Skip to main content

Disentangled Representations of Cellular Identity

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11467))

Abstract

We introduce a disentangled representation for cellular identity that constructs a latent cellular state from a linear combination of condition specific basis vectors that are then decoded into gene expression levels. The basis vectors are learned with a deep autoencoder model from single-cell RNA-seq data. Linear arithmetic in the disentangled representation successfully predicts nonlinear gene expression interactions between biological pathways in unobserved treatment conditions. We are able to recover the mean gene expression profiles of unobserved conditions with an average Pearson r = 0.73, which outperforms two linear baselines, one with an average r = 0.43 and another with an average r = 0.19. Disentangled representations hold the promise to provide new explanatory power for the interaction of biological pathways and the prediction of effects of unobserved conditions for applications such as combinatorial therapy and cellular reprogramming. Our work is motivated by recent advances in deep generative models that have enabled synthesis of images and natural language with desired properties from interpolation in a “latent representation” of the data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Lazikani, B., Banerji, U., Workman, P.: Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30(7), 679 (2012)

    Article  Google Scholar 

  2. Ghahramani, A., Watt, F.M., Luscombe, N.M.: Generative adversarial networks simulate gene expression and predict perturbations in single cells. bioArXiv preprint (2018). https://doi.org/10.1101/262501

  3. Bojanowski, P., Joulin, A., Lopez-Paz, D., Szlam, A.: Optimizing the latent space of generative networks. arXiv preprint arXiv:1707.05776 (2017)

  4. Ding, J., Condon, A., Shah, S.P.: Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9(1), 2002 (2018)

    Article  Google Scholar 

  5. Eguchi, A., et al.: Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proc. National Acad. Sci. 113(51), E8257–E8266 (2016)

    Article  Google Scholar 

  6. Ferdous, M.M., Bao, Y., Vinciotti, V., Liu, X., Wilson, P.: Predicting gene expression from genome wide protein binding profiles. Neurocomputing 275, 1490–1499 (2018)

    Article  Google Scholar 

  7. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4(2), 268–276 (2018)

    Article  Google Scholar 

  8. Yeo, G.H.T., Lin, L., Qi, Y.C., Gifford, D.K., Sherwood, R.I.: Elucidation of combinatorial signaling logic with multiplexed barcodelet single-cell RNA-seq (2018, in prep)

    Google Scholar 

  9. Jaitin, D.A., et al.: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343(6172), 776–779 (2014)

    Article  Google Scholar 

  10. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)

    Google Scholar 

  11. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Systems, pp. 3581–3589 (2014)

    Google Scholar 

  12. Li, H., Xu, Z., Taylor, G., Goldstein, T.: Visualizing the loss landscape of neural nets. arXiv preprint arXiv:1712.09913 (2017)

  13. Lopez, R., Regier, J., Cole, M., Jordan, M., Yosef, N.: A deep generative model for gene expression profiles from single-cell RNA sequencing. arXiv preprint arXiv:1709.02082 (2017)

  14. Lun, A.T., Bach, K., Marioni, J.C.: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17(1), 75 (2016)

    Article  Google Scholar 

  15. Macarron, R., et al.: Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10(3), 188 (2011)

    Article  Google Scholar 

  16. Mohammadi, S., Ravindra, V., Gleich, D.F., Grama, A.: A geometric approach to characterize the functional identity of single cells. Nat. Commun. 9(1), 1516 (2018)

    Article  Google Scholar 

  17. Okawa, S., et al.: Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift. Nat. Commun. 9(1), 2595 (2018)

    Article  MathSciNet  Google Scholar 

  18. Patel, A.P., et al.: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190), 1396–1401 (2014)

    Article  Google Scholar 

  19. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  20. Salvatier, J., Wiecki, T.V., Fonnesbeck, C.: Probabilistic programming in python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016). https://doi.org/10.7717/peerj-cs.55

    Article  Google Scholar 

  21. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., Regev, A.: Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33(5), 495 (2015)

    Article  Google Scholar 

  22. Singh, R., Lanchantin, J., Robins, G., Qi, Y.: DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics 32(17), i639–i648 (2016)

    Article  Google Scholar 

  23. Takahashi, K., et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007)

    Article  Google Scholar 

  24. Wagner, A., Regev, A., Yosef, N.: Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34(11), 1145 (2016)

    Article  Google Scholar 

  25. Wang, X., Ghasedi Dizaji, K., Huang, H.: Conditional generative adversarial network for gene expression inference. Bioinformatics 34(17), i603–i611 (2018)

    Article  Google Scholar 

  26. White, T.: Sampling generative networks. arXiv preprint arXiv:1609.04468 (2016)

  27. Xie, R., Wen, J., Quitadamo, A., Cheng, J., Shi, X.: A deep auto-encoder model for gene expression prediction. BMC Genomics 18(9), 845 (2017)

    Article  Google Scholar 

  28. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the members of the Gifford and Sherwood labs for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziheng Wang or David Gifford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Yeo, G.H.T., Sherwood, R., Gifford, D. (2019). Disentangled Representations of Cellular Identity. In: Cowen, L. (eds) Research in Computational Molecular Biology. RECOMB 2019. Lecture Notes in Computer Science(), vol 11467. Springer, Cham. https://doi.org/10.1007/978-3-030-17083-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17083-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17082-0

  • Online ISBN: 978-3-030-17083-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics