. 3g: small genome, small plant, fast mating.
This tendency is reversed in Fp, with no instance in the ‘Minimalist’ section of
the phenotypic space. Indeed, as glucose production requires both efficiently
positioned leaves and sufficient water uptake, evolution favored genotypes with
repetitive structure. On the downside, this also led to extremely long evaluation
times which prevent all runs to reach 250 generations with no overwhelming
advantages over the competing fitnesses.

The coverage-oriented evolutions performed by Fc led to a more balanced dis-
tribution of organ count between minimalism and over-complexification. While
this is the less biologically inspired criterion, it proved more robust to being
exploited by the evolutionary algorithm and, paradoxically, brought more life-
like individuals about, such as Fig. 3a.



Finally, the multi-objective fitness Fm generated more all-rounder creatures,
that did not suffer from over-optimization. Indeed when looking at Fig. 3c,b or
f, one can observe plausible morphologies made functional by the contradictory
pull of all individual fitnesses. Furthermore, it settled in a complexity landscape
similar to that of Fc, though with less exploration of the uppermost region.

3.5 Reproduction

In addition to the experiment described up until now, we subjected our model
to two hypotheses on the emergence on self-sustainability:

Hypothesis F Fruit dissemination should be supported by the system until
autonomous abscission can stabilise.

Hypothesis D Plants should be stressed by the unavoidability of their deaths.

The former is implemented through a collection algorithm that retrieves any
fruit disconnected from its plant (voluntarily, through a parent’s organ death,
etc) and proceeds to its dissemination through the usual algorithm. The latter
is emulated by extending the simulation duration sd when in presence of self-
reproductive behavior. That is, for a number g of autonomous generations, the
allotted number of years is sd = min(10,max(g, 1) ∗ 2). This allows genomes
exhibiting self-reproduction capabilities to reach much higher fitness values thus
increasing their chance of producing offspring in the next generation of the
genetic algorithm.

We tested all four combinations with none (f,d), one (f,D and F,d) and both
(F,D) of the hypotheses active in the runs to see how this would influence the
capacity to develop self-reproduction (Fig. 6).

Fig. 6. Violin plots of the number of autonomous generation per run type (see the text
for details). The colored area displays the kernel density overlayed with a boxplot with
whiskers spanning the 95% confidence interval.



The initial conditions (f,d) proved quite detrimental for the emerge of self-
sustainability: indeed, aside from a single outlier reaching 7 autonomous genera-
tions, 93% of the individuals obtained do not reproduce at all. Only introducing
adaptive simulation duration (f,D) reduces this number to 84% and creates a sec-
ondary behavioral cluster around the 4th generation. This dynamic is inverted
when only collecting immature fruits with only 54% of non-reproducing runs and
38% reaching the first generation. Finally when both features [F,D] are enabled
the threshold of less than 50% of infertile individuals is crossed, albeit slightly,
and peak performance is at absolute maximal across all alternatives (19th, 22nd
and 30th autonomous generations obtained in the 10 years allotted time-frame).

Based on the capacity to produce self-reproducing plants and the results of
T-Test evaluations we can surmise that run (f,d) is outperformed by every other
alternative (p-value <= 0.001). Additionally, while no significant differences were
detected between runs (f,D) and (F,D) the last one (F,D) shows better results
(p-value < 0.01) than both of them.

In order to further understand the dynamics behind these differences in self-
reproductive behavior, we investigated what ‘checkpoint’ individuals tended to
stop at (Fig. 7). The different categories are

– None: No sexual organs were produced by the plants
– Flowers: Some were produced but never fecundated
– Fruits: Seeds were produced but never planted
– Repro.: Self-reproduction occurred.

Fig. 7. Repartition of checkpoints for autonomous reproduction. Colors are the same
as Fig. 6, for details of the checkpoints see text.

At first glance, we can note different locations for the point(s)-of-failure
depending on which Hypothesis was enabled. While run (f,d) seems to strug-
gle at every checkpoint, loosing almost a third of its population each time,



run (f,D) understood the importance of producing fruits but rarely found how
to disseminate them into the world. Both (F,d) and (F,D) show no particular
problem on this point due to the algorithm taking the lead when necessary and,
instead, are clustered between individuals that do not attempt to reproduce and
those that succeed.

In the end, both hypotheses are verified by this additional runs as, on the
one hand, emphasizing the need to circumvent individual death promotes self-
replication while, on the other hand, providing a fallback mechanism, until self-
controlled abscission can stabilise, leads to fruit generation.

4 Conclusion

In this work, we devised a complex genetic encoding for plant morphologies
derived from K. Sims’ seminal work. The intricate mapping into a phenotype
is highly dependent on the environmental conditions of both the abiotic (light,
water) and biotic (competition) components. A self-reproduction scheme, based
on our bail-out crossover algorithm, was introduced to generate self-sustaining
ecosystems.

The ensuing experiment highlighted the difficulty of developing a balanced
strategy between survival and reproduction with individuals mostly falling into
either extremes. Furthermore, we observed that the size of the genotypic space
was large enough to, in itself, create a speciation phenomena solely based on the
starting point of an evolutionary run. We additionally noticed the positive impact
of a multi-objective evaluation criterion to promote robustness of demeanor by
simultaneously selecting from a larger range of viable mutations.

Obtaining self-sustaining individuals proved quite difficult in the current
experimental settings, though we note the positive impact of providing a
smoother transition towards spontaneous abscission and emulating programmed
death through adaptive simulation durations. Indeed while having only limited
effect on the proportion of non-reproducing individuals, this was shown to greatly
reduce the production of un-fecundated flowers.

Multiple avenues of research are currently open for improving our model
with regards both to plants and their environment. Indeed, although already
quite complex, our graphtals currently lack the means to sense, and be affected
by, the temperature at ground level. As mentioned in the opening section of this
paper, it is an essential component in earth’s biodiversity and, thus, should be
included in our future experiments. It could also be used to provide the plants
with some form of temporal perception. This would allow adaptive behaviors
such as delaying the growth of a seed until a more favorable season or restarting
leaf production comes ‘spring’.

The environment itself was kept mostly static for this experiment with the
exception of the sun. There is ongoing development to add more diversity both
topological, e.g. changing the altitude of different patches, and temporal, e.g.
varying the hygrometry. These changes would induce stress in the ecosystem,



thus promoting adaptation and diversity. By evolving these environments and
selecting for those with the most stimulating patterns, we could obtain simula-
tions with highly adapted yet clustered populations.

A further step in this direction would bring about co-evolution and compe-
tition by increasing the number of species used to seed the environment. We
could then observe the richness of interaction between multiple strands of indi-
viduals, both plants and animal, on a long time-scale (as introduced in https://

vimeo.com/godinduboisalife/futureworks). The use of graphtal to grow plants being
straightforward to extend to animals, as this technique is extensively used in the
literature.
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