Skip to main content

Effects of Extrinsic Feedback in Virtual Rehabilitation for Children with Cerebral Palsy: A Comprehensive Systematic Review

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1002))

Abstract

Children with Cerebral Palsy (CP) have motor and cognitive disorders that make it difficult for them to perform activities of daily living (ADL). Virtual Rehabilitation (VR) is a relatively novel research line that tackles motor and cognitive abilities. Sensory feedback together with Virtual Environments (VE) enriches and improves motor control in children with CP. The use of VR together with intrinsic/extrinsic feedback in intervention periods is a complement of training sessions with clear and relevant outcomes. In this paper, we analyze the effects of extrinsic feedback together with virtual systems in children with CP. An exhaustive literature search was carried out in electronic databases, from 2008 to 2018 to identify studies. The American Academy for Cerebral Palsy and Developmental Medicine (AACPDM) systematic review methodology was used as a frame-work. Outcomes reveal improvements in gait, stride length, walking speed, and stride time by using extrinsic feedback. Future research should be focused on the design and validation of the these system with larger groups of children with CP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rosenbaum, P., Paneth, N., Leviton, A., et al.: A report: the definition and classification of cerebral palsy April 2006. J. Dev. Med. Child Neurol. Suppl. 109(suppl 109), 8–14 (2007)

    Google Scholar 

  2. Gatica-Rojas, V., Cartes-Velasquez, R., Guzmán-Muñoz, E., et al.: Effectiveness of a Nintendo Wii balance board exercise programme on standing balance of children with cerebral palsy: a randomised clinical trial protocol. J. Contemp. Clin. Trials Commun. 6, 17–21 (2017)

    Article  Google Scholar 

  3. Weitzman, M.: Terapias de rehabilitación en niños con o en riesgo de parálisis cerebral. J. Rev. Ped. Electron. 2(1), 47–51 (2005)

    Google Scholar 

  4. Oskoui, M., Coutinho, F., Dykeman, J., et al.: An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. J. Dev. Med. Child Neurol. 55(6), 509–519 (2013). https://doi.org/10.1111/dmcn.12080

    Article  Google Scholar 

  5. Morris, C., Bartlett, D.: Gross motor function classification system: impact and utility. J. Dev. Med. Child Neurol. 46(1), 60–65 (2004)

    Article  Google Scholar 

  6. Márquez-Vázquez, R.E., Martínez-Castilla, Y., Rolón-Lacarriere, Ó.G.: Impacto del Programa de Terapia de Realidad Virtual sobre las evaluaciones escolares en pacientes con mielomeningocele y parálisis cerebral infantil. J. Revista Mexicana de Neurociencia 12(1), 16–26 (2011)

    Google Scholar 

  7. Tarr, M.J., Warren, W.H.: Virtual reality in behavioral neuroscience and beyond. J. Nat. Neurosci. 5, 1089 (2002). https://doi.org/10.1038/nn948

    Article  Google Scholar 

  8. Keshner, E.A.: Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool? J. NeuroEng. Rehabil. 1(1), 8 (2004). https://doi.org/10.1186/1743-0003-1-8

    Article  Google Scholar 

  9. Lehrer, N., Chen, Y., Duff, M., et al.: Exploring the bases for a mixed reality stroke rehabilitation system, part II: design of interactive feedback for upper limb rehabilitation. J. NeuroEng. Rehabil. 8(1), 54 (2011). https://doi.org/10.1186/1743-0003-8-54

    Article  Google Scholar 

  10. Reid, D., Campbell, K.: The use of virtual reality with children with cerebral palsy: a pilot randomized trial. Ther. Recreat. J. 40(4), 255 (2006)

    Google Scholar 

  11. Kent, M.: Diccionario Oxford de medicina y ciencias del deporte

    Google Scholar 

  12. Levin, M.F., Sveistrup, H., Subramanian, S.K.: Feedback and virtual environments for motor learning and rehabilitation. J. Schedae 1, 19–36 (2010)

    Google Scholar 

  13. Albiol-Pérez, S., et al.: Virtual fine rehabilitation in patients with carpal tunnel syndrome using low-cost devices. In: Proceedings of the 4th Workshop on ICTs for Improving Patients Rehabilitation Research Techniques, pp. 61–64. ACM (2016). https://doi.org/10.1145/3051488.3051517

  14. Lünenburger, L., Colombo, G., Riener, R.: Biofeedback for robotic gait rehabilitation. J. NeuroEng. Rehabil. 4(1), 1 (2007). https://doi.org/10.1186/1743-0003-4-1

    Article  Google Scholar 

  15. Molina, A.G.: Aprendizaje motor. J. Revista de psicología general y aplicada Revista de la Federación Española de Asociaciones de Psicología 48(1), 35–46 (1995)

    Google Scholar 

  16. Robert, M.T., Levin, M.F., Guberek, R., et al.: The role of feedback on cognitive motor learning in children with Cerebral Palsy: a protocol: In: 2015 International Conference on Virtual Rehabilitation Proceedings (ICVR), pp. 141–142. IEEE (2015)

    Google Scholar 

  17. Keough, D., Hawco, C., Jones, J.A.: Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback. J. BMC Neurosci. 14(1), 25 (2013)

    Article  Google Scholar 

  18. Roosink, M., Robitaille, N., McFadyen, B.J., et al.: Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept. J. NeuroEng. Rehabil. 12(1), 2 (2015). https://doi.org/10.1186/1743-0003-12-2

    Article  Google Scholar 

  19. Van Vliet, P.M., Wulf, G.: Extrinsic feedback for motor learning after stroke: what is the evidence? J. Disabil. Rehabil. 28(13–14), 831–840 (2006)

    Article  Google Scholar 

  20. Subramanian, S.K., Massie, C.L., Malcolm, M.P., et al.: Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence. J. Neurorehabil. Neural Repair 24(2), 113–124 (2010)

    Article  Google Scholar 

  21. Kita, K., Otaka, Y., Takeda, K., et al.: A pilot study of sensory feedback by transcutaneous electrical nerve stimulation to improve manipulation deficit caused by severe sensory loss after stroke. J. NeuroEng. Rehabil. 10(1), 55 (2013). https://doi.org/10.1186/1743-0003-10-55

    Article  Google Scholar 

  22. Vallbo, A., Johansson, R.S.: Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. J. Hum. Neurobiol. 3(1), 3–14 (1984)

    Google Scholar 

  23. Thikey, H., Grealy, M., van Wijck, F., et al.: Augmented visual feedback of movement performance to enhance walking recovery after stroke: study protocol for a pilot randomised controlled trial. J. Trials 13(1), 163 (2012). https://doi.org/10.1186/1745-6215-13-163

    Article  Google Scholar 

  24. Darrah, J., Hickman, R., O’Donnell, M., et al.: AACPDM Methodology to Develop Systematic Reviews of Treatment Interventions (Revision 1.2). American Academy for Cerebral Palsy and Developmental Medicine, Milwaukee (2008)

    Google Scholar 

  25. World Health Organization: International Classification of Functioning, Disability and Health: ICF

    Google Scholar 

  26. Moher, D., Liberati, A., Tetzlaff, J., et al.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J. PLoS Med. 6(7), e1000097 (2009)

    Article  Google Scholar 

  27. Patritti, B.L., Sicari, M., Deming, L.C., et al.: The role of augmented feedback in pediatric robotic-assisted gait training: a case series. J. Technol. Disabil. 22(4), 215–227 (2010)

    Google Scholar 

  28. Choi, K.-S., Lo, K.-H.: A hand rehabilitation system with force feedback for children with cerebral palsy: two case studies. J. Disabil. Rehabil. 33(17–18), 1704–1714 (2011). https://doi.org/10.3109/09638288.2010.535091

    Article  Google Scholar 

  29. Chen, Y., Garcia-Vergara, S., Howard, A.M.: Effect of feedback from a socially interactive humanoid robot on reaching kinematics in children with and without cerebral palsy: a pilot study. J. Dev. Neurorehabil. 1–7 (2017)

    Google Scholar 

  30. Lopez-Ortiz, C., Simkowski, J.M., Gomez, W., Stoykov, N.S., Spira, D.J.G.: Motor learning in children with cerebral palsy with feedback of principal component space of reduced dimension. In: Pons, J., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation. Biosystems & Biorobotics, vol. 1, pp. 311–315. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34546-3_49

    Chapter  Google Scholar 

  31. Sloot, L.H., Harlaar, J., van der Krogt, M.M.: Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy. J. Gait Posture 42(4), 498–504 (2015)

    Article  Google Scholar 

  32. Baram, Y., Lenger, R.: Gait improvement in patients with cerebral palsy by visual and auditory feedback. J. Neuromodul. 15(1), 48–52 (2012). https://doi.org/10.1111/j.1525-1403.2011.00412.x

    Article  Google Scholar 

  33. Pu, F., Ren, W., Fan, X., et al.: Real-time feedback of dynamic foot pressure index for gait training of toe-walking children with spastic diplegia. J. Disabil. Rehabil. 39(19), 1921–1925 (2017)

    Article  Google Scholar 

  34. Pu, F., Fan, X., Yang, Y., et al.: Feedback system based on plantar pressure for monitoring toe-walking strides in children with cerebral palsy. J. Am. J. Phys. Med. Rehabil. 93(2), 122–129 (2014)

    Article  Google Scholar 

  35. van Gelder, L., Booth, A.T., van de Port, I., et al.: Real-time feedback to improve gait in children with cerebral palsy. J. Gait Posture 52, 76–82 (2017)

    Article  Google Scholar 

  36. Wood, K.C., Lathan, C.E., Kaufman, K.R.: Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy. J. IEEE Trans. Neural Syst. Rehabil. Eng. 21(2), 300–305 (2013)

    Article  Google Scholar 

  37. Tatla, S.K., Sauve, K., Jarus, T., et al.: The effects of motivating interventions on rehabilitation outcomes in children and youth with acquired brain injuries: a systematic review. J. Brain Inj. 28(8), 1022–1035 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Jacho-Guanoluisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jacho-Guanoluisa, N., Albiol-Pérez, S., Valdivia-Salas, S., Jariod-Gaudes, R., Collazos, C.A., Fardoun, H.M. (2019). Effects of Extrinsic Feedback in Virtual Rehabilitation for Children with Cerebral Palsy: A Comprehensive Systematic Review. In: Fardoun, H., Hassan, A., de la Guía, M. (eds) New Technologies to Improve Patient Rehabilitation. REHAB 2016. Communications in Computer and Information Science, vol 1002. Springer, Cham. https://doi.org/10.1007/978-3-030-16785-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16785-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16784-4

  • Online ISBN: 978-3-030-16785-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics