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Abstract. In this paper, we consider consumers and prosumers who
interact on a platform. Consumers buy energy to the platform to maxi-
mize their usage benefit while minimizing the cost paid to the platform.
Prosumers, who have the possibility to generate energy, self-consume
part of it to maximize their usage benefit and sell the rest to the plat-
form to maximize their revenue. Product differentiation is introduced and
consumers can specify preferences regarding locality, RES-based genera-
tion, and matchings with the prosumers. The consumers and prosumers’
problems being coupled through a matching probability, we provide an-
alytical characterizations of the resulting Nash equilibrium. Assuming
supply-shortages occur, we reformulate the platform problem as a con-
sensus problem that we solve using Alternating Direction Method of
Multipliers (ADMM), enabling minimal information exchanges between
the nodes. On top of the platform, a trust-based mechanism combining
exploitation of nodes with good reputation and exploration of new nodes,
is implemented to determine the miner node which validates the trans-
actions. A case study is provided to analyze the impact of preferences
and miner selection dynamic process.

Keywords: Game theory · Two-sided market · Local community · ADMM.

1 Introduction

The increasing amount of Distributed Energy Resources (DERs), which have
recently been integrated in power systems, the development of new storage tech-
nologies, and the more proactive role of consumers (prosumers) have transformed
the classical centralized power system operation (mostly based on unit commit-
ment) by introducing more uncertainty and decentralization in the decisions.
Following this trend, electricity markets are starting to restructure, from a cen-
tralized market design in which all the operations were managed by a global
(central) market operator, modeled as a classical constrained optimization prob-
lem, to more decentralized designs involving local energy communities which can
trade energy by the intermediate of the global market operator [6] or, in a peer-
to-peer setting [8]. Coordinating local renewable energy sources (RES)-based
generators to satisfy the demand of local energy communities, could provide
significant value to the power systems, by decreasing the need for investments
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in conventional generations and transmission networks. In practice, the radial
structure of the distribution grid calls for hierarchical market designs, involv-
ing transmission and distribution network operators [7]. But, various degrees of
coordination can be envisaged, from full coordination organized by a global mar-
ket operator (transmission network operator), to bilateral contract networks, to
fully decentralized market designs allowing peer-to-peer energy trading between
the prosumers in a distributed fashion [8], or within and between coalitions of
prosumers [12].

In the energy sector, peer-to-peer energy trading is a novel paradigm of power
system operation, where prosumers providing their own energy from solar panels,
storage technologies, demand response mechanisms, exchange energy/capacity
with one another. Zhang et al. provide in [15] an exhaustive list of projects and
trails all around the world, which build on new innovative approaches for peer-to-
peer energy trading. A large part of these projects rely on platforms which match
RES-based generators and consumers according to their preferences and locality
aspects (such as Piclo in the UK, TransActive Grid in Brooklyn, US, Vandebron
in the Netherlands, etc.). In the same vein, cloud-based virtual market places to
deal with excess generation within microgrids are developed by PeerEnergyCloud
and Smart Watts in Germany. Some other projects rely on local community
building for investment sharing in batteries, solar PV panels, etc., in exchange of
bill reduction or to obtain a certain level of autonomy with respect to the global
grid (such as Yeloha and Mosaic in the US, SonnenCommunity in Germany,
etc.).

Platform design is an active area of research in the two-sided market eco-
nomics literature [3]. Three needs are identified for platform deployment: a first
requirement is to help buyers and sellers find each other, taking into account pref-
erence heterogeneity. This requires to find a trade-off between low-entry cost and
information retrieval from big, heterogeneous, and dynamic information flows.
Buyers and sellers search can be performed in a centralized fashion (Amazon,
Uber), or it might allow for effective decentralized search (Airbnb, eBay), or
even fully distributed search (OpenBazaar, Arcade City). A second need is to
set prices that balance demand and supply, and ensure that prices are set com-
petitively in a decentralized fashion. A third requirement is to maintain trust in
the market, relying on reputation and feedback mechanisms. Sometimes, supply
might be insufficient and subsidies should be designed to encourage sharing on
the platform [3].

From an information and communication technology (ICT) perspective, a
fully decentralized market design provides a robust framework since if one node
in a local market is attacked or in case of failures, the whole architecture should
remain in place and information could find other paths to circulate from one
point to another, avoiding malicious nodes/corrupted paths. From an algorith-
mic point of view, such a setting enables the implementation of algorithms that
preserve privacy of the local market agents (requiring from them to not share
more than their dual variables - e.g., local prices - updates). This also creates
high computational challenges, especially if the number of local markets/peers
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is high. Trust, security, and transparency issues for peer-to-peer energy markets
could rely on the emergence of blockchain technology. A blockchain is a con-
tinuously growing list of records, called blocks, which are linked and secured
using cryptography. Each block typically contains a hash pointer as a link to a
previous block, a time-stamp and transaction data. By design, blockchains are
inherently resistant to modification of the data. A blockchain can serve as ”an
open, distributed ledger that can record transactions between two or more par-
ties efficiently and in a verifiable and permanent way.” For use as a distributed
ledger, a blockchain is typically managed by a peer-to-peer network collectively
adhering to a protocol for validating new blocks. Once recorded, the data in
any given block cannot be altered retroactively without the alteration of all
subsequent blocks, which needs a collusion of the network majority. The most
important function about the records (called transactions in the literature) is
their traceability. For each record, it is possible to trace its origin and by whom
it has been created and/or exchanged. The verification of the correctness of each
transaction could be done by every participant of the chain. However, there is
a specific role for creating a block at every time period and thus, guarantee-
ing that the transactions within it are correct. This is the role of the so-called
miner, who provides computational power to check the transactions and put
them together to form blocks, in exchange for a fee [13]. On top of blockchain
technology, smart contracts are autonomous computer systems, written in code,
that manage executions in the form of rules between parties on the Blockchain.
For example, the reaching of a consensus between nodes, specific events (train
and airplane delays, conditions for a contract to hold) can be detected online,
and the execution of the smart contract is automatically triggered [11].

To avoid any influence of a malicious node, consensus algorithms are em-
ployed. Bitcoin, the first existing blockchain technology, relies on Proof-of-Work
(PoW): nodes have to solve a mathematical problem (puzzle) so complex that
the only way to solve it is to try every possible permutation. This results in
a slow and excessively energy-greedy program. Proof-of-Stake (PoS) used by
Etherum, another well-known blockchain technology, is a method for consensus-
building between the nodes, in which a miner is randomly selected based on its
wealth instead of reputation. However, the miner node selection seems rather
arbitray and not relying on trust. In [9], Munsing et al. consider a large-scale
load scheduling problem that they decompose with ADMM [1], [4]. Consensus is
reached when ADMM converges to a stable solution; payments and penalties are
then computed based on the ADMM outcome. ADMM-based consensus prob-
lems consist in computing the optimum of a (large-scale) optimization problem,
where nodes exchange information only with a subset of the other nodes. Several
algorithms for consensus can be found in the literature and have attracted much
attention in the last decades in the broader framework of sensor management
and data fusion: they differentiate on the basis of the amount of communication
and computation they use, on their scalability with respect to the number of
nodes, on their (online) adaptability, and, finally, they can be deterministic or
randomized [2].
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The contributions of this manuscript can be summarized as follows:

(a) We formulate an equilibrium problem representing a two-sided local mar-
ket platform with consumers and prosumers. Consumers can have preferences
toward characteristics of the electricity products (RES-based generation, lo-
cality) and matchings with the prosumers.
(b) We discuss different algorithms to compute the outcome of such a market
platform and highlight differences in the need of sharing information with
the local market operator and other participants.
(c) We propose a method on how the role of the market operator could be
organized with smart contracts and the miner node can be selected among
the market participants relying on a trust-based mechanism.
(d) We illustrate (b) and (c) based on a small case study highlighting the
effect of certain parameter, most importantly, the consumer preferences, and
the tuning of the parameters for the trust-based mechanism.

The remainder of the paper is structured as follows. Section 2 introduces
the mathematical description of the market platform and its participants. The
proposed ADMM algorithm to compute the clearing of the market platform is
introduced in Section 3. Section 4 illustrates and discusses several elements of
the market platform in a case study. Conclusions of the paper are drawn in
Section 5.

2 Model Description

We consider a set N of N nodes. Each node can be either a prosumer P having
the possibility to generate and consume (part) of her own energy while selling
the excess by the intermediate of a sharing platform operated by a local Market
Operator (MO), or a consumer-only C without generation facility. We denote by
P, the prosumer set, and by C, the consumer-only set. Furthermore, we have the
relations: P ∪ C = N and C ∩ N = ∅. Local energy demand and supply balance
is guaranteed by the local MO, who can sell excess production or buy shortage
to the power grid.

Our inspiration for the prosumer-consumer interaction model comes for the
literature of two-sided markets [3], though the structure of electricity markets
and asymmetry of prosumer role, who can benefit from consumption of self-
production (therefore, becoming consumers) and excess production selling by
the intermediate of the sharing platform (therefore, becoming producers), makes
extensions of this literature tricky. The consumer-prosumer platform framework
is visualized in Fig. 1.

2.1 Modeling Consumers

For each consumer C ∈ C, we denote the usage benefit obtained from consuming
a quantity yCt of energy, by UC(yCt ). We assume that UC(.) is only known to
the consumer and is not public knowledge. We make the assumption that UC(.)
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Fig. 1: Example of a sharing platform involving consumers-only on one side and pro-
sumers on the other side.

is continuous and strictly concave and non-negative on R+. To fix the idea, we
assume that consumer C usage benefit is a quadratic function of the consumer
demand yCt , leading to the following definition:

UC(yCt ) = −ηC(yCt − y
C]
t )2 + η̃C , (1)

where ηC , η̃C are positive parameters, and yC]t is the target demand of con-
sumer C at time period t. For the usage benefit to remain non-negative on the
interval of definition of yCt , we impose conditions on the parameters such that

UC(0) ≥ 0 and UC(κC) ≥ 0, leading to κC −
√

η̃C

ηC
≤ yC]t ≤

√
η̃C

ηC
,∀t. Note that

the maximum usage benefit is reached in UC(yC]t ) = η̃C and in case UC(0) = 0,
i.e., zero demand implies zero usage benefit, we have the following relation be-

tween the consumer target demand and usage benefit parameters: ηC =
UC(yC]t )

(yC]t )2
.

We refine the consumer model by introducing product differentiation [8]. To
that purpose, we first assume that consumer C defines the percentages ξCRES,
ξCLoc ∈ [0; 1] of his target demand that comes from ”RES-based generation”
and local energy prosumers, where the ”locality” of prosumer P with respect
to consumer C is measured by the distance between P and C1. So, we assume
that some consumers might prefer to be served by prosumers in a local area,
e.g., within a limited radius. This means that the percentage of consumer C
target demand coming from RES-based generation and local prosumers is de-
fined as ξCRESy

C]
t and ξCLocy

C]
t respectively. Note that we do not impose that

ξCRES + ξCLoc = 1 because ”RES-based generation” and ”locality” are not mu-
tually exclusive preferences, meaning that some ”green” consumers might want
to cover their demand with 100% RES-based generation and local production
only. We add a second level of complexity, by assuming that consumer C has in-

1 Note that the preference model is generic enough to introduce other levels of product
differentiation.
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trinsic preferences with respect to the prosumers in P (that we will call later on
”matching preferences”), which lead them to define how they ideally wish to split
their demand between the prosumers. Let αCPRES and αCPLoc be positive parameters
associated with any prosumer P ∈ P production, characterizing the preferences
of the consumer C regarding his matching with the prosumers on the platform,
and such that 1

card(P)ξCRES

∑
P∈P α

CP
RES = 1

card(P)ξCLoc

∑
P∈P α

CP
Loc = 1,∀C ∈ C.

Extending Equation (1) to the RES-based generation and local production
usage, we define the usage benefit resulting from RES-based and local consump-
tion as follows:

ULoc
C (yCt ) =− ηCLoc(

∑
P∈P

αCPLocy
C
t − ξCLocy

C]
t )2 + η̃CLoc.

URES
C (yCt ) =− ηCRES(

∑
P∈P

αCPRESy
C
t − ξCRESy

C]
t )2 + η̃CRES.

We introduce wLoc, wRES, and w0, as non-negative parameters characterizing
the relative importance of locality and RES-based generation in the consumer
total usage benefit, with respect to the no-product differentiation case. Then,
consumer C total usage benefit can be decomposed as the weighted sum of the
benefits retrieved from local production and RES-based generation consumption,
and usage benefit (1) without product differentiation2:

ŨC(yCt ) = wLocU
Loc
C (yCt ) + wRESU

RES
C (yCt ) + w0UC(yCt ). (2)

The utility consumer C obtains from energy consumption yCt , ΠC(yCt ), is
given by the benefit ŨC(.) minus the cost to buy energy on the platform operated
by the local market operator (MO), p?t times the consumption yCt . Formally, we
have:

ΠC(yCt ) = ŨC(yCt )− p?t yCt . (3)

Each consumer C determines his demand yCt so as to maximize the sum
of his utility function (3) and potential mining fee, under non-negativity and
maximum capacity of consumption κC constraints:

max
yCt

ΠC(yCt ), (4)

s.t. yCt ≤ κC , (ψCt ) (5)

0 ≤ yCt . (ψ̃Ct ) (6)

We prove in the proposition below that there always exists a solution to the
consumer utility maximization problem.

2 Note that (1) is added in Equation (2) to counter-balance the effects of product
differentiation that might encourage the consumer to excess her demand in case
where the sum of the locality and RES-based generation demand targets is larger
(ξCRES + ξCLoc > 1) than the actual demand target.
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Proposition 1. Consumer C utility function ΠC(.) is strictly concave in his
demand yCt and maximized at a single optimum solution of optimization problem
(4) under constraints (5), (6):

yC?t =

(
2w0η

C + 2wRESηRESξ
C
RES(

∑
P∈P α

CP
RES)

)
yC]t

2w0ηC + 2wRESηCRES(
∑
P∈P α

CP
RES)2 + 2wLocηCLoc(

∑
P∈P α

CP
Loc)2

+

(
2wLocη

C
Locξ

C
Loc(

∑
P∈P α

CP
Loc)

)
yC]t − p?t − (Ψ̃Ct − ΨCt )

2w0ηC + 2wRESηCRES(
∑
P∈P α

CP
RES)2 + 2wLocηCLoc(

∑
P∈P α

CP
Loc)2

, (7)

with ΨCt (yC?t − κC) = 0, Ψ̃Ct y
C?
t = 0, ΨCt ≥ 0, Ψ̃Ct ≥ 0.

Proof. The Lagrangian function associated with optimization problem (4)-(6)
writes down as follows: LC(yCt , Ψ

C
t , Ψ̃

C
t ) = ΠC(yCt ) − ΨCt (yCt − κC) + Ψ̃Ct y

C
t .

Complementarity slackness conditions take the form: ΨCt (yCt −κC) = 0, Ψ̃Ct y
C
t =

0, and the dual feasibility constraints impose that: ΨCt ≥ 0, Ψ̃Ct ≥ 0.
Derivating the Lagrangian function with respect to yCt , we obtain:

∂LC(yCt , Ψ
C
t , Ψ̃

C
t )

∂yCt
= −2w0η

C(yCt − y
C]
t )− 2wRESη

C
RES(

∑
P∈P

αCPRESy
C
t − ξCRESy

C]
t )

(
∑
P∈P

αCPRES)− 2wLocη
C
Loc(

∑
P∈P

αCPLocy
C
t − ξCLocy

C]
t )(

∑
P∈P

αCPLoc)− p?t − ΨCt + Ψ̃Ct .

Derivating the Lagrangian function twice with respect to yCt , we obtain:

−2w0η
C − 2wRESη

C
RES(

∑
P∈P

αCPRES)2 − 2wLocη
C
Loc(

∑
P∈P

αCPLoc)
2 < 0.

This implies that ΠC(.) is strictly concave in yCt . Therefore, it admits a unique

optimum. At the optimum in yC?t ,
∂LC(yCt ,Ψ

C ,Ψ̃C)

∂yCt
|yCt =yC?t

= 0, which is equivalent

to (7).

2.2 Modeling Prosumers

Prosumers have two ways to derive benefits from their production: using it them-
selves or selling it through the sharing platform by the intermediate of the local
MO. We let xPt be prosumer P self-usage quantity and sPt be the quantity of
energy that prosumer P shares through the platform. When prosumers consume
their own energy production, they experience benefit from the consumption, like
consumers-only. But, unlike consumers-only, they do not have to pay the local
MO for their consumption, though their consumption may lead to production
costs that can be interpreted as usage (in case of micro-CHP activation for ex-
ample) or maintenance cost, or government taxes, etc. We denote the benefit
from self-usage by UP (xPt ) and the production cost incurred by cP (xPt + sPt ).
As in the case of the consumers-only, we assume that UP (.) is continuous and
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strictly concave and non-negative on R+. In the same spirit as the consumer
model, we assume that prosumer P usage benefit is a quadratic function of the
prosumer self-consumption xPt , leading to the following definition:

UP (xPt ) = −ηP (xPt − x
P]
t )2 + η̃P , (8)

where ηP , η̃P are non-negative parameters, and xP]t is the target self-consumption
of prosumer P at time period t. For the self-consumption benefit to remain non-
negative on the interval of definition of xPt , we impose conditions on the param-

eters such that UP (0) ≥ 0 and UP (κP ) ≥ 0, leading to κP −
√

η̃P

ηP
≤ xP]t ≤√

η̃P

ηP
,∀t.

When the prosumers share their excess production through the platform,
they receive a revenue and incur costs. The revenue they receive from sharing
depends on how many other prosumers are also sharing their excess production.
We introduce the probability µ(yt, st) that a prosumer is matched to a consumer-
only as follows:

µ(yt, st) := min
{∑

C∈C y
C
t∑

P∈P s
P
t

; 1
}
. (9)

Naturally, µ(yt, st) < 1 if, and only if,
∑
C∈C y

C
t <

∑
P∈P s

P
t , i.e., there is

an excess of supply compared to the actual demand on the platform. And,
µ(yt, st) = 1 in case the consumer total demand is larger than the prosumers
supply, therefore requiring that the local MO buys the missing quantity to the
grid. In the following, for the sake of simplicity, we will write: µt := µ(yt, st).

The utility function of a prosumer is the sum of the benefit she derives from
the consumption of her self-production plus the expected revenue she derives
from the selling of her excess production conditionally to her matching with
a consumer minus her production cost, leading to the following mathematical
expression:

ΠP (xPt ,yt, st) = Up(x
P
t ) + p?tµts

P
t − cP (xPt + sPt ). (10)

Assuming that prosumer P cost function is quadratic in her production,
we set cP (x) = cP2x

2 + cP1x + cP0,∀x ∈ R with cP2, cP1, cP0 non-negative
parameters.

Each prosumer P determines sharing and self-use variables sPt and xPt that
maximize the sum of her utility function (10) and potential mining fee, under
maximum capacity of production κP constraint, by solving the following opti-
mization problem:

max
xPt ,s

P
t

ΠP (xPt ,yt, st), (11)

s.t. xPt + sPt ≤ κP , (ΨPt ) (12)

0 ≤ xPt , sPt . (Ψ̃Pt , Ψ̃
PS
t ) (13)
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Proposition 2. – If µt = 1, prosumer P utility function is strictly concave in
xPt , s

P
t and maximized at a single optimum solution of optimization problem

(11) under constraints (12), (13).
– If µt < 1, the Nash equilibrium solution of the non-cooperative game is

uniquely defined as a parametric function of µt, which can be obtained as
solution of a fixed point equation.
In both cases, we have the relations: ΨPt (xP?t + sP?t − κP ) = 0, Ψ̃Pt x

P?
t =

Ψ̃PSt sP?t = 0, ΨPt ≥ 0, Ψ̃Pt ≥ 0, Ψ̃PSt ≥ 0.

Proof. Due to the space limit, the proof has been removed but can be found
online at https://hal.archives-ouvertes.fr/hal-01874798/document

Proposition 3. Suppose that at the optimum xP?t > 0, sP?t > 0,∀P ∈ P,∀t
and y?t > 0,∀t. There exists a market clearing price upper-bound p̄, below which
supply-shortages occur on the platform.

Proof. The proof can be found online at https://hal.archives-ouvertes.fr/
hal-01874798/document

Proposition 3 coincides with the results obtained in [3] for Didi Chuxing, the
largest ridesharing platform in China: if the platform market clearing price is
not high enough, suppliers might lack incentives to share their production on the
platform and consumer-shortages might happen. In such cases, optimal design
of subsidies might be necessary to give incentives to suppliers (prosumers) to
share their supply.

2.3 Modeling of Exchange of Market Platform

In addition to consumers and prosumers, the market platform is assumed to be
connected with a surrounding market environment (grid). An example would be
the wholesale market on transmission level. It is possible via the exchange to
import missing electricity or export excess supply. We assume a simple model
for the agent controlling the exchange qt ∈ R. The agent optimizes on the price
arbitrage between the price of the market platform p?t and the price or cost of
electricity at the connected market given by the parameter cqt ∈ R. The price
arbitrage is defined by:

g(qt) = p?t qt − c
q
t qt. (14)

The local MO solves the following optimization problem:

max
qt

g(qt). (15)

We let qt be the import (or export) of energy for the community, with per-
ceived revenues g(qt). We adopt the following convention:

– qt ≤ 0 (µt = 1), there is an energy lack in the community and the local MO
buys the missing quantity to the grid or to another local energy community.

https://hal.archives-ouvertes.fr/hal-01874798/document
https://hal.archives-ouvertes.fr/hal-01874798/document
https://hal.archives-ouvertes.fr/hal-01874798/document


10 H. Le Cadre et al.

– qt > 0 (µt < 1), there is an energy excess in the community and the local MO
sells the excess quantity to the grid or to another local energy community.

In order to justify an export of energy (qt > 0), the price on the platform
must be at least as high as the price of the exchange (p?t ≥ c

q
t ). The only possible

case is that the price of the exchange is below the cost of the prosumers for which
they are willing to share part of their generation. As such, the case might also
be prevented by the setting of the price floor p.

2.4 Designing a Trust-Based Mechanism

Consumers and prosumers interact through a sharing platform. The platform
operated by the local MO, matches the prosumers and the consumers3, and sets
a clearing price. At each repetition ν ∈ N∗ of the game, the platform clearing
price profile defined over TC consecutive time periods, (p?t )t=(ν−1)TC+1,...,νTC , is
determined as solution of an optimal exchange problem [8]. Formally, as will be
detailed later on, it is computed as a consensus variable.

After ν repetitions of TC consecutive time periods, a reputation index Rnν and
an ancienty index Anν are computed and associated to each node n ∈ N . Based
on these indexes, a miner node is selected in exchange of a mining fee. In prac-
tice, nodes in the system compete to solve the complex mathematical program
(puzzle) necessary to validate the last block. Reputation indexes are introduced
to build decentralized trust-based mechanisms and prevent the emergence of
(large-scale) coalitions of nodes with Byzantine behaviors, which would attack
the system [5]. In the context of our paper, we can imagine that consumer nodes
group together to decrease artificially their aggregated demand (target demands
being quite different from one consumer to another, one excess buying from one
consumer can compensate a lack of buying from another consumer) and then
make the market clearing price decrease, therefore potentially inducing supply-
shortages. In Vangulick et al., the reputation index is a linear function of the
quantity of energy broadcast previously by the node to mine blocks, the age of
the last mined block and a trust index [13]. Furthermore, only consumer nodes
can be selected as miners and the selection is made based on a random rule in
which the node reputation index is weighted by a random uniform variable. We
see no obvious reason to restrict the miner selection to consumer nodes only
and define a selection rule less conservative than the one introduced in [13]. Our
miner selection rule is based on a fixed-share exponentially-weighted average
density function, which is far less energy-greedy than classical PoW methods
used in Bitcoin, and less arbitrar than PoS methods used in Ethereum.

The game takes place over νTC consecutive time periods (or, alternatively,
is repeated ν times), taking as input the demand and production schedules of
consumers and prosumers. From (ν − 1)TC + 1 to νTC , the game timing can be
described as follows:

3 The matching process itself is out of the scope of the current paper and, as such,
will not be detailed here.
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(i) Miner Selection A miner node m?
ν is selected based on his reputation index

(Rnν ) and how often he has not been selected in the past, that we will call
ancienty (Anν ), following a fixed-share exponentially-weighted average den-
sity function, to guarantee the balance between exploration (of new nodes)
and exploitation of other nodes having good reputation. Formally, for any
n ∈ N , the probability that node n is selected as a miner is:

Pn,ν :=(1− γ)
1− exp(−ζRnν )∑

n′∈N

(
1− exp(−ζRn′ν )

)
︸ ︷︷ ︸

exploitation

+γ
1− exp(−ζAnν )∑

n′∈N

(
1− exp(−ζAn′ν )

)
︸ ︷︷ ︸

exploration

,

∀ν ∈ N∗,

Pn,0 :=
1

N
,

where γ ≥ 0 is a parameter characterizing the trade-off between explo-
ration and exploitation in the miner selection process and ζ determines
the growth rate of the selection probability. The miner node receives a

mining fee
∑νTC
t=(ν−1)TC+1 Φ

m?ν
t , and the utility function of the nodes are

updated as follows: Π?
C,ν :=

[∑νTC
t=(ν−1)TC+1ΠC(yC?t ) + ΦCt 1m?ν=C

]
, and

Π?
P,ν :=

[∑νTC
t=(ν−1)TC+1ΠP (xP?t ,y?t , s

?
t ) + ΦPt 1m?ν=P

]
.

(ii) Consumer-Prosumer Interactions

– The local MO computes the clearing price profile (p?t )t=(ν−1)TC+1,...,νTC

and sends it to the consumers and prosumers.

– Each consumer C computes the demand schedule
(
yCt (p?t )

)
t=(ν−1)TC+1,...,νTC

that maximize his utility. Similarly, each prosumer P computes her con-

sumption schedule
(
xPt (p?t )

)
t=(ν−1)TC+1,...,νTC

from self-production and

the quantity she wants to share on the platform
(
sPt (p?t )

)
t=(ν−1)TC+1,...,νTC

.

(iii) Reputation Update A consensus-based algorithm is run by the platform
for a finite positive number niter of consecutive iterations, reputation index
of the nodes are updated based on the divergences between their schedules
and algorithm output, leading to the following rule for consumer C ∈ C
and prosumer P ∈ P: RCν+1 = RCν + 1

1
TC

∑TC
t=1 ‖

yC
(ν−1)TC+t

−yC]
(ν−1)TC+t

y
C]
(ν−1)TC+t

‖≤τ
,

RPν+1 = RPν + 1
1
TC

∑TC
t=1 ‖

xP
(ν−1)TC+t

−xP]
(ν−1)TC+t

x
P]
(ν−1)TC+t

‖≤τ
. Variable Anν , called an-

cienty, captures how often node n has not been selected as a miner until
time period νTC , it is updated according to the following rule: Anν+1 =
Anν + 1m?ν 6=n,∀n ∈ N .

Convergence of the Trust-Based Mechanism Consider the reputation
(resp. ancienty) in the node selection probability. We let the gain function hν(n)
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be the indicator function in the reputation (ancienty) update and define the

external regret as R(m?, niter) :=
∑niter
ν=1

(
− h(m?

ν)
)
−minn∈N

(
− hν(n)

)
. If

the rate is chosen so that ζ =
√

8ln(N)
niter

, then lim sup
niter→∞

1

niter
R(m?, niter) = 0

with probability 1 as well-known in the weighted average forecasting literature.
For niter large enough, depending on the value of γ ∈]0; 1], regret-minimizing
nodes satisfying one or a combination of both criteria will be selected as miners.

Suppose Proposition 3 holds in the rest of the paper. This seems a reasonable
assumption, as it is also observed in practice [3]. Assuming that the quantity qt
on the local energy market at each time period is known, the market clearing
writes down as a concave optimization problem, that can be interpreted as an
optimal exchange problem [1], [8]:

max
y,x,s

νTC∑
t=(ν−1)TC+1

{∑
C∈C

ΠC(yCt ) +
∑
P∈P

ΠP (xPt , s
P
t ) + g(qt)

}
, (16)

s.t. xPt + sPt ≤ κP ,∀P ∈ P,∀t, (17)

0 ≤ xPt , sPt ,∀P ∈ P,∀t, (18)

0 ≤ yCt ≤ κC ,∀C ∈ C,∀t. (19)

3 Solving the Platform Problem Using ADMM

In the platform problem, the local MO determines the clearing price p?t which
maximizes the social welfare, under limited information exchange between the
nodes. To apply decentralized optimization, we reformulate the platform op-
timization problem (16)-(19) by observing that the objective function can be
decomposed onto the consumers and prosumers’ decision variables.

3.1 Reformulation as a Consensus Problem

We set g̃(qt) = −cqt qt. The platform optimization problem can be formulated as
follows:

max
y,x,s

νTC∑
t=(ν−1)TC+1

{∑
C∈C

ŨC(yCt ) +
∑
P∈P

[
UP (xPt )− cP (xPt + sPt )

]
+ g̃(qt)

}
,

(20)

s.t.
∑
C∈C

yCt −
∑
P∈P

sPt + qt = 0,∀t, (p?t ) (21)

xPt + sPt ≤ κP ,∀P ∈ P,∀t, (22)

0 ≤ xPt , sPt ,∀P ∈ P,∀t, (23)

0 ≤ yCt ≤ κC ,∀C ∈ C,∀t. (24)

The platform problem can be solved in three different ways, that are pictured
in Fig. 2:
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(a) Joint optimization of (20)-(24). Notice that this requires that the local
MO has full information on consumers and prosumers’ utilities.
(b) Mixed Complementarity Problem (MCP) reformulation solved as a squared
system made of all the first-order stationarity conditions derived in Section 2.
Notice that his requires that the local MO has full information on consumers
and prosumers’ preferences.
(c) Iteratively, with limited private information exchanges between the nodes.

We focus on approach (c) in this section. To determine the platform clearing
price with limited exchange of information between the nodes, we resort to use
an algorithmic approach. Our key technical tool is an optimization technique
known as the ADMM [1], [4], [10]. Applying ADMM to our problem, a con-

cave objective function of the form

νTC∑
t=(ν−1)TC+1

( ∑
P∈P

fP (XP
t ) +

∑
C∈C

fC(Y C
t )
)

is maximized subject to some constraints by performing alternating individual
optimizations over fC(.) and fP (.). While it was originally introduced to achieve
faster convergence [1], it was observed in [10] that when the functions fC(.)
and fP (.) are private information belonging to consumer C and prosumer P ,
ADMM has the additional advantage of sharing only a small amount of private
information between the two parties.

Non-linear optimization

Prosumer P Consumer C Exchange

Sharing Platform
Market Operator

UP (.) p⋆t ,
sPt , x

P
t

ŨC (.) p⋆t ,
yCt

д̃(.) p⋆t ,
qt

(a) Joint Optimization

Squared system of
equations and variables

Prosumer P Consumer C Exchange

Sharing Platform
Market Operator

dΠP (.)
d . p⋆t ,

sPt , x
P
t

dΠC (.)
d . p⋆t ,

yCt

dд(.)
d . p⋆t ,

qt

(b) MCP reformulation

Iterative process

Prosumer P Consumer C Exchange

Sharing Platform
Market Operator

sPt , x
P
t

p⋆t
yCt

p⋆t

qt
p⋆t

(c) ADMM process

Fig. 2: The three approaches and necessary information exchanges for the local
market operator to clear the platform market.

In the general formulation, agents are trying to jointly solve the generic
concave optimization problem:

max
X,Y ,Z

νTC∑
t=(ν−1)TC+1

( ∑
P∈P

fP (XP
t ) +

∑
C∈C

fC(Y C
t ) + h(Zt)

)
, (25)

s.t. AP

(
XP
t

Zt

)
≤ bP ,∀P ∈ P,∀t,

AC

(
Y C
t

Zt

)
≤ bC ,∀C ∈ C,∀t,

BZt ≤ b,∀t.
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By identification with the relaxed optimal exchange problem (16)-(19), we
set: XP

t := (xPt , s
P
t ), Y C

t := yCt , and Zt := p?t . Regarding the objective func-
tions, we set: fP (XP

t ) = ΠP (xPt , s
P
t ), fC(Y C

t ) = ΠC(yCt ), h(Zt) = g(qt).
The time periods being not linked, we decompose (25) over each time period

t, so that the vectors constraints at t take the form: AP =

 1 1 0
−1 0 0
0 −1 0

, bP =κP

0
0

, AC =

(
1 0
−1 0

)
, bC =

(
κC

0

)
, and B =

(
1 −1

)
, b =

(
p −p

)
.

In our case, fn(.), bn constitute the information privately held by node n ∈
N , whereas h(.), B and b are known to all nodes. We want to solve this concave
optimization problem so that in the optimum, XP (resp. Y C) is private output
known only by prosumer P (resp. consumer C), but Z may be known to all.
ADMM uses an iterative process to solve the optimization problem and only
shares the iterative updates of the shared variable Z.

To make the link with the classical consensus-based approach [1], [10], we
consider a slightly different concave optimization problem:

max
u,v

νTC∑
t=(ν−1)TC+1

(
F (ut) +G(vt)

)
, (26)

s.t. B1ut ≤ d1,∀t,
B2vt ≤ d2,∀t,
ut = vt,∀t.

Proposition 4. Problem (26) is a special case of Problem (25).

Proof of Proposition 4. We can construct Problem (26) where the variables

ut and vt both represent an independent copy of
(

(XP
t )P∈P , (y

C
t )C∈C , Zt

)
. For-

mally, let the objective function F (.) and G(.) be defined as follows: F (ut) =∑
P∈P fP (XP

t ) + h(Zt)
2 , G(vt) =

∑
C∈C fC(Y C

t ) + h(Zt)
2 . It is easy to see that

B1 and d1 can be created by inserting zeros in appropriate places such that the

constraint set B1ut ≤ d1 reduces to the union of AP

(
XP
t Zt

)T
≤ bP ,∀P ∈ P

and BZt ≤ b. B2 and d2 can be generated following the same way, e.g., by
inserting zeros in appropriate places such that the constraint set B2vt ≤ d2 re-
duces to the union of AC(Y C

t Zt)
T ≤ bC ,∀C ∈ C and BZt ≤ b. This completes

the construction of Problem (26).
�

3.2 Updating Rules, Privacy Preservation and Stopping Criteria

We define FS(u) := {u|B1u ≤ d1} as the feasibility set of u and FS(v) :=
{v|B2v ≤ d2} as the feasibility set of v. Optimization problem (26) can be
decomposed in time. So, ADMM solves Problem (26) in an iterative fashion
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[10], where for each time period t ∈ {(ν − 1)TC + 1, ..., νTC}, each iteration k
has three steps as described below:

uk+1
t ∈ arg min

u∈FS(u)

{
− F (u) + λkTu+

ρ

2
‖u− vkt ‖2

}
,

vk+1
t ∈ arg min

v∈FS(v)

{
−G(v) + λkTv +

ρ

2
‖uk+1

t − v‖2
}

,

λk+1
t = λkt + ρ‖uk+1

t − vk+1
t ‖2.

Note that the consumer and prosumer optimization problems being separa-
ble, first step can be solved independently by each prosumer P ∈ P; second
step can be solved independently by each consumer C ∈ C; while last step is
computed by the local MO.

The update steps of the consensus-based ADMM algorithm violate the output
privacy requirements because ut (resp. vt), which is revealed to the consumers
(resp. prosumers), contains a copy of the private output variables of all the other
agents. However, the key point to observe is that the optimization problem in
each step can be decomposed into components that depend on different individ-
ual variables of ut (resp. vt). Therefore, the set of components in optimization
steps of consumers that depend on the private output of the other agents can
effectively be removed from the objective function, and at the same time, the
feasible region FS(.) can be reduced to the feasible region over XP

t , Zt for any
prosumer P (resp. Y C

t , Zt for any consumer C). Hence, the optimization can be
carried out in a way that each agent is only revealed her final valueXP

t (Y C
t ) and

Zt. Hence, the output privacy is also preserved by the consensus-based ADMM
algorithm.

ADMM iterates satisfy the following:

– objective convergence
∑νTC
t=(ν−1)TC+1

(
F (ukt ) + G(vkt )

)
→k F

? + G?, where

F ν,? +Gν,? are the optimal value of the optimization problem (26) with TC
time period look-ahead at ν-th repetition of the platform game.

– dual variable convergence λk →k p
?
t .

– residual convergence rk := ‖uk − u?‖ + ‖vk − v?‖ →k 0, where u?, v? con-
tain the optimum values for the prosumers and consumers as described in
Propositions 1 and 2.

4 Case Study

In this section, an illustrative case study is presented. The objective of the case
study is twofold. Firstly, to exhibit the parts of the equilibrium model and the
algorithm to solve it (subsection 4.1). Secondly, to present the miner selection
process and its dynamics (subsection 4.2). Note that subsection 4.1 focuses on
the equilibrium and the impact of consumer preferences with regard to additional
characteristics, while subsection 4.2 highlights results of the introduced ADMM
algorithm on e.g., the number of required iterations, the dynamics of the miner
selection process, and the impact of the threshold parameter τ .
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In the case study a consumer (C) interacts with two prosumers (P1 and
P2) via a platform (acting as the intermediate). For his demand, C chooses
between two product characteristics: locality (Loc) and RES-based (RES). The
preferences of C serve to match his demand with the supply characteristics of P1

and P2. Tables 1 and 2 show the values of the parameters to be used throughout
the case study, for the consumer and prosumer models, respectively.

Table 1: Input parameter of consumer for case study.

Consumer C Prosumer 1 Prosumer 2 0 Loc RES

yC]
t 35 αCP

Loc 0.1 0.3 ξC - 0.2 0.8
κC 80 αCP

RES 0.3 1.3 w 1 0.5 0.2

Table 2: Input parameter of prosumers for case study.

Prosumer P xP]
t κP cP2 cP1 cP0

Prosumer 1 40 60 1 20 0
Prosumer 2 40 60 0.1 10 0

4.1 Impact of Consumer Preferences on Locality and RES-Based
Generation

We notice a linear relation between the consumer demand and the market clear-
ing price. This observation coincides with the results that we analytically derived
in Proposition 1. We also observe that the market price (and then, the demand)
is maximum in case the consumer is indifferent between the two prosumers for his
RES-based demand. That is, the location of the prosumer is irrelevant when look-
ing to fulfill his RES preference. Furthermore, preference regarding one prosumer
seems to have a limited impact on his demand. We conclude that the definition of
the consumer matching preferences for his RES-based demand have a direct im-
pact on his relative consumption, and, on his utility which is maximized in case
where the consumer is indifferent between both prosumers. Furthermore, to max-
imize his utility the consumer can have strong preference regarding RES-based
generation but limited preference regarding locality. In general, the consumer
should keep his preference regarding locality moderate to maximize his utility.

4.2 Miner Selection: Dynamics and Threshold

In Fig. 3, we represent the error distribution of three nodes, based on market
results for 24 market clearings, i.e., for each hour of the day. The error is defined
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Fig. 3: Frequency of error terms of nodes based on target value (used during
update of reputation)

as the normalized difference between the demand (auto-consumption) obtained
as outcome of the consensus algorithm and the target value, and used to update
the node reputation. Based on these equations, the impact of the error term also
depends on the chosen threshold τ . We observe that for values of τ > 0.2, node
2 generates the largest errors. As a result, if τ ≤ 0.2, node 2 reputation will
remain unchanged. For τ ≤ 0.1 or τ ≥ 0.4, all the nodes keep their reputation
unchanged. Bear in mind that the reputation is updated (i.e., increases by 1) if
the node’s error is below the threshold τ . Nodes 1 and 3 have lower errors than
node 2, with high frequencies for low errors at one node or the other. Meaning
that with a τ = 0.15, node 1 has the largest reputation, while a bigger threshold
e.g., τ = 0.18 gives node 3 a larger reputation.

The proposed selection process accounts for the exploration and exploitation
of miners. Fig. 5 illustrates the dynamics of the selection process in terms of γ;
parameter that controls for the trade-off between exploration of new miners and
the exploitation of miners with high reputation.

If we assume an equal weighting of the exploitation and exploration proba-
bilities, i.e., γ = 1

2 (Fig. 5a), we observe the following:

– node 2’s reputation worsened, in respect to the others’ nodes, with the num-
ber of market clearings. The exploration term is not able to compensate for
the low reputation.

– nodes 1 and 3 show a higher selection probability than node 2. This proba-
bility oscillates during the first clearings and settles around a value of 0.2.
Note that both nodes show values that are close enough to be considered as
identical. This, for more than 15 repetitions of the game.
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Fig. 4: Miner selection for 24 market clearings with changing values for τ
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Fig. 5: Dynamics of miner selection process (Parameter γ to control trade-off
between exploration and exploitation. τ = 0.2)
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When a higher emphasis is given to the exploration of new miners, that is
γ = 0.8, we observe a quite different picture (Fig.5b). Node 2 gets selected as a
miner in the beginning, and its chance to get selected remains at a relatively high
level compared to the others. Forcing the process to look for new miners increases
substantially the chances of poor performing nodes to become the miner. This,
even if the reputation is low (and never updates) and the threshold τ is such
that with a γ = 1

2 (i.e., no favoritism for exploitation or exploration) this node
would never be selected as the miner (see Fig. 4).

As such, a γ = 0.8 assigns a higher probability to select node 2 as the miner
during all clearings than assuming γ = 1

2 . Consequently, γ provides a valuable
tuning parameter to control the miner selection process.

5 Conclusions

In this paper, we consider consumers and prosumers who interact via a platform.
On the one hand, consumers specify their target demand and optimize their
demand to the platform in order to find a trade-off between maximizing their
usage benefit and minimizing the cost they pay to the platform. On the other
hand, prosumers need to determine the amount of generated energy they self-
consume and the quantity they share on the platform. Our study introduces
product differentiation and consumers’s preferences, namely locality and RES-
based generation. These preferences are used to match the prosumers generation
characteristics. We introduce the probability for a prosumer to be matched to a
consumer. In case the consumer demand is larger than the prosumer supply, the
matching problem can be decomposed in decoupled optimization problems, that
we solve analytically. In case of an excess of supply compared to the demand on
the platform, the consumers and prosumers problems remain coupled through
the matching probability, giving rise to a non-cooperative game. We provide
analytical conditions for the existence and uniqueness of a Nash equilibrium.

We prove the existence of a market clearing price cap below which supply-
shortages occur on the platform. Under this assumption (also observed on Didi
Chuxing, the largest ridesharing platform in China), we implement ADMM re-
formulated as a consensus problem, to solve this specific platform issue. A trust-
based mechanism is implemented on top of it, to select at each repetition of
the game (clearings) the node which validates the transactions (e.g., demand,
self-consumption and shared production from the prosumers), that is the node
that acts as the miner. The miner node selection is made according to a den-
sity function capturing the trade-off between exploitation of nodes with good
reputation and exploration of new nodes. The goal is to prevent that the nodes
deviate too much from their target schedules, forming coalitions that could work
independently of the platform.

Our case study quantifies the impact of consumers’ preferences for the match-
ing with prosumers and assess the dynamics of the miner selection process for
three nodes. The case study shows that although product differentiation could
in theory drive the consumers decision on how to supply his/her demand (based
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on his/her preferences), in practice the decision’s main driver is the price it pays
for the product (in this case, energy). In addition, we observed that a tunning
parameter that captures the trade-off between exploring for new miners and
exploiting nodes with good reputation is relevant for the control of the miner
selection process.
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