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Abstract. This paper considers a new variant of a multi-objective flexi-
ble job-shop scheduling problem, featuring multisubset selection of man-
ufactured recipes. We propose a novel associated chromosome encoding
and customise the classic MOEA/D multi-objective genetic algorithm
with new genetic operators. The applicability of the proposed approach
is evaluated experimentally and showed to outperform typical multi-
objective genetic algorithms. The problem variant is motivated by real-
world manufacturing in a chemical plant and is applicable to other plants
that manufacture goods using alternative recipes.

1 Introduction

Manufacturing process scheduling is arguably one of the most widely studied
optimisation problems [1]. In this problem, manufacturing jobs are assigned to
machines at particular times in order to optimise certain key objectives, such
as makespan or total workload of machines. Numerous versions of this problem
have been proposed, starting from an original Job-shop Scheduling Problem
(JSP) coined by R.L. Graham in 1996, and including flexible JSP (FJSP), where
operations can be processed on any compatible resource [2]. However, the classic
JSP and its popular extensions are limited to certain classes of rather artificial
problems and do not scale well to the problem sizes found in industry [3]. Due
to the NP-hard nature of the problem, exact solutions are not generally possible
for real-world problems. The multi-objective nature of these problems further
exacerbates the difficulty of obtaining good solutions. A variety of metaheuristics
have been applied to the gamut of JSP variants. Amongst these, multi-objective
genetic algorithms (GAs) have been applied particularly successfully, as surveyed
in [4].

The real-world scenario motivating the research described in this paper is
related to a manufacturing process for mixing/dispersion of powdery, liquid and
paste components, following a stored recipe. The main optimisation objective
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of this case study is to increase production line utilisation and, consequently,
to decrease the makespan of batch production. The recipes can be executed
on different compatible resources. Various recipes can be used to produce the
same commodity. Consequently, the decision problem includes the selection of
the multisubset (i.e. a combination with repetitions) of the recipes and their
allocation to compatible resources, such that the appropriate amount of goods
are produced with the minimal surplus in the shortest possible time. As such,
the problem resembles, to a certain degree, FJSP with process plan flexibility
(FJSP-PPF) [5] or the earlier-formulated “JSP with alternative process plans”
[6]. However, none of the papers known to the authors considers process plan-
ning by recipe multisubset selection to satisfy both the criteria of the shortest
makespan and the minimal surplus of the ordered commodities.

The main contribution of this paper is the formulation of a new variant of a
multi-objective FJSP in which a number of commodities can be produced with
a set of recipes. A single commodity can be manufactured with a few different
recipes whose executions produce different amounts of the commodity and which
have different resource compatibility and manufacturing time. The objectives
are to minimise the makespan and produce the commodities in the amounts as
close to the ordered ones as possible, i.e., to minimise the discrepancies between
the ordered quantities and the manufactured ones for each resource. A chro-
mosome encoding for the described problem has been proposed and the classic
MOEA/D multi-objective genetic algorithm has been tuned with customised
problem-specific genetic operators: mutation and elitism. The applicability of
the proposed approach is evaluated experimentally and showed to outperform
the classic multi-objective genetic algorithms.

The rest of this paper is organised as follows. After the brief survey of related
works in Section 2, system model and problem formulation are presented in
Section 3. The proposed approach for the targeted manufacturing scheduling
problem is provided in Section 4. The motivating real-world use case is outlined
in Section 5, followed by experimental results and conclusion in Sections 6 and
7, respectively.

2 Related work

One of the first applications of a multi-objective genetic algorithm to manufac-
turing scheduling was described in [7]. The authors of that paper aimed to find a
set of nondominated solutions with respect to the minimal makespan, total flow-
time and the maximum tardiness. The fitness value of an individual has been
computed as a weighted sum of these three criteria, but the weight values were
randomly specified whenever a pair of the parent solutions were selected. This
led to the creation of the solution space where each point was generated using a
different weight vector. These solutions were then improved by local search. The
problem solved by this algorithm is a classic JSP, where the sizes of the assumed
plant and taskset were limited. Hence, the settings can be viewed as rather ab-
stract, and the manufacturing scheduling was used just for illustrating potential
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applicability of the algorithm, rather for direct real-world applicability. In con-
trast, the problem considered in this paper describes a real-world scenario that
is viewed as a challenge by a business partner. A more recent multi-objective
genetic algorithm MOAE/D [8], used in this paper as the baseline, has employed
some ideas from [7], such as generating various solutions from objective weighted
sums.

Several real-world scheduling problems have been deeply researched, typi-
cally being solved by customised multi-objective GAs. For example, in [9], a
real-world manufacturing problem originating from a steel tube production has
been described by extending the classic FJSP and solved using a multi-objective
GA with two objectives, namely reduction of the idle time on machines and
waiting time of orders. The authors of that paper stressed that it was virtu-
ally impossible to apply the earlier research works on JSP in practice as they
were based on overly simplified models and assumptions. In that paper, the
production routes depend on the orders and a certain production stage could
be processed on various homogeneous machines. The model proposed in that
paper can be used in numerous job production problems, but is inappropriate
in the case of batch manufacturing. In particular, it does not consider recipe
selection or minimisation of the commodity surplus, which is addressed by the
model proposed in this paper. Readers can refer to the survey presented in [10]
to appreciate the complexity of the batch manufacturing in general. The factory
model introduced in this paper is capable of describing the majority of the fea-
tures from the general batch scheduling classification presented in [10], including
the “sequence-depending setup”, in which sequences of two manufacturing jobs
scheduled to be processed subsequently by the same machine can require a time
gap of a certain length between them (corresponding to e.g. cleaning the machine
in a physical plant).

An interesting real-world problem related to textile batch dyeing scheduling
has been described in [11]. Similarly to the problem described in this paper,
both the temporal features and the weight of the products are considered. In
the textile dying industry, cloths of the same colour can be batched together as
long as their total weight does not surpass the capacity of the manufacturing
resource. However, for the problem addressed in this paper, the resources are
capable of producing only an exact weight of a given commodity, not lower or
higher, and the total amount of a manufactured commodity is only influenced
with the selection of the recipes multisubset to be executed. Instead of a batch-
ing heuristics, a method for recipe multisubset selection that optimises a set of
criteria would be desirable.

A number of multi-objective GAs applied to manufacture scheduling prob-
lems has been surveyed in [4]. That survey covered assorted types of scheduling
problems, including JSP, FJSP, dispatching in a flexible manufacturing system
(FMS) and integrated process planning and scheduling (IPPS). The problem
described in this paper follows certain realistic assumptions from those prob-
lems, such as the presence of alternative machines with different efficiency from
FJSP or storage facilitation from FMS. The production planning and scheduling



4 P. Dziurzanski et al.

are performed simultaneously as in IPPS. However, none of the reviewed papers
allowed selection of a multisubset of recipes for producing the same type of a
commodity. Similarly, none of those papers addressed the problem of minimising
the surplus of the produced commodities. Both these features are essential to
the problem analysed in this paper and they therefore feature in the proposed
solution. This objective is also not mentioned in survey [12], which addressed the
variability of the objective functions used for multi-objective FJPs. The objec-
tives enumerated in that survey were related to various features of the production
process, instead of the amount of the produced commodities.

From this literature survey, it may be concluded that to date there is no pro-
posed FJSP variant that is compatible with the considered real-world scenario.
Consequently, a new customisation of FJSP is needed, together with an algo-
rithm capable of solving this problem on a practical scale. Both are presented in
the following sections.

3 System model and problem formulation

The problem considered in this paper is an extended version of the classic FJSP,
in which each taskset Γ includes a set of independent recipes γj , j = 1, . . . , n.
Recipe γj produces uj units of certain commodity δl, l = 1, . . . , r and can be
executed by one of resources defined by a set Λj , including at least one resource
πi ∈ Π, i = 1, . . . ,m. A recipe γj needs ti,j time units while executed on resource
πi.

The plant is supposed to satisfy order O, comprised of ol units of commodities
δl. The difference between the actually produced amount of commodity δl, θl and
the ordered amount of commodity δl , ol, is referred to as surplus and computed
by:

σl = θl − ol. (1)

Several instances of a single recipe γj can be scheduled to produce a sufficient
amount of goods. These instances are later referred to as γj,k, k = 1, . . . , µj ,
where µj denotes the minimal number of recipe instances that satisfy the ordered
amount of δl and is defined later in this paper.

Certain sequences of recipe instances γj1,k1
and γj2,k2

, which manufacture
different commodities, can require a time gap of a certain length between them
if scheduled to be processed subsequently by the same resources (it corresponds
to e.g. cleaning the machine in a physical plant). Thus, the instance ordering
can influence the makespan. This ordering is controlled with priority pj,k ∈ N0

of a recipe instance γj,k. Priorities are ordered decreasingly, so from two recipe
instances scheduled to a single resource, the one with a lower value of priority
will be executed earlier.

Given a set of recipes Γ, a set of resources Π and an order O, the problem is to
assign resources and priorities to a multisubset of recipes from Γ so that the total
processing time (makespan) is minimised and the amount of each manufactured
commodity is higher or equal to the order, θl ≥ ol, but the surpluses of each
commodity, σl, are minimised.
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4 Proposed approach

As summarised by Michalewicz [13], to apply a genetic algorithm to solve a
particular problem, each of solution representation, fitness function and evolu-
tionary operators need to be specified. These aspects of the proposed algorithm
are focused on in this section.

Let us consider recipe γj producing uj units of a certain commodity δl.
To determine the upper bound on the number of this recipe instances in the
recipe multisubset to be allocated to resources, the lowest number of the recipe
execution leading to producing sufficient units ol of an ordered commodity θl
needs to be determined. This value can be computed using equation

µj =

⌈

ol

uj

⌉

. (2)

Consequently, the cardinality of the multisubset is upperbounded with

η =

n
∑

j=1

µj . (3)

The solution to the problem can be then described with a chromosome of
length 2η (η for resource allocation and η for priorities), following the encod-
ing proposed in the following subsection. Hence the genes can be addressed as
τ1, . . . , τη, where τ1 and τη correspond to recipe instances γ1,1 and γn,µn

, respec-
tively.

As the considered real-world scenario includes several objectives aiming at
minimising the makespan and the surplus of each commodity, the multi-objective
genetic algorithm techniques briefly described later in this section needs to be
applied.

4.1 Genetic representation of metrics

In genetic algorithms, candidate solutions are treated as individuals. During the
optimisation process, these individuals are evolved using a set of bio-inspired op-
erators, described briefly in Subsection 4.2. In this section, individuals’ encoding
that facilitates the manufacturing process optimisation and reconfiguration are
proposed.

Since in the considered problem each metric assumes a value from a certain,
predefined domain, so-called value encoding of chromosomes needs to be applied.
This encoding, in contrast to e.g. the traditional binary encoding, allows each
gene to directly correspond with a certain value of one variable of the optimi-
sation problem and assume values from the domain of that variable only. For
example, a gene representing a certain recipe instance allocation can assume only
values corresponding to the compatible resources. To produce a required amount
of the ordered commodities, a certain multisubset of recipe set Γ needs to be
applied rather than all recipes from this set. The maximal number of recipes
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Fig. 1. Genes in a chromosome for manufacturing processes with alternative recipes

that needs to be considered is upperbounded to a certain value η, computed
with equation (3).

The role of the GA is to allocate the recipe instances to resources and schedule
them in time. The encoding has hence to embrace both the spatial and temporal
scheduling. Consequently, in the proposed encoding a chromosome contains genes
of two types, as shown in Figure 1. For η recipes (i.e., τ1 to τη) that need
to be scheduled, the number of genes is thus equal to 2η. The odd η genes
(Rx in the figure) indicate the target resource for η recipe instances, G2x+1 ∈
{∅, π1, . . . , πm}, where symbol ∅ denotes the situation that certain recipe instance
has not been scheduled for execution. The remaining η genes (ξx in the figure)
specify the priorities of the recipe instances, G2x ∈ N, where x = 1, . . . , η. The
priorities are sorted in descending order, i.e. priority 0 is the highest. The aim of
introducing priorities is to determine the processing orders of recipes allocated to
the same resource and thus to determine the temporal scheduling. This ordering
does not change the amount of produced commodities but can influence the
makespan due to the sequence-dependent setups discussed earlier. The value of
the solution represented by such chromosome is then evaluated using a plant
model based on interval algebra described in [14]. The details of the applied
plant modelling are out of the scope of this paper.

4.2 Evolution-inspired operators

In a typical GA, evolutionary operators (e.g., crossover and mutation) are ap-
plied to a set of individuals for advancing offspring with better solution quality.
For the considered optimisation problem, a number of customised genetic oper-
ators needs to be proposed. The influence of the operators described below is
experimentally evaluated in Section 6.

The mutation operator is customised for the studied optimisation problem
in the following way. Instead of assigning random configurations (i.e., priorities
and allocations) to recipe instances, the proposed operator mutates allocations of
recipe instances via two approaches. Depending on the current allocation value
of a given recipe instance, the first approach switches its allocation either to a
randomly chosen resource that is compatible with the recipe (if this recipe in-
stance is not allocated) or to no allocation (i.e., reject for production, in the case
that the recipe instance has a valid allocation)1. The second approach mutates

1 Note, due to the applied value encoding, a recipe instance can either be allocated to
a resource among its feasible allocations or not be allocated at all. A recipe that is
not allocated will be not scheduled for manufacturing.
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the allocation of an allocated recipe instance to another compatible resource (if
possible). If the recipe instance is not allocated, no action is performed under the
second approach. A mutation factor F ∈ [0.0, 1.0] is introduced to specify the
approach to be applied for each allocation mutation. As for priorities, the pro-
posed operator simply assigns random values (but within the predefined priority
range) to recipe instances that are chosen to be mutated.

As shown in Section 6, compared to a traditional mutation operator, the
proposed problem-specific mutation improves the quality of generated solutions
and helps to expand the search range of the multi-objective genetic algorithm.

Elitism is often applied by GAs to guarantee the solution quality of each
generated population, where a limited number of best solutions are passed to
the next generation directly without any operation. In this work, the elitism
mechanism is modified to serve the purpose of minimising the sum of discrepancy
scores of all commodities. At the end of each generation, solutions that contain
the least discrepancy score of each commodity are selected and are used to form
an individual that contains the best manufacturing configuration (in terms of
the discrepancy scores) being found for each commodity. This individual is then
added to the population (if possible, by replacing a randomly chosen individual
with a lower fitness) and will involve into future evolution.

Such a simple but effective mechanism can arguably improve the solution
quality (in terms of the total discrepancy scores) produced by the proposed multi-
objective GA. In particular, solutions with a minimised sum of discrepancy scores
for all commodities can be obtained among all solutions generated by the GA.
This feature is highly desirable as the cost of storing over-produced commodities
can be effectively reduced.

4.3 Customisation of MOEA/D

The problem analysed in this paper is characterised with multi-objective cri-
teria, since not only does the makespan need to be minimised, but also the
amount of manufactured commodities should be as close to the ordered amounts
as possible to minimise the storage costs. The diversity of these criteria makes
it difficult to convert such multi-objective optimisation problem into a single-
objective weighted sum of these objective values. Depending on the current
situation, some solutions with a low weighted sum of objectives may not be
acceptable due to, e.g., insufficient storage space for a certain commodity. An
end-user should be then informed about a wide set of Pareto-optimal solutions
to select the final solution based on his/her knowledge of the problem. The set
of the alternative solutions presented to the end-user should be then diverse
and, favourably, distributed over the entire Pareto front. This expectation is
in line with the properties of the MOEA/D algorithm proposed by Zhang and
Li in [8] with Tchebycheff Approach [15] adopted for multi-objective decomposi-
tion. With the Tchebycheff Approach, minimising a typical optimisation problem
F (x) = (f1(x), . . . , fm(x))T can be decomposed to the following:

minimise gte(x|λ, z∗) = max
1≤i≤m

{λi(fi(x)− z∗i )}, (4)
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Algorithm 1: Pseudo-code of MOEA/D-RS algorithm

inputs : Resource set Π; Chromosome size 2η;
Population size N ;
Uniform spread of N weight vectors λ1, λ2,..., λN ;
Neighbourhood size T ;

outputs : EP (a set of recipe instance allocation and scheduling solutions);

1 Set EP = ∅
2 Generate N random individuals with recipe instance allocations (or recipe

instance rejection) and priorities as the initial population;
3 Evaluate the key objective values of each individual in the initial population;
4 Compute the Euclidean distances between any two weight vectors and find T

closest weight vectors to each weight vector. For each i = 1, . . . , N , set
B(i) = {i1, ..., iT };

5 Initialise ideal points z = (z1, z2, ..., zm) based on the objective values obtained
from all individuals of the initial population;

6 while not termination condition do

7 for i=1,...,N do

8 Randomly select two neighbours from B(i), generate a new individual y
via genetic operators proposed in Subsection 4.2 to the selected
neighbours.

9 Evaluate the key objective values of y;
10 For each j = 1, . . . ,m, if zj > fj(y), then set zj = fj(y);

11 For each j ∈ B(i), set xj = y if gte(y|λj , z) ≤ gte(xj |λj , z);
12 Remove all individuals in EP that are dominated by y and add y to EP

if no individuals dominate y.
end

13 Generate an elite individual employing the operator described in
Section 4.2, evaluate its objectives’ values, and add it to the current
population (if eligible), update z and EP .

end

14 return EP ;

where m is the number of objectives in the targeted optimisation problem F(x),
fi(x) gives the value of objective i based on solution x, x ∈ Ω indicates a given
solution in the decision space (i.e., Ω), λ is a set of uniformly distributed weight
vectors, z∗ indicates a set of reference points and z∗i = min{fi(x)|x ∈ Ω} gives
the reference point of objective i.

The applied multi-objective optimisation algorithm is outlined in Algorithm
1, named MOEA/D-RS, i.e. MOEA/D for recipe scheduling problems. It follows
the basic MOEA/D principles but is integrated with the proposed evolution-
inspired operators for scheduling recipe in the context of manufacture.

The applied multi-objective optimisation algorithm treats differently the ini-
tial generation (lines 1-5) and the remaining generations (lines 6-14), as detailed
below. For the initial population, MOEA/D calculates the neighbours (i.e., B(i)
for individual i) of each individual based on the Euclidean distance of their as-
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sociated weight vectors (i.e., λi for individual i) (line 4). The set of ideal points
(i.e., z) is initialised as the best objective values found in the initial population
(line 5).

For the following populations, in each generation (line 6), MOEA/D iterates
each individual in the current population (line 7) and selects individuals from
the neighbours of the currently-examined individual (line 4) for creating new
offspring. The rationale behind neighbourhood selection is the optimal solution
of gte(x|λi, z∗) should be close to that of gte(x|λj , z∗) if the Euclidean distance
between λi and λj is low, which indicates any gte’s with a weight vector close to
λi can help optimising gte(x|λi, z∗) [8]. With parents selected, new individuals
are then generated by the proposed genetic operators described in Section 4.2.

Once a new individual (say individual y) is generated, values of its key ob-
jectives are calculated based on the fitness function (line 9). The ideal points’
set z is updated if y contains a better value for any objective (line 10). This
new individual will replace any given individual j in the neighbourhood of the
currently-examined individual if gte(y|λj , z) ≤ gte(xj |λj , z) (line 11). A set of
recipe instance allocation and scheduling solutions, EP , is then updated (if nec-
essary) based on the procedure given in line 12. At the end of each generation,
we integrate the proposed elitism algorithm into the original MOEA/D and gen-
erate an elite individual as described in Section 4.2. Accordingly, z and EP are
updated (if necessary) based on the objective values of the elite (line 13). Once
the termination condition is met, the algorithm is finished with EP returned
as the Pareto Front (line 14).

5 Real-world scenario

The considered real-world scenario is based on the process manufacturing of
mixing/dispersion of powdery, liquid and paste recipe components, following a
stored recipe. The main optimisation objective of this case study is to increase
production line utilisation and, consequently, to decrease the makespan of batch
production. The optimisation process can be viewed as scheduling operations,
as described by recipes, both spatially (i.e. to a particular production line) and
temporarily (i.e. to a particular time slot). Depending on the selected production
line, the time to produce a product may vary significantly, which influences the
percentage of manufacturing time that is truly productive, known as Overall
Equipment Effectiveness (OEE). Further impact on the OEE is due to the size
of batches to be produced.

In the considered scenario, the recipes for each batch produce a certain
amount of commodity. Consequently, to satisfy a (daily) order for a certain com-
modity, one or more recipes for producing such commodity have to be selected
and scheduled to resources. However, the sum of the commodity amount pro-
duced by any selection of recipes may be different from the daily order amount
for that commodity. If a certain commodity cannot be produced in the required
amount, some commodity surplus is expected. As the total amount of the pro-
duced commodity cannot be higher than the available storage space and the
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surplus storage can be expensive, additional optimisation objectives can be de-
fined: not only the makespan, but also the surpluses of each produced com-
modities have to be minimised. This observation leads to the conclusion that
multi-objective optimisation techniques, as described earlier in this paper, can
be applied.

The example plant consists of a set of mixers, Π. There are five identical
5 tonne mixers, named Mixer 1-5 (π1, π2, π3, π4, π5, respectively), and two
identical 10 tonne mixers, named Mixer 7 (π6) and Mixer 8 (π7). There are
two special 10 tonne mixers: Mixer 9 (π8) and Mixer 10 (π9). Four types of
white paints can be produced in the factory and each mixer can be used to
produce any commodity. However, the amount of paint produced during one
manufacturing process and processing time vary depending on the mixer type
and paint type. For each combination of mixer type and paint type, there is a
unique recipe, summarised in Table 1 (the paint type names are in German).
The storage tanks, connected with the mixers via pipelines, limit the amount of
the paints that can be produced as they have limited capacity and each tank
can store only one type of paint. In case two recipes producing a different paint
type are executed by the same mixer in sequence, a short sequence-dependent
setup interval of the length provided by the business partner is enforced.

Table 1. Example recipe characteristics for a certain factory

Paint -
commodity δl

Recipe
γj

Compatible
resources
πi ∈ Λj

Amount of
produced

commodity uj

Time ti,j of
executing
recipe γj

Std Weiss δ1

γ1
γ2
γ3
γ4

{π1, π2, π3, π4, π5}
{π6, π7}
{π8, π9}
{π8, π9}

5 t
10 t
10 t
10 t

90 min.
60 min.
45 min.
45 min.

Weiss Matt δ2

γ5
γ6
γ7
γ8

{π1, π2, π3, π4, π5}
{π6, π7}
{π8, π9}
{π8, π9}

5 t
10 t
10 t
10 t

90 min.
60 min.
45 min.
45 min.

Super Weiss δ3

γ9
γ10
γ11
γ12

{π1, π2, π3, π4, π5}
{π6, π7}
{π8, π9}
{π8, π9}

4 t
8 t
8 t
8 t

120 min.
90 min.
60 min.
60 min.

Weiss Basis δ4

γ13
γ14
γ15
γ16

{π1, π2, π3, π4, π5}
{π6, π7}
{π8, π9}
{π8, π9}

6 t
12 t
12 t
12 t

60 min.
45 min.
30 min.
30 min.
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6 Experimental Results

Based on the real-world case study described in Section 5, this section aims
at the considered manufacture scheduling problem and presents experiments
investigating (i) the optimisation results of NSGA-II [16], original MOEA/D [8]
(referred to as MOEA/D hereafter) and the proposed problem-specific algorithm
based on MOEA/D (i.e., MOEA/D-RS); (ii) the efficiency of the evolutionary
operators proposed in Section 4.2; and (iii) the scalability of the proposed multi-
objective genetic algorithm for optimisation problems in manufacture scheduling.

The factory setting is given in Table 1. Based on the amount to produce for
each commodity, we first generate sufficient number of recipe instances for each
recipe type. The number of instances for a given recipe γj can be determined us-
ing equation (2). For instance, a requirement of 45 tonnes of “Std Weiss” would
lead to 5 instances of γ1 and 4 instances of γ2, γ3 and γ4, respectively. Each recipe
instance is then assigned with random scheduling parameters (i.e., a random al-
location from its compatible resources and a priority) and will be then added to
the initial population. To provide fair comparison, general GA parameters ap-
plied in all tested algorithms include: PopulationSize = 100, MaxGeneration
= 100, CrossoverRate = 1.0, MutationRate = 0.8. One-point crossover op-
erator is applied. The factor that controls the mutation approach (i.e., F ) in
MOEA/D-RS is set to 0.3 across the evaluation.

Multi-objective Gentic Algorithms

M
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m

in
)

D
is

c
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a

n
c
y
 s

c
o

re
s
 (

t)

Makespan

Std Weiss

Weiss Matt

Super Weiss

Weiss Basis

Discrepancy Sum

Fig. 2. Optimisation results NSGA-II, MOEA/D and MOEA/D-RS for δ1 = 45t, δ2 =
40t, δ3 = 30t, δ4 = 20t

Figure 2 presents the optimisation results of three multi-objective GAs for the
considered optimisation problem with input values of o1 = 45, o2 = 40, o3 = 30,
o4 = 20 (in tonnes). The makespan obtained by each GA is presented as a box
with a blue frame and is associated with the blue Y-axis on the left-hand side of
the figure while the discrepancy scores (boxes with black frames) are associated
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with the Y-axis on the right-hand side of the figure. The navy box gives the
sum of discrepancy scores of all commodities for each solution. As shown in the
figure, the optimisation results given by NSGA-II and MOEA/D are similar,
but are both outperformed by the proposed problem-specific GA in terms of the
minimal value obtained for each objective. The Diversity Comparison Indicator
(DCI) [17], a quality indicator commonly applied for assessing the diversity of
Pareto front approximations in many-objective optimisation, is applied to the
obtained Pareto Fronts and returns (0, 0, 1)2, which indicates that at least one
solution returned by MOEA/D-RS strictly dominates3 any solution obtained by
either NSGA-II or MOEA/D. Such observation shows that the generic multi-
objective GAs may not be suitable for the studied problem, and certain problem
specific multi-objective evolutionary algorithms (e.g., the one proposed in this
paper) are desirable. The experiment has been repeated 5 times for 5 slightly
different recipe characteristics and ordered amounts of commodities. In all the
conducted experiments, the same value of DCI, i.e. (0, 0, 1), has been obtained.
These conclusions were confirmed by Sign Test with the probability exceeding
99.99%.

MOEA/D with Proposed Genetic Operators
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Fig. 3. Influence of the proposed evolutionary operators for an example order

Figure 3 investigates the efficiency of evolutionary operators proposed in
Section 4.2, where each operator is integrated into MOEA/D alternatively and is
compared with the original MOEA/D. As shown in the figure, MOEA/D with the
proposed mutation operator applied demonstrates an overall better optimisation
results for each objective compared to MOEA/D. A tuple returned by DCI for

2 In general, each numerical value in a tuple obtained with DCI corresponds to a
certain front quality in relation to the remaining fronts under comparison. These
values are upperbonded with 1 and a higher value denotes a better relative front
quality.

3 For two solutions p and q, p strictly dominates q if p has a better value than q for
any objective.
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the two obtained fronts is equal to (0, 1), which means that at least one solution
generated by the customised algorithm strictly dominates any solution generated
by the original MOEA/D. The efficiency of the elitism operator is demonstrated
by the results of the sum of discrepancy scores for all commodities (i.e., the navy
box). With this operator, the applied algorithm can have solutions that contain
the least amount of over-produced commodities (i.e., the sum of discrepancy
scores), and hence, can greatly reduce the storage cost required by factories. As
reported by the DCI test, the values of the original MOEA/D and MOEA/D
with elitism operator are 0.318 and 0.682, respectively.

As confirmed by the experiment given in Figure 2, by integrating all these
operators into one algorithm, MOEA/D-RS demonstrates the best performance
among all tested multi-objective algorithms under the studied problem scenario.
The above experiments have been repeated for 5 slightly different recipe char-
acteristics and ordered amounts of commodities. Similar results have been ob-
tained with average DPI values (0, 0, 1) for (NSGA-II, MOEA/D, MOEA/D-RS),
(0, 1) for (MOEA/D, MOEA/D + Customised Mutation), and (0.389, 0.611) for
(MOEA/D, MOEA/D + Customised Elitism) throughout the evaluation.

The scalability of the proposed problem-specific evolutionary algorithm is
investigated with optimisation results of “makespan” and “sum of discrepancy
scores” presented in Figure 4 and 5, respectively. This experiment is performed
based on scaling both the size of the factory (i.e., number of mixers) and the
amount of commodities required for production. A scale factor i = 1, . . . , 10
is introduced to control the size of factory and production, where the num-
ber of resources NoR = 10 × i and o1 = 45 × i, o2 = 40 × i, o3 = 30 ×
i, o4 = 20 × i (in tonnes). Accordingly, the set of compatible resources for
each recipe type is modified to cope with the increased number of resources
while scaling the factory size, where recipes {γ1, γ5, γ9, γ13}, {γ2, γ6, γ10, γ14} and
{γ3, γ4, γ7, γ8, γ11, γ12, γ15, γ16} are compatible with resources {π1, . . . , πNoR×0.5},
{πNoR×0.5+1, . . . , πNoR×0.7} and {πNoR×0.7+1, . . . , πNoR×0.9}, respectively. The
rest of resources that are not associated with any recipe (i.e., {πNoR×0.9+1, . . . ,

πNoR×1}) are defined as not applicable for producing the given commodities,
and hence, will not be considered in manufacturing.

As given in Figure 4, optimisation results of makespan obtained by MOEA/D
demonstrate an observable increasing trend while incrementing scale factor i. In
contrast, MOEA/D-RS has a lower increasing rate and outperforms MOEA/D
with each i. Similar observations are obtained in Figure 5, where MOEA/D-
RS again outperforms MOEA/D with each i. However, the increasing rate of
results obtained by MOEA/D has a much higher increasing rate, where the
minimal amount of over-produced commodities with i = 10 reaches 3651 tonnes.
However, the results obtained by MOEA/D-RS remains better and effectively
limit the amount of over-produced commodities to 289 tonnes with i = 10.

This experiment shows that under the considered manufacture optimisation
problem, MOEA/D-RS yields a more diverse front (in terms of minimising objec-
tives “makespan” and ”sum of discrepancy scores”) than that of MOEA/D, and
confirms the efficiency of MOEA/D with enlarged size of the studied problem.
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Fig. 4. Make span optimisation results of original MOEA/D and MOEA/D-RS by
scaling an example scenario

Fig. 5. Sum of discrepancy scores optimisation results of original MOEA/D and
MOEA/D-RS by scaling an example scenario

In addition, the performance of the proposed multi-objective optimisation
algorithm is not achieved via sacrificing its run-time efficiency, as shown in Fig-
ure 6. The execution times of both MOEA/D and the proposed MOEA/D-RS
algorithm demonstrate an increasing trend with the increment of the factory
size and production requirement. With i ≤ 8, both algorithms demonstrate sim-
ilar execution times yet MOEA/D-RS can provide results outperforming that of
MOEA/D (see Figures 4 and 5). With i > 8, MOEA/D-RS has slightly higher
execution time, yet the difference between the optimisation results by two al-
gorithms is further enlarged, especially the sum of discrepancy scores given in
Figure 5 for i = {9, 10}.

Summarising the experiments above, we conclude that compared to generic
evolutionary operators, the proposed problem-specific operators have better ef-
ficiency for recipe scheduling problem in manufacturing. With the proposed op-
erators, the modified MOEA/D algorithm (i.e., MOEA/D-RS) can outperform
both the tested multi-objective genetic algorithms with the given problem sce-
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Fig. 6. Execution Times of original MOEA/D and MOEA/D-RS by scaling an example
scenario

nario. This observation is further confirmed by an experiment that scales the
problem size. From this experiment, we also observe that MOEA/D-RS requires
similar execution time in comparison with MOEA/D, but can provide better op-
timisation results in terms of less time required for production and less amount
of overproduced commodities (resulting in a reduced storage cost).

7 Conclusion

In this paper, a real-world factory scheduling problem has been described whose
goal is not only to minimise the manufacturing makespan but also to minimise
the production surplus via selecting recipes multisubset to be executed. As this
problem was difficult to be solved by typical multi-objective genetic algorithms, a
modification of MOEA/D has been proposed, which applies customised mutation
and elitism operators developed specially for the studied problem. The experi-
ments have demonstrated the superiority of the proposed algorithm (MOEA/D-
RS) in comparison with state-of-the-art NSGA-II and original MOEA/D, where
for the analysed cases, MOEA/D-RS produces solution that strictly dominates
any solution obtained by both NSGA-II and MOEA/D (i.e., DCI values (0, 0, 1)
for NSGA-II, MOEA/D and MOEA/D-RS respectively). In particular, the pro-
posed mutation operator improved the results with DCI values (0, 1) of the
original MOEA/D and MOEA/D with the customised mutation for all experi-
ments. The proposed algorithm demonstrates similar scalability as the original
MOEA/D does in general when being applied to relatively large factories and
high quantity of production.
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