
Sub-logarithmic Distributed Oblivious RAM
with Small Block Size?

Eyal Kushilevitz and Tamer Mour

Computer Science Department, Technion, Haifa 32000, Israel
{eyalk,tamer.mour}@cs.technion.ac.il

Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that
allows a client to securely execute RAM programs over data that is stored
in an untrusted server. Distributed Oblivious RAM is a variant of ORAM,
where the data is stored in m > 1 servers. Extensive research over the
last few decades have succeeded to reduce the bandwidth overhead of
ORAM schemes, both in the single-server and the multi-server setting,
from O(

√
N) to O(1). However, all known protocols that achieve a sub-

logarithmic overhead either require heavy server-side computation (e.g.
homomorphic encryption), or a large block size of at least Ω(log3N).
In this paper, we present a family of distributed ORAM constructions
that follow the hierarchical approach of Goldreich and Ostrovsky [GO96].
We enhance known techniques, and develop new ones, to take better ad-
vantage of the existence of multiple servers. By plugging efficient known
hashing schemes in our constructions, we get the following results:
1. For any number m ≥ 2 of servers, we show an m-server ORAM

scheme with O(logN/ log logN) overhead, and block size Ω(log2N).
This scheme is private even against an (m− 1)-server collusion.

2. A three-server ORAM construction with O(ω(1) · logN/ log logN)
overhead and a block size almost logarithmic, i.e. Ω(log1+εN).

We also investigate a model where the servers are allowed to perform a
linear amount of light local computations, and show that constant over-
head is achievable in this model, through a simple four-server ORAM
protocol. Through the theoretical lens, this is the first ORAM scheme
with asymptotic constant overhead, and polylogarithmic block size, that
does not use homomorphic encryption. Practically speaking, although
we do not provide an implementation of the suggested construction, ev-
idence from related work (e.g. [DS17]) makes us believe that despite the
linear computational overhead, the construction can be potentially very
efficient practically, in particular when applied to secure computation.

Keywords: Oblivious RAM, Multi-Server Setting, Secure Computa-
tion, Private Storage.

1 Introduction

Since it was first introduced by Goldreich and Ostrovsky [GO96], the Oblivi-
ous RAM problem has attracted a lot of attention (see, e.g. [SCSL11, KLO12,

? A first technical report was published on arXiv.org e-Print archive as
arXiv:1802.05145 [cs.CR].

ar
X

iv
:1

80
2.

05
14

5v
3

 [
cs

.C
R

]
 1

7
N

ov
 2

01
8

http://arxiv.org/abs/1802.05145

WCS15]). Throughout the past three decades, efficient ORAM protocols were
constructed (e.g. [GM11, SvDS+13]), their various applications, such as secure
storage [OS97, AKST14], secure processors [RYF+13], and secure multi-party
computation [GKK+12, LO13], were studied, and their limits were considered
[GO96,AFN+17,LN18].

Standard Model. The standard ORAM model considers a setting where a client
outsources his data to an untrusted server that supports read and write opera-
tions only. The goal of an ORAM simulation is to simulate any RAM program
that the client executes over the remote data, so that the same computation is
performed, but the view of the server during the interaction would provide no
information about the client’s private input and the program executed, except
their length. Clearly, encryption can be employed to hide the content of the
data, but the sequence of reads and write locations might leak information as
well. Thus, the focus of ORAM is to hide the access pattern made to the server.
The main metric considered in ORAM research is the bandwidth overhead of an
ORAM scheme (shortly referred to as “overhead”), which is the multiplicative
increase in the amount of communication incurred by an oblivious simulation
relative to a regular run of the simulated program. In this standard model, re-
searchers have been able to improve the overhead from O(log3N) [GO96] to
O(logN) [SvDS+13, WCS15, AKL+18], where N is the number of data blocks
in storage, and thus reaching the optimal overhead in that model due to the
matching impossibility results of Goldreich and Ostrovsky [GO96] and Larsen
and Nielsen [LN18].

In an attempt to achieve sub-logarithmic overhead, research has deviated
from the standard model (e.g. [LO13, AKST14, WGK18]). For instance, by al-
lowing the server to perform some local computation, multiple works [AKST14,
FNR+15, DvF+16] could achieve a constant overhead. However, this improve-
ment comes at a cost: the server performs heavy homomorphic encryption com-
putation which practically becomes the actual bottleneck of such schemes.

Distributed Oblivious RAM. Another interesting line of work, often referred
to as Distributed Oblivious RAM [ZMZQ16, AFN+17, WGK18, etc.], was ini-
tiated by Ostrovsky and Shoup [OS97] and later refined by Lu and Ostro-
vsky [LO13], and considers the multi-server setting. We denote by (m, t)-ORAM
an ORAM scheme that involves m > 1 servers, out of which t < m servers
might collude. In the two-server setting, Zhang et al. [ZMZQ16] and Abraham
et al. [AFN+17] construct (2, 1)-ORAMs with sub-logarithmic overhead. In order
to achieve O(logdN) overhead (for any d ∈ N) using their construction, Abra-
ham et al. require that the size of a memory block, i.e. the data unit retrieved
in a single query to the RAM, is Ω(d log2N) (with larger blocks the asymp-
totic overhead increases). For example, for an overhead of O(logN/ log logN),
one has to work with blocks of relatively large size of Ω(log3N), which may be
undesired in many applications. In the work of Zhang et al., a polynomial block
size of Ω(N ε) is required for a constant bandwidth blowup. Other attempts to
achieve low overhead in the multi-server setting [MBM15] were shown to be vul-

2

nerable to concrete attacks [AFN+17]. These recent developments in distributed
ORAM raise the following question, which we address in this paper:

Can we construct a sub-logarithmic distributed ORAM with a small block size?

Known sub-logarithmic ORAMs [AFN+17,ZMZQ16] belong to the family of
tree-based ORAMs [SCSL11]. One of the key components in tree-based ORAMs
is a position map that is maintained through a recursive ORAM. Such a recursion
imposes the requirement for a large block size (usually polylogarithmic)1. Thus,
it seems that a positive answer to the question above will come, if at all, from
constructions belonging to the other well-studied type of ORAMs, those based
on the hierarchical solution of [GO96]. By applying the hierarchical approach to
the distributed setting, Lu and Ostrovsky [LO13] succeeded to construct the first
logarithmic hierarchical ORAM scheme. In this paper, we show how to take a
further advantage of the multiple servers in order to beat the logarithmic barrier,
and still use a relatively small block size, with constructions in both the two-
server and three-server settings. In addition, we consider the case where t > 1,
and show how to generalize our two-server solution to an (m,m − 1)-ORAM,
with the same asymptotic complexity, for any m > 2.

Allowing Linear Server Work. Although distributed ORAM schemes in the lit-
erature assume the servers are able to perform some server-side computations,
most works limit them to be polylogarithmic in N per read/write. An excep-
tion are two recent works [DS17,WGK18] that investigate oblivious RAM when
the servers are allowed to perform computations that are linear in N . In this
stronger variant, the relatively new cryptographic primitive of function secret
sharing (FSS), introduced by Boyle et al. [BGI15], was shown to be useful for
constructing schemes that are practically efficient [DS17], or that are of low
interaction [WGK18]. However, none of the mentioned schemes achieve sub-
logarithmic overhead, thus leaving us with the following question:

How efficient can distributed ORAM be if the servers do linear work?

We show that by allowing the servers to perform linear computations per
RAM step, we can achieve a distributed ORAM scheme with a small constant
overhead. We restrict ourselves to simple server-side computations which were
shown to perform well in practical implementations [DS17]. Therefore, we be-
lieve that our construction has the potential to be very efficient in practical
applications, such as those to secure computation, as discussed below.

Application to Secure Computation. Besides potentially being more efficient,
distributed oblivious RAM was shown to be a useful tool in constructing se-
cure computation protocols [OS97, GKK+12, LO13]. By using our distributed

1 To the best of our knowledge, the only tree-based ORAM that bypasses recursion
belongs to Wang et al. [WGK18], which works in a different model where linear sever
work is allowed (see preceding discussion).

3

Scheme m t Overhead Block size B C. Strg. S. Work

[Ost90,GO96] 1 - O(log3N) Ω(logN) O(1) -

[KLO12] 1 - O(log2 N
log logN

) Ω(logN) O(1) -

[WCS15] 1 - O(logN · ω(1)) Ω(log2N) O(1) -

[AKL+18] 1 - O(logN) Ω(logN) O(1) -

[LO13] 2 1 O(logN) Ω(logN) O(1) polylog

[CKN+18] 3 1 O(log2N) Ω(logN) O(1) -

[ZMZQ16] 2 1 O(1) Ω(N ε) O(1) polylog

[AFN+17] 2 1 O(logdN) ω(d log2N) O(1) polylog

[DS17] 2 1 O(
√
N) Ω(logN) O(1) linear

[WGK18] 2 1 O(logN) Ω(logN) O(1) linear

our 4-server construction

Instantiation 1 4 1 O(1) Ω(λ logN) O(1) linear

our 3-server construction

Instantiation 2 3 1 O(logdN · ω(1)) Ω(d logN) O(1) polylog

d = logεN O(logN
log logN

· ω(1)) Ω(log1+εN)

Instantiation 3 3 1 O(logdN) Ω(d log1.5N) O(1) polylog

d = logεN O(logN
log logN

) Ω(log1.5+εN)

our m-server construction

Instantiation 4 m ≥ 2 m− 1 O(logN
log logN

) Ω(log2N) O(1) polylog

Table 1: Comparison of ORAM schemes. Columns by order: number of servers
m, collusion size t, bandwidth overhead, block size B, client storage size in blocks
(additive factors of the security parameter are omitted), and amortized server-
side work per RAM step (computational overhead). λ is a security parameter.

ORAM constructions as the underlying ORAM schemes in the elegant protocol
from [LO13], we get better asymptotic parameters for secure RAM computation
than any known single-server or multi-server ORAM solution. Furthermore, our
constructions are the first to be applicable to multi-party computation protocols
that are secure against collusions.

1.1 Our Contribution and Technical Overview

Sub-logarithmic Distributed ORAM Constructions. Our main contribu-
tion is a family of distributed hierarchical ORAM constructions with any number
of servers. Our constructions make a black-box use of hashing schemes. Instanti-
ating our constructions with known hashing schemes, that were previously used
in ORAM constructions [GM11, KLO12, LO13, CGLS17], yields state-of-the-art
results (see Table 1). We elaborate below.

A Three-server ORAM Protocol. By using techniques from [LO13] over the bal-
anced hierarchy from [KLO12], and using two-server PIR [CGKS98] as a black
box, we are able to construct an efficient (3, 1)-ORAM scheme. Instantiating the
scheme with cuckoo hash tables (similarly to [GM11,KLO12,LO13]) achieves an

4

overhead of O(ω(1) · logdN) with a block size of B = Ω(d logN). Thus, for any
ε > 0, we achieve O(ω(1) · logN/ log logN) overhead with B = Ω(log1+εN).

In the classic hierarchical solution from [GO96], the data is stored in logN
levels, and the protocol consists of two components: queries, in which target vir-
tual blocks are retrieved, and reshuffles, which are performed to properly main-
tain the data structure. Roughly speaking, in a query, a single block is down-
loaded from every level, resulting in logN overhead per query. The reshuffles cost
logN overhead per level, and log2N overall. Kushilevitz et al. [KLO12] suggest
to balance the hierarchy by reducing the number of levels to logN/ log logN . In
the balanced hierarchy, however, one has to download logN blocks from a level in
every query. Thus, balancing the hierarchy ”balances”, in some sense, the asymp-
totic costs of the queries and reshuffles, as they both become log2N/ log logN .

At a high level, we carefully apply two-server techniques to reduce the over-
head, both of the queries and the reshuffles, in the single-server ORAM of
[KLO12]. More specifically, to reduce the queries cost, we use two-server PIR
to allow the client to efficiently read the target block from the logN positions,
it had otherwise have to download, from every level. By requiring the right (rel-
atively small) block size, the cost of PIRs can be made constant per level and,
therefore, logN/ log logN in total. To reduce the reshuffles cost, we replace the
single-server reshuffles with the cheaper two-server reshuffles, that were first used
by Lu and Ostrovsky [LO13], and that incur only a constant overhead per level.

So far, it sounds like we are already able to achieve logN/ log logN over-
head using two servers only. However, combining two-server PIR and two-server
reshuffles is tricky: each assumes a different distribution of the data. In stan-
dard two-server PIR, the data is assumed to be identically replicated among the
two servers. On the other hand, it is essential for the security of the two-server
reshuffles from [LO13] that every level in the hierarchy is held only by one of the
two servers, so that the other server, which is used to reshuffle the data, does not
see the access pattern to the level. We solve this problem by combining the two
settings using three servers: every level is held only by two of the three servers
in a way that conserves the security of the two-server reshuffles and, at the same
time, provides the required setting for two-server PIR.

An (m,m − 1)-ORAM Protocol. We take further advantage of the existence
of multiple servers and construct, for any integer m ≥ 2, an m-server ORAM
scheme that is private against a collusion of up to m−1 servers. Using oblivious
two-tier hashing [CGLS17], our scheme achieves an overhead ofO(logN/ log logN),
for which it requires B = Ω(log2N) (see Theorem 4 and Instantiation 4).

We begin by describing a (2, 1)-ORAM scheme, then briefly explain how to
extend it to any number of servers m > 2. Let us take a look back at our three-
server construction. We were able to use both two-server PIR and two-server
reshuffles only using a three-server setting. Now that we restrict ourselves to
using two servers, we opt for the setting where the two servers store identical
replicates of the entire data structure. Performing PIR is clearly still possible,
but now that the queries in all levels are made to the same two servers, we cannot
perform Lu and Ostrovsky’s [LO13] two-server reshuffles securely. Instead, we

5

use oblivious sort (or, more generally, oblivious hashing) to reshuffle the levels.
Oblivious sort is a sorting protocol in the client-server setting, where the server
involved learns nothing about the obtained order of blocks. Oblivious sort is used
in many single-server hierarchical ORAMs (e.g. [GO96,KLO12]), where it incurs
logN overhead per level. Since we aim for a sub-logarithmic overhead, we avoid
this undesired blowup by performing oblivious sort over the tags of the blocks
only (i.e. their identities) which are much shorter, rather than over the blocks
themselves. We require a block size large enough such that the gap between the
size of the tags and the size of the blocks cancels out the multiplicative overhead
of performing oblivious sort. Once the tags are shuffled into a level, it remains
to match them with the blocks with the data. That is where the second server is
used. We apply a secure two-server ”matching procedure” which, at a high level,
lets the second server to randomly permute the data blocks and send them to
the server holding the shuffled tags. The latter can then match the data to the
tags in an oblivious manner. Of course, the data exchange during the matching
has to involve a subtle cryptographic treatment to preserve security.

The above scheme can be generalized to an (m,m−1)-ORAM, for any m > 2.
The data is replicated in all servers involved, and m-server PIR is used. The
matching procedure is extended to an m-server procedure, where all the servers
participate in randomly permuting the data.

Constant Overhead with Linear Server Work. We also investigate the
model where linear server work is allowed, and show that constant overhead is
achievable in this model (see Table 1). The proposed scheme, described below,
applies function secret sharing over secret-shared data, thus avoiding the need
for encrypting the data using symmetric encryption (unlike existing schemes
e.g. [DS17,WGK18]).

A Simple Four-server ORAM Protocol. Inspired by an idea first suggested in [OS97],
we combine private information retrieval (PIR) [CGKS98], and PIR-write [OS97],
to obtain a four-server ORAM. To implement the PIR and PIR-write proto-
cols efficiently, we make a black-box use of distributed point functions (DPFs)
[GI14, BGI15], i.e. function secret sharing schemes for the class of point func-
tions. Efficient DPFs can be used to construct (i) a (computational) two-server
PIR protocol if the data is replicated among the two servers, or (ii) a two-server
PIR-write protocol for when the data is additively secret-shared among the two
servers. These two applications of DPFs are combined as follows: we create two
additive shares of the data, and replicate each share twice. We send each of the
four shares (two pairs of identical shares) to one of the four servers. A read is
simulated with two instances of PIR, each invoked with a different pair of servers
holding the same share. A write is simulated with two instance of PIR-write, each
invoked with a different pair of servers holding different shares.

We stress that the client in all of our constructions can be described using
a simple small circuit, and therefore, our schemes can be used to obtain effi-
cient secure multi-party protocols, following [LO13]. We elaborate on this in
Appendix B.

6

1.2 Related Work

Classic Hierarchical Solution. The first hierarchical ORAM scheme appeared in
the work of Ostrovsky [Ost90] and later in [GO96]. In this solution, the server
holds the data in a hierarchy of levels, growing geometrically in size, where the
ith level is a standard hash table with 2i buckets of logarithmic size, and a hash
function hi(·), which is used to determine the location of blocks in the hash
table: block of address v may be found in level i (if at all) in bucket hi(v). The
scheme is initiated when all blocks are in the lowest level. An access to a block
with a virtual address v is simulated by downloading bucket hi(v) from every
level i. Once the block is found, it is written back to the appropriate bucket
in the smallest level (i = 0). As a level fills up, it is merged down with the
subsequent (larger) level i+1, which is reshuffled with a new hash function hi+1

using oblivious sorting. Thus, a block is never accessed twice in the same level
with the same hash function, hence the obliviousness of the scheme. Using AKS
sorting network [AKS83] for the oblivious sort achieves an O(log3N) overhead.

Balanced Hierarchy. Up until recently, the best known single-server ORAM
scheme for general block size, with constant client memory, were obtained by ap-
plying an elegant ”balancing technique” to the hierarchy of [GO96], that reduces
the number of levels in the hierarchy, in exchange for larger levels. The tech-
nique was first suggested by Kushilevitz et al. [KLO12]. Their scheme achieves
an overhead of O(log2 / log logN), using oblivious cuckoo hashing (first applied
to ORAM in [PR10,GM11]). An alternative construction, recently proposed by
Chan et al. [CGLS17], follows the same idea, but replaces the relatively complex
cuckoo hashing with a simpler oblivious hashing that is based on a variant of
the two-tier hashing scheme from [ACMR95].

Tree-based ORAM. Another well-studied family of ORAM schemes is tree-
based ORAMs (e.g. [SCSL11,SvDS+13,WCS15,DvF+16,AFN+17]). Tree-based
ORAMs, as the name suggests, are oblivious RAM schemes where the data is
stored in a tree structure. The first ORAM constructions with a logarithmic
overhead, in the single-server model, were achieved following the tree-based ap-
proach [SvDS+13,WCS15]. However, tree-based ORAMs require relatively large
block size of at least B = Ω(log2N) (see Table 1).

Optimal ORAM with General Block Size. The recent work of Asharov et al.
[AKL+18], which improves upon the work of Patel et al. [PPRY18], succeeds to
achieve optimal logarithmic overhead with general block size (due to known lower
bounds [GO96,LN18]). Both results are based on the solution from [GO96] and
use non-trivial properties of the data in the hierarchy to optimize the overhead.

Distributed ORAM Constructions. Ostrovsky and Shoup [OS97] were the first
to construct a distributed private-access storage scheme (that is not read-only).
Their solution is based on the hierarchical ORAM from [GO96]. However, their
model is a bit different than ours: they were interested in the amount of com-
munication required for a single query (rather than a sequence of queries), and

7

they did not limit the work done by the servers. Lu and Ostrovsky [LO13] con-
sidered the more general ORAM model, defined in Section 2.1. They presented
the first two-server oblivious RAM scheme, and achieved a logarithmic overhead
with a logarithmic block size by bypassing oblivious sort, and replacing it with
an efficient reshuffling procedure that uses the two servers.

The tree approach was also studied in the multi-server model. Contrary to the
hierarchical schemes, known distributed tree-based ORAMs [ZMZQ16,AFN+17]
beat the logarithmic barrier. The improvement in overhead could be achieved
by using k-ary tree data structures, for some parameter k = ω(1). However,
these constructions suffer from a few drawbacks, most importantly, they require
a large polylogarithmic (sometimes polynomial) block size.

Amortized vs. Worst-Case Overhead. Although overhead is defined as the amor-
tized blowup in bandwidth, several works also considered the worst-case over-
head per query. While tree-based schemes typically achieve low worst-case over-
head [SCSL11, SvDS+13, WCS15], hierarchical ORAMs might need additional
work to turn their amortized overhead into worst-case overhead. Ostrovsky and
Shoup [OS97] were the first to propose a method to de-amortize hierarchical con-
structions, which was adapted in some consequent works (e.g. [GM11,KLO12]).

ORAMs with Linear Server-side Computational Overhead. The work of Ostro-
vsky and Shoup [OS97], as well as some recent works [DS17,WGK18] have con-
sidered the model where the servers are allowed to perform a linear amount of
light computations. Both the works of Doerner and Shelat [DS17] and Wang et
al. [WGK18] elegantly implement techniques from the standard model (square-
root construction, and tree structure, respectively), and use the efficient PIR pro-
tocol from [BGI15], to construct practically efficient two-server ORAM schemes
with linear server-side computational overhead and bandwidth overhead match-
ing their analogues in the single-server setting (see Table 1).

1.3 Paper Organization

Section 2 contains a formal definition of the model and problem, as well as a
description of the cryptographic tools we use in our constructions. In Section 3,
we present our simple four-server ORAM with linear server work. In Section 4, we
provide a high-level description of the hierarchical ORAM framework, on which
our main distributed ORAM constructions are based. In Sections 5 and 6, we
present these constructions, beginning with a high-level overview of each of them,
followed by the full details and analysis. We finish with a few open questions.
Due to page limit, de-amortization of our constructions, and a discussion of
their application to secure computation, are left to Appendix A and B (resp.),
together with some additional complementary material.

8

2 Preliminaries

2.1 Model and Problem Definition

The RAM Model. We work in the RAM model, where a RAM machine consists
of a CPU that interacts with a (supposedly remote) RAM storage. The CPU
has a small number of local registers, therefore it uses the RAM storage for
computations over large data, by performing a sequence of reads and writes
to memory locations in the RAM. A sequence of ` queries is a list of ` tuples
(op1, v1, x1), . . . , (op`, v`, x`), where opi is either Read or Write, vi is the location
of the memory cell to be read or written to, and xi is the data to be written to vi
in case of a Write. For simplicity of notation, we unify both types of operations
into an operation known as an access, namely “Read then Write”. Hence, the
access pattern of the RAM machine is the sequence of the memory locations and
the data (v1, x1), . . . , (v`, x`).

Oblivious RAM Simulation. A (single-server) oblivious RAM simulation, shortly
ORAM simulation, is a simulation of a RAM machine, held by a client as a CPU,
and a server as RAM storage. The client communicates with the server, and
thus can query its memory. The server is untrusted but is assumed to be semi-
honest, i.e. it follows the protocol but attempts to learn as much information
as possible from its view about the client’s input and program. We also assume
that the server is not just a memory machine with I/O functionality, but that
it can perform basic local computations over its storage (e.g. shuffle arrays,
compute simple hash functions, etc.). We refer to the access pattern of the RAM
machine that is simulated as the virtual access pattern. The access pattern that
is produced by the oblivious simulation is called the actual access pattern. The
goal of ORAM is to simulate the RAM machine correctly, in a way that the
distribution of the view of the server, i.e. the actual access pattern, would look
independent of the virtual access pattern.

Definition 1 (ORAM simulation, informal). Let RAM be a RAM machine.
We say that a (probabilistic) RAM machine ORAM is an oblivious RAM simula-
tion of RAM, if (i) (correctness) for any virtual access pattern y := ((v1, x1), . . . , (v`, x`)),
the output of RAM and ORAM at the end of the client-server interaction is equal
with probability ≥ 1 − negl(`), and (ii) (security) for any two virtual access
patterns, y, z, of length `, the corresponding distribution of the actual access
patterns produced by ORAM, denoted ỹ and z̃, are computationally indistin-
guishable.

An alternative interpretation of the security requirement is as follows: the
view of the server, during an ORAM simulation, can be simulated in a way that
is indistinguishable from the actual view of the server, given only `.

Distributed Oblivious RAM. A distributed oblivious RAM simulation is the ana-
logue of ORAM simulation in the multi-server setting. To simulate a RAM ma-
chine, the client now communicates with m semi-honest servers, rather than with
a single server only.

9

Definition 2 (Distributed ORAM Simulation, informal). An (m, t)-ORAM
simulation (0 < t < m) is an oblivious RAM simulation of a RAM machine, that
is invoked by a CPU client and m remote storage servers, and that is private
against a collusion of t corrupt servers. Namely, for any two actual access pat-
terns y, z of length `, the corresponding combined view of any t servers during
the ORAM simulation (that consists of the actual access queries made to the t
servers) are computationally indistinguishable.

With the involvement of more servers, we can hope to achieve schemes that are
more efficient as well as schemes that protect against collusions of servers.

Parameters and Complexity Measures. The main complexity measure in which
ORAM schemes compete is the bandwidth overhead (or, shortly, overhead).
When the ORAM protocol operates in the “balls and bins” manner [GO96],
where the only type of data exchanged between the client and servers is actual
memory blocks, it is convenient to define the overhead as the amount of actual
memory blocks that are queried in the ORAM simulation to simulate a virtual
query to a single block. However, in general, overhead is defined as the blowup
in the number of information bits exchanged between the parties, relative to a
non-oblivious execution of the program. Following the more general definition,
the overhead is sometimes a function of the block size B. Clearly, we aim to
achieve a small asymptotic overhead with block size as small as possible.

Other metrics include the size of the server storage and the client’s local
memory (in blocks), and the amount and type of the computations performed by
the servers (e.g. simple arithmetics vs. heavy cryptography). We note that all of
these notions are best defined in terms of overhead, compared to a non-oblivious
execution of the program, e.g. storage overhead, computational overhead, etc..

2.2 Private Information Retrieval

Private information retrieval (PIR) [CGKS98] is a cryptographic primitive that
allows a client to query a database stored in a remote server, without reveal-
ing the identity of the queried data block. Specifically, an array of n blocks
X = (x1, . . . , xn) is stored in a server. The client, with input i ∈ [n], wishes to
retrieve xi, while keeping i private. PIR protocols allow the client to do that while
minimizing the number of bits exchanged between the client and server. PIR is
studied in two main settings: single-server PIR, where the database is stored in a
single server, and the multi-server setting, where the database is replicated and
stored in all servers, with which the client communicates simultaneously. More
specifically, an (m, t)-PIR is a PIR protocol that involves m > 1 servers and
that is secure against any collusion of t < m servers. It was shown in [CGKS98]
that non-trivial single-server PIRs cannot achieve information-theoretic security.
This is made possible with two servers already in multi-server PIR. Moreover,
many known two-server PIRs (both information theoretic and computational,
e.g. [CGKS98, BIW07, DG16, BGI15]) do not involve heavy server-side compu-
tation, like homomorphic encryption or number theoretic computations, as op-
posed to known single-server protocols (e.g. [KO97,CMS99,GR05]).

10

3 A Simple Four-Server ORAM with Constant Overhead

We present our four-server ORAM protocol with constant bandwidth overhead
and linear server-side computational overhead. The protocol bypasses the need
for symmetric encryption as it secret-shares the data among the servers. We use
distributed point functions [GI14] (see Section 3.1 below) as a building block.

Theorem 1 (Four-server ORAM). Assume the existence of a two-party DPF
scheme for point functions {0, 1}n → {0, 1}m with share length Λ(n,m) bits.
Then, there exists a (4, 1)-ORAM scheme with linear2 server-side computation
overhead and bandwidth overhead of O(Λ(logN,B)/B) for a block size of B =
Ω(Λ(logN, 1)).

Instantiating our scheme with the DPF from [BGI15] obtains the following.

Instantiation 1 Assume the existence of one-way functions. Then, there ex-
ists a (4, 1)-ORAM scheme with linear server-side computation overhead and
constant bandwidth overhead for a block size of B = Ω(λ logN), where λ is a
security parameter.

3.1 Building Block: Distributed Point Functions

Distributed Point Functions (DPF), introduced by Gilboa and Ishai [GI14], are a
special case of the broader cryptographic primitive called Function Secret Shar-
ing (FSS) [BGI15]. Analogous to standard secret sharing, an FSS allows a dealer
to secret-share a function f among two (or more) participants. Each participant
is given a share that does not reveal any information about f . Using his share,
each participant pi, for i ∈ {0, 1}, can compute a value fi(x) on any input x in
f ’s domain. The value f(x) can be computed by combining f0(x) and f1(x). In
fact, f(x) = f0(x) + f1(x). Distributed point function is an FSS for the class of
point functions, i.e., all functions Pa,b : {0, 1}n → {0, 1}m that are defined by
Pa,b(a) = b and Pa,b(a

′) = 0m for all a′ 6= a. Boyle et al. [BGI15] construct a
DPF scheme where the shares given to the parties are of size O(λn+m), where
λ is a security parameter, that is the length of a PRG seed. We are mainly
interested in the application of DPFs to PIR and PIR-write [GI14,BGI15].

3.2 Overview

Similarly to the schemes of [DS17,WGK18], we apply DPF-based PIR [BGI15]
to allow the client to efficiently read records from a replicated data. If we allow
linear server-side computational overhead, the task of oblivious reads becomes
trivial by using DPFs. The remaining challenge is how to efficiently perform
oblivious writes to the data.

The core idea behind the scheme is to apply DPFs not only for PIR, but also
for a variant of PIR-write. PIR-write (a variant of which was first investigated

2 Up to polylogarithmic factors.

11

in [OS97]) is the write-only analog of PIR. We use DPFs to construct a simple
two-server PIR-write where every server holds an additive share of the data.
Our PIR-write protocol is limited in the sense that the client can only modify
an existing record by some difference of his specification (rather than specifying
the new value to be written). If the client has the ability to read the record in a
private manner, then this limitation becomes irrelevant.

We combine the read-only PIR and the write-only PIR-write primitives to
obtain a four-server ORAM scheme that enables both private reads and writes.
In the setup, the client generates two additive shares of the initial data, X0, X1

s.t. X = X0 ⊕ X1, and replicates each of the shares. Each of the four shares
obtained is given to one of the servers. For a private read, the client retrieves each
of the shares X0, X1, using the DPF-based PIR protocol, with the two servers
that hold the share. For a private write, the proposed PIR-write protocol is
invoked with pairs of servers holding different shares of the data (see illustration
in Figure 1).

We remark that our method to combine PIR and PIR-write for ORAM is
inspired by the 8-server ORAM scheme presented in [OS97], in which an elemen-
tary 4-server PIR-write protocol was integrated with the PIR from [CGKS98].

Fig. 1: an illustration of the four-server construction.

3.3 Oblivious Read-only and Write-only Schemes with Two Servers

Basic PIR and PIR-write. Recall the classic two-server PIR protocol, proposed
in [CGKS98]. To securely retrieve a data block xi from an arrayX = (x1, . . . , xN)
that is stored in two non-colluding servers S0 and S1, the client generates two
random N -bit vectors, e0i and e1i such that e0i ⊕ e1i = ei, where ei is the ith unit
vector, and sends ebi to Sb. In other words, the client secret-shares the vector ei
among the two servers. Then, each server, computes the inner product xbi := X ·ebi
and sends it to the client. It is easy to see that xi = x0i ⊕ x1i .

The same approach can be used for two-server PIR-write. However, now we
require that the data is shared, rather than replicated, among the two servers.
Namely, server Sb holds a share of the data Xb, such that X0⊕X1 = X. In order
to write a new value x̂i to the ith block in the array, the client secret-shares the
vector (x̂i ⊕ xi)ei to the two servers. Each of the servers adds his share to Xb,
and obtains a new array X̂b. After this update, the servers have additive shares
of X with the updated value of xi. Notice that we assume that the client already
read and knows xi; this is not standard in the PIR-write model.

12

Efficient PIR and PIR-write via DPFs. In the heart of the PIR and PIR-write
protocols described above is the secret sharing of vectors of size N . Applying
standard additive secret sharing yields protocols with linear communication cost.
Since we share a very specific type of vectors, specifically, unit vectors and their
multiples, standard secret sharing is an overkill. Instead, we use DPFs. The
values of a point function Pi,x : [N] → {0, 1}m (that evaluates x at i, and zero
elsewhere) can be represented by a multiple of a unit vector vi,x := xei. Hence,
one can view distributed point functions as a means to ”compress” shares of
unit vectors and their multiples. We can use DPFs to share such a vector among
two participants p0 and p1, as follows. We secret-share the function Pi,x using a
DPF scheme, and generate two shares P 0

i,x and P 1
i,x. For b ∈ {0, 1}, share P bi,x is

sent to participant pb. The participants can compute their shares of the vector
vi,x by evaluating their DPF share on every input in [N]. Namely, pb computes
his share vbi,x := (P bi,x(1), . . . , P bi,x(n)). From the correctness of the underlying

DPF scheme, it holds that v0i,x ⊕ v1i,x = vi,x. Further, from the security of the
DPF, the participants do not learn anything about the vector vi,x except the
fact that it is a multiple of a unit vector. Using the DPF construction from
[BGI15], we have a secret sharing scheme for unit vectors and their multiples,
with communication complexity O(λ logN + m), assuming the existence of a
PRG G : {0, 1}λ → {0, 1}m.

3.4 Construction of Four-Server ORAM

Initial Server Storage. Let S00 ,S01 ,S10 and S11 be the four servers involved in
the protocol. Let X = (x1, . . . , xN) be the data consisting of N blocks, each of
size B = Ω(Λ(logN, 1)) bits. In initialization, the client generates two additive
shares of the data, X0 = (x01, . . . , x

0
N) and X1 = (x11, . . . , x

1
N). That is, X0 and

X1 are two random vectors of N blocks, satisfying X0⊕X1 = X. For b ∈ {0, 1},
the client sends Xb to both Sb0 and Sb1. Throughout the ORAM simulation, we
maintain the following invariant: for b ∈ {0, 1}, Sb0 and Sb1 have an identical array
Xb, such that X0 and X1 are random additive shares of X.

Query Protocol. To obliviously simulate a read/write query to the ith block in
the data, the client first reads the value xi via two PIR queries: a two-server PIR
with S00 and S01 to retrieve x0i , and a two-server PIR with S10 and S11 to retrieve
x1i . The client then computes xi using the two shares. Second, to write a new
value x̂i to the data (which can possibly be equal to xi), the client performs two
identical invocations of two-server PIR-write, each with servers S0b and S1b for
b ∈ {0, 1}. It is important that Sb0,Sb1 (for b ∈ {0, 1}) receive an identical PIR-
write query, since otherwise, they will no longer have two identical replicates.

3.5 Analysis

The security of the scheme follows directly from the security of the underlying
DPF protocol from [BGI15]. It remains to analyze the bandwidth cost. To simu-
late a query, the client sends each of the servers two DPF shares: one for reading

13

of length Λ(logN, 1) bits, and another for writing of length Λ(logN,B). With a
block size of B = Ω(Λ(logN, 1)) this translates to O(Λ(logN,B)/B) bandwidth
overhead. Each of the servers, in return, answers by sending two blocks.

4 The Balanced Hierarchical ORAM Framework

In this section, we lay the groundwork for our constructions in the standard
distributed ORAM model, that are presented later in Sections 5 and 6.

4.1 Main Building Block: Hashing

Hashing, or more accurately, oblivious hashing, has been a main building block
of hierarchical ORAM schemes since their first appearance in [Ost90]. Various
types of hashing schemes, each with different parameters and properties, were
plugged in ORAM constructions in an attempt to achieve efficient protocols
(e.g. [GO96,GM11,CGLS17]). Hashing stands at the heart of our constructions
as well. However, since we make a generic black-box use of hashing, we do not
limit ourselves to a specific scheme, but rather take a modular approach.

We consider an (n,m, s)-hashing scheme3, H, to be defined by three proce-
dures: Gen for key generation, Build for constructing a hash table T of size m
that contains n given data elements, using the generated key, and Lookup for
querying T for a target value. The scheme may also use a stash to store at most
s elements that could not be inserted into T . In a context where a collection of
hashing schemes operate simultaneously (e.g. ORAMs), a shared stash may be
used by all hash tables. We denote by CBuild(H) and CLookup(H), the build-up
complexity and the query complexity of H (resp.) in terms of communication
(in the client-server setting).

An oblivious hashing scheme is a scheme whose Build and Lookup procedures
are oblivious of the stored data and the queried elements (respectively). In Ap-
pendix C, we provide formal definitions and notation for the above, and survey
a few of the schemes that were used in prior ORAM works.

4.2 Our Starting Point: The Single-server Scheme from [KLO12]

Overview. The starting point of our distributed ORAM constructions in Sec-
tions 5 and 6 is the single-server scheme from [KLO12]. In standard hierarchical
ORAMs, the server stores the data in logN levels, where every level is a hash
table, larger by a factor of 2 than the preceding level. Kushilevitz et al. changed
this by having L = logdN levels, where the size of the ith level is proportional
to (d− 1) · di−1. Having less levels eventually leads to the efficiency in overhead,
however, since level i + 1 is larger by a factor of d (no longer constant) than
level i, merging level i with level i+ 1 becomes costly (shuffling an array of size
(d−1) ·di every (d−1) ·di−1 queries). To solve this problem, every level is stored
in d − 1 separate hash tables of equal size in a way that allows us to reshuffle
every level into a single hash table in the subsequent level.

3 Implicitly stated parameters may be omitted for brevity.

14

Theorem 2 ([KLO12, CGLS17]). Let d be a parameter, and define L =
logdN . Assume the existence of one-way functions, and a collection {Hi}Li=1,
where Hi is an oblivious (di−1k, ·, ·)-hashing scheme, with a shared stash of size
s. Then there exists a single-server ORAM scheme that achieves the following
overhead for block size B = Ω(logN).

O

(
k + s+

L∑
i=1

d · CLookup(Hi) +

L∑
i=1

CBuild(Hi)

di−1k

)

A special variant of the theorem was proven by Kushilevitz et al. [KLO12].
In their work, they use a well-specified collection of hashing schemes (consist-
ing of both standard and cuckoo hashing [PR04]), and obtain an overhead of
O(log2N/ log logN). The modular approach to hierarchical ORAM was taken
by Chan et al. [CGLS17], in light of their observations regarding the concep-
tual complexity of cuckoo hashing, and their construction of a simpler oblivious
hashing scheme that achieves a similar result. Our results in the distributed
setting fit perfectly in this generic framework, as they are independent of the
underlying hashing schemes. Below, we elaborate the details of the construction
from [KLO12], as a preparation towards the following sections.

Data Structure. The top level, indexed i = 0, is stored as a plain array of size
k. As for the rest of the hierarchy, the ith level (i = 1 . . . L) is stored in d − 1
hash tables, generated by an oblivious (di−1k, ·, ·)-hashing scheme Hi. For every
i = 1, . . . , L and j = 1, . . . , d− 1, let T ji be the jth table in the ith level, and let

κji be its corresponding key. All hashing schemes in the hierarchy share a stash

S4. The keys κji can be encrypted and stored remotely in the server. Also, the
client stores and maintains a counter t that starts at zero, and increments by
one after every virtual access is simulated. The ORAM simulation starts with
the initial data stored entirely in the lowest level.

Blocks Positioning Invariant. Throughout the ORAM simulation, every data
block in the virtual memory resides either in the top level, or in one of the hash
tables in the hierarchy, or in the shared stash. The blocks are hashed according to
their virtual addresses. The data structure does not contain duplicated records.

Blocks Flow and Reshuffles. Once a block is queried, it is inserted into the top
level, therefore the level fills up after k queries. Reshuffles are used to push blocks
down the hierarchy and prevent overflows in the data structure. Basically, every
time we try to insert blocks to a full level, we clear the level by reshuffling its
blocks to a lower level. For instance, the top level is reshuffled every k queries.

In every reshuffle, blocks are inserted into the first empty hash table in the
highest level possible, using the corresponding Build procedure, with a freshly

4 In the scheme of [KLO12], the shared stash is ’virtualized’, and is re-inserted into
the hierarchy. We intentionally roll-back this optimization in preparation to our
distributed constructions.

15

generated key. Thus, the first time the top level is reshuffled (after round k), its
blocks are inserted to the first table in the next level, i.e. T 1

1 , which becomes
full. The top level fills up again after k queries. This time, the reshuffle is made
to T 2

1 , as T 1
1 is not empty anymore. After d − 1 such reshuffles, the entire first

level becomes full, therefore, after d ·k queries, we need to reshuffle both the top
level and the first level. This time, we insert all blocks in these levels into T 1

2 .
Observe that this mechanism is analogous to the process of counting in base

d: every level represents a digit, whose value is the number of full hash tables in
the level. An increment of a digit with value d−1, equivalently - insertion to a full
level, is done by resetting the digit to zero, and incrementing the next digit by 1,
that is, reshuffling the level to a hash table in the next level. A demonstration of
this analogy is given in Figure 2. Using this observation, we formalize the process
as follows: in every round t = t′ ·k, levels 0, . . . , i are reshuffled down to hash table
T ji+1, where i is the maximal integer for which di | t′, and j = (t′ mod di+1)/di.
Notice that level i is reshuffled every k · di queries.

Fig. 2: a demonstration of the flow of blocks during an ORAM simulation with
d = 6. A gray cell indicates a full hash table, a white one is an empty table.

Query. In order to retrieve a data block with virtual address v, the client searches
for the block in the top level and the stash first. Then, for every level i, the client
scans hash tables T ji using Hi.Lookup procedure, in reverse order, starting with
the table that was last reshuffled into. Once the target block was found, the scan
continues with dummy queries. This is important for security (see Claim 4).
Appendix ?? contains a detailed pseudo-code for the query algorithm.

5 A Three-server ORAM Scheme

Below, we formally state our first result in the standard distributed ORAM
model: an efficient three-server ORAM scheme.

Theorem 3 (Three-server ORAM using regular hashing). Let d be a
parameter, and define L = logdN . Assume the existence of one-way functions,
and a collection {Hi}Li=1, where Hi is a (di−1(k + s),mi, s)-hashing scheme.
Then, there exists a (3, 1)-ORAM scheme that achieves an overhead of

O

(
k + L+

L∑
i=1

mi

di−1k

)

for block size B = Ω(αd logN + s log d), where α := maxi CLookup(Hi).

16

We propose two different instantiations of our construction, each with a differ-
ent collection of hashing schemes that was used in prior ORAM works [GM11,
KLO12,CGLS17]. Both instantiations yield sub-logarithmic overhead, and their
parameters are very close. However, Instantiation 3 may be conceptually simpler
(due to [CGLS17]). More details about the used hashing schemes can be found
in Appendix C.

First, we plug in the collection of hashing schemes used by Goodrich and
Mitzenmacher [GM11], and later by Kushilevitz et al. [KLO12]. The collection
mainly consists of cuckoo hashing schemes, however, since stashed cuckoo hash-
ing was shown to have a negligible failure probability only when the size of the
hash table is polylogarithmic in N (specifically, Ω(log7N)) [GM11], standard
hashing with bucket size logN/ log logN is used in the first Θ(logd logN) lev-
els. We point out that in both mentioned works [GM11,KLO12], the stash size
for cuckoo hashing is logarithmic. In our instantiation, we use a stash of size
Θ(ω(1) · logN/ log logN). Although [GM11] proved that failure probability is
negligible in N when the stash is of size s = Θ(logN) and the size of the table is
m = Ω(log7N) (by extending the proof for constant stash size from [KMW09]),
their proof works whenever the value m−Θ(s) is negligible in N , and in particular,
when we choose s = Θ(ω(1) · logN/ log logN).

Instantiation 2 (Three-server ORAM using cuckoo hashing) Assume the
existence of one-way functions. Let d be a parameter at most polylogarithmic in
N . Then, there exists a three-server ORAM scheme that achieves overhead of
O(logdN · ω(1)) for B = Ω(d logN).

When d = logεN for a constant ε ∈ (0, 1), we achieve an overhead of O(ω(1) ·
logN/ log logN) with B = O(log1+εN).

Alternatively, we can use the simple two-tier hashing scheme from [ACMR95],
with buckets of size log0.5+εN , to achieve the following parameters.

Instantiation 3 (Three-server ORAM using two-tier hashing) Assume the
existence of one-way functions. Let d be a parameter at most polylogarithmic in
N . Then, there exists a three-server ORAM scheme that achieves overhead of
O(logdN) for block size B = Ω(d log1.5+εN).

For d = logεN , we obtain an overhead ofO(logN/ log logN) withB = O(log1.5+2εN).

5.1 Overview

Our three-server scheme is based on the single-server balanced hierarchical struc-
ture of Kushilevitz et al. [KLO12] (described in Section 4). We take advantage
of the existence of multiple servers and reduce the overhead as follows.

Reduce query cost using PIR. One of the consequences of balancing the hierarchy
is having multiple hash tables in a level, in any of which a target block can reside.
More specifically, if T 1

i , . . . , T
d−1
i are the hash tables at level i, then a block with

17

address v can possibly reside in any of the positions in T ji [Hi.Lookup(v, κji)]
for j = 1, · · · , d − 1. To retrieve such a block, we could basically download
all blocks in these positions, i.e.

∑L
i=1(d − 1)CLookup(Hi) blocks in total. This

already exceeds the promised overhead. Instead, we use PIR to extract the block
efficiently without compromising the security of the scheme. For every level i,
starting from the top, we invoke a PIR protocol over the array that consists of
the (d− 1)CLookup(Hi) possible positions for v in the level.

Performing PIR queries requires that the client knows the exact position
of the target block in the queried array, namely, in which bucket, out of the
d− 1 possibilities, block v resides, if at all. Therefore, the client first downloads
the addresses of all blocks in the array, and only then performs the PIR query.
Although some PIR protocols in the literature (e.g. [BGI15]) do not impose this
requirement, we still need to download the addresses since it is essential for the
security of the protocol that the client re-writes the address of the queried block.

An address of a block can be represented using logN bits. Thus, down-
loading the addresses of all possible positions in all levels costs us

∑L
i=1(d −

1)CLookup(Hi) logN bits of communication. If we choose B = Ω(αd logN) for
α = maxi CLookup(Hi), this cost translates to the desirable O(L) overhead. Two-
server PIRs work in the model where the data is replicated and stored in two
non-colluding servers. Thus, every level in the hierarchy, except the top level,
will be stored, accessed, and modified simultaneously in two of the three servers.

Reduce reshuffles cost by bypassing oblivious hashing. We use a variant of the
reshuffle procedure suggested by Lu and Ostrovsky [LO13]. Their protocol works
in a model with two non-colluding servers, where one server stores the odd levels,
and the other stores the even levels. Before reshuffling a level, the servers gather
all blocks to be reshuffled, permute them randomly, and exchange them through
the client, who re-encrypts them and tags them with pseudorandom tags. The
level is then reshuffled by one server using some regular hashing scheme (not
necessarily oblivious), and is sent to the other server, record by record, through
the client. The security of their scheme follows from the following observations:

(i) the blocks are re-encrypted and permuted randomly before the reshuffle,
eliminating any dependency on prior events,

(ii) the blocks are hashed according to pseudorandom tags, hence their order is
(computationally) independent of their identities,

(iii) the server that holds a level cannot distinguish between dummy queries and
real ones since he was not involved in the reshuffle, and

(iv) the server that reshuffles the level (and can tell a dummy query) does not
see the accesses to the level at all.

Applying this method naively when each of the servers holds the entire hier-
archy might reveal information about the access pattern since (iii) and (iv) no
longer hold. Therefore, we should adapt their method wisely, while having two
replicates of every level, to allow performing PIR queries. A straight forward
implementation would require four servers: two holding replicates of the odd
levels, and two holding replicates of the even levels. However, this can be done

18

using three servers only by having every pair of servers (out of the three possible
pairs) hold every third level.

5.2 Full Construction

Data Structure. The data is virtually viewed as an array of N blocks, each of
size Ω(αd logN) bits. Every block therefore has a virtual address in [N].

Distributed Server Storage. The data structure is identical to that from [KLO12],
however, our scheme uses three servers, S0,S1, and S2, to store the data. The
top level is stored in all servers. Every other level is held by two servers only:
for j = 0, . . . , bL3 c, S0 and S1 share replicates of levels i = 3j, S1 and S2 share
replicates of levels 3j + 1, and S2 and S0 both hold all levels i = 3j + 2.

Dummy Blocks. Dummy blocks are blocks that are not ”real” (not part of the
virtual memory), but are treated as such, and assigned dummy virtual addresses.
From the point of view of the ’reshuffler’ server, a dummy block, unlike an empty
block, cannot be distinguished from a real block. We use two types of dummy
blocks, both essential for the security of the scheme.
(i) Dummy Hash Blocks. Dummy hash blocks replace real blocks once they are

read and written to the top level. The security of our scheme relies on the
fact that all blocks in the hierarchy are of distinct addresses, hence the
importance of this replacement.

(ii) Dummy Stash Blocks. Dummy stash blocks are created by the client to fill
in empty entries in the hierarchy. Since our scheme uses a stash to handle
overflows, the number of blocks in the stash and in each of the hash tables
is not deterministic and is dependent on the access pattern. To hide this
information from the server that performs the reshuffling of a level, we fill
all empty entries in the stash, and some of the empty entries in the hash
tables, with dummy stash blocks.

Block Headers. To properly manage the data, the client needs to know the
identity of every block it downloads (i.e. its virtual address). Therefore, every
entry in the server storage contains, besides the data of the block, a header that
consists of the virtual address of the block, which can be either an address in
[N], a numbered dummy address, such as ’dummyHash◦t’ or ’dummyStash◦r’,
or just ’empty’. The length of the header is O(logN) bits, thus does not affect
the asymptotic block size. Unless explicitly stated otherwise, the headers are
downloaded, uploaded and re-encrypted together with the data. An entry with
a block of virtual address v and data x is denoted by the tuple (v, x).

Tags. Since we use the servers for reshuffling the levels, we wish to hide the
virtual addresses of the blocks to be reshuffled. We use pseudorandom tags to
replace these addresses, as first suggested in [LO13]. The tags are computed
using a keyed PRF, Fs, that is known to the client only. When generating a new
hash table, the server hashes the blocks according to their tags (rather than their

19

virtual addresses). Furthermore, to eliminate any dependency between tags that
are seen in different reshuffles, the client keeps an epoch eji for every hash table

T ji in the hierarchy. The epoch of a table is updated prior to every reshuffle, and
is used, together with i and j, to compute fresh tags for blocks in the table. The
epochs can be stored remotely in the servers to avoid large client storage.

Protocol. Again, we refer to the balanced hierarchy of [KLO12] (see Algo-
rithm 4) as our starting point.

Query. We replace the reads performed by the client with PIR protocols that
are executed over arrays in the data. Specifically, the first PIR is performed over
the stash to retrieve the target block if it is found there. The top level can be
downloaded entirely since it has to be re-written anyway. The search continues
to the other levels in the hierarchy in the order specified in Section 4. The target
block can possibly reside in any of the d − 1 hash tables in a level, therefore,
the client invokes a PIR protocol to extract the target block out of the many
possible positions. Every PIR in the procedure is preceded by downloading the
headers in the queried array, using which the client knows the position of the
target block. A technical detailed description is provided in Algorithm 1.

Reshuffles. Let Sa and Sb be the two servers holding level i + 1, and let Sc be
the other server. Reshuffling levels 0, . . . , i into hash table T ji+1 is performed as
follows. As a first step, we send all non-empty blocks that should be reshuffled
(including stash) to Sc, by having the servers exchange the blocks they hold in
levels 0, . . . , i and the stash, through the client, one block at a time, in a random
order. Besides forwarding the blocks to Sc, the client also re-encrypts every block
and re-tags it with a fresh tag (using epochs, as already mentioned). Once Sc has
all tagged blocks, he can create a new hash table and stash using the appropriate
Build procedure. He then sends the hash table and stash, one record at a time,
to the client. The client re-encrypts all records, and forwards them to the other
two servers, who store the hash table in T ji+1, and the stash to its place. The
client uses dummy stash blocks to replace as many empty blocks as needed to
get a full hash table, and a full stash. This is important since we do not want
to reveal the load of the stash to the server that does the next reshuffle. The
reshuffle procedure is described in full details in Algorithm 2.

5.3 Analysis

Complexity. We begin with analyzing the complexity of the described scheme.

Server storage. The combined server storage contains a stash of size s, a top
level of size k, and two duplicates of every other level i, consisting of d− 1 hash

tables of size mi each. In total, we have O
(
s+ k +

∑L
i=1 dmi

)
.

20

Algorithm 1 Three-Server Construction: Query

1: Allocate a local register of the size of a single record.
2: Initialize a flag found← 0.
3: Download the top level, one record at a time. If v is found at some entry (v, x)

then store x in the local register, and mark found← 1.

4: Download all headers from S. If v was found among these headers, let p be its
position, and mark found← 1. Otherwise, let p be a position of a random entry in
the stash. Invoke PIR(S, p) to fetch (v, x) with any two of the three servers, and
store x in the register.

5: for every level i = 1 . . . L do
6: t′ ← bt/kc
7: r ← b(t′ mod di)/di−1c
8: headers← ∅
9: for every hash table j = r . . . 1 do

10: If found = false, compute the corresponding tag of v, τ ← Fs(i, j, e
j
i , v).

Otherwise, assign τ ← Fs(i, j, e
j
i , dummy ◦ t).

11: Qji ← Hi.Lookup(τ, κji)

12: Download all headers of entries in T ji [Qji], and append them to headers. If
one of the headers says v, mark found← true.

13: end for
14: Let p be the position of v in headers if it was found there, or a random value

in {1, . . . , |headers|} otherwise.

15: Let A be the array of entries corresponding to headers in headers.
16: Invoke PIR(A, p) to fetch (v, x) with the two servers holding level i, and store

x in the register (if v was not found in headers this would be a dummy PIR).

17: Re-encrypt headers, and upload it back to the two servers, while changing v to
dummyHash ◦ t.

18: end for
19: If the query is a write query, overwrite x in the register.
20: Read each entry of the entire top level from both servers one at a time, re-encrypt

it, then write it back, with the following exception: if the entry (v, x) was first
found at the top level, then overwrite x with the (possibly) new value from the
register, otherwise, write (v, x) in the first empty spot of the form (empty, ·).

21: Increment the counter t, and reshuffle the appropriate levels.

Client storage. The client uses constant working memory as it only receives and
forwards records, one record at a time. Notice that the client does not need to
keep all the headers he downloads prior to executing PIR queries, and it would
be sufficient to keep only the position of the target block among them.

Overhead. We now analyze the cost of performing a single query. First, consider
the communication cost of downloading the headers for the PIRs. The PIRs are
performed over the stash and each of the levels i = 1, . . . , L. The number of
headers downloaded amounts to s +

∑L
i=1(d − 1)CLookup(Hi) ≤ s + αL(d − 1),

which is equivalent to O(L) blocks of the required minimum size. Overall, L+ 1
PIR queries are invoked. For levels i = 1, . . . , L, the PIR queries are performed
over arrays of size at most (d − 1)CLookup(Hi). By using even the classic two-
server PIR from [CGKS98], this costs (d− 1)CLookup(Hi) < αd bits and a single

21

Algorithm 2 Three-Server Construction: Reshuffle

Reshuffling into table T ji+1

Let Sa and Sb be the servers holding level i+ 1, and let Sc be the other server.
1: Every server of the three allocates a temporary array. For every level ` between

levels 1 and i, let S` be the server with the smallest id that holds level `. For every
such `, S` inserts all records in level ` to its temporary array. In addition, one of
the servers, say S0, inserts all stash records into its temporary array.

2: Sc applies a random permutation on its temporary array, and sends the records
one by one to the client. The client re-encrypts each record and sends it to Sb.
Sb inserts all records it receives to its array. Sb permutes its array randomly, and
forwards it to Sa through the client (who re-encrypts them). Sa, in his turn, also
inserts all received records, applies a random permutation, and sends them one by
one to the client.

3: The client re-encrypts every non-empty record (v, x) and sends it to Sc, together

with a tag, which is the output of the PRF Fs(i+1, j, eji+1, v), where ei+1 is the new

epoch of T ji+1. Note that v may be a virtual memory address, or a dummy value.
In this step, dummy records are treated as real records and only empty records are
discarded.

4: Sc receives di(k+ s) tagged records, which are all records that should be reshuffled

into T ji+1. It generates a new key κji ← Hi.Gen(N), and constructs a hash table and

a stash (T ji , S) ← Hi.Build(κji , Y), where Y is the set of tagged records received
from the client. If the insertion fails, a new key is generated (this happens with a
negligible probability). Sc then informs the client about the number of elements
inside the stash, σ, and the key κji , then sends both the hash table T ji and the
stash one record at a time to the client.

5: As the client receives entries from Sc one at a time, it re-encrypts each record and
sends it to both Sa and Sb without modifying the contents except:
(a) The first σ empty records in the table the client receives from Sc are encrypted

as (dummyStash ◦ r, ·), incrementing r each time.
(b) Subsequent empty records from the table are encrypted as (empty, ·).
(c) Every empty record in the stash is re-encrypted as (dummyStash ◦ r, ·), incre-

menting r each time.
6: Sa and Sb store the table records in level i + 1 in the order in which they were

received, and store the stash records at the top level.

block per level. The stash adds s bits and a block. All of this sums up to no more
than O(L) data blocks. As for the actual blocks the client downloads, these are
the blocks of the top level, O(k) in number.

It remains to add the overhead caused by the reshuffles made between queries.
Blocks are reshuffled down to some hash table in the ith level if i is the smallest
integer for which (t/k) mod di 6= 0. This occurs whenever t/k is a multiple of
di−1, but not of di, i.e., at most once every k · di−1 queries. One can clearly see
that during the reshuffle of a hash table T ji , the number of blocks transmitted is

asymptotically bounded by the size of T ji and the size of the stash, which is mi+

s = O(mi). Hence, the amortized overhead of the reshuffles is O(
∑L
i=1

mi

di−1k).

22

Security. Next, we present the security proof for our construction. We prove
that the access pattern to any of the servers in the scheme is oblivious and
independent on the input. We describe a simulator Sima (for a ∈ {0, 1, 2}), that
produces an output that is computationally indistinguishable from the view of
server Sa during the execution of the protocol, upon any sequence of virtual
queries v1, . . . , v`, given only its length `.

Lemma 1 (Security of the three-server ORAM). Let Viewa(y) be the view
of server Sa during the execution of the three-server ORAM protocol, described
in Algorithms 1 and 2, over a virtual access pattern y = ((v1, x1), . . . , (v`, x`)).
There exist simulators Sim0,Sim1,Sim2, such that for every y of length `, and
every a ∈ {0, 1, 2}, the distributions Sima(`) and Viewa(y) are computationally
indistinguishable.

Proof Sketch. As in all previous works, we assume that the client uses one-way
functions to encrypt and authenticate the data held in the servers, and therefore,
encrypted data is indistinguishable by content (notice that the client re-encrypts
every piece of data before sending it). We replace the keyed tagging functions,
that are modeled as PRFs in the scheme, with random functions. These prelim-
inary steps can be formalized using proper standard hybrid arguments, which
we avoid for brevity.

We begin by inspecting the view of the servers during the reshuffle procedure.
The procedure starts with the servers exchanging all blocks stored in levels
1, . . . , i and in the stash, and sending them to Sc. It is essential for security that
the number of these blocks is independent of the input, as we show below.

Claim 1 Throughout the ORAM simulation, the stash is always full (contains
s records).

Proof. In the reshuffle procedure (Algorithm 2, Step 5), every empty slot in the
stash is filled with a dummy stash block, thus the claim holds. ut

Claim 2 Let t be a multiple of k, and denote t′ = t/k. For every 1 ≤ i ≤ L,
define rti := b(t′ mod di)/di−1c. Then,

(i) the top level is full prior to the reshuffle at round t, and is empty afterwards.
(ii) for every other level 1 ≤ i ≤ L, once the reshuffle is completed, the first rti

tables in level i (i.e., T 1
i , . . . , T

rti
i) are full (contain di(k + s) records each),

and all other tables in level i are empty.

Recall the analogy of the reshuffles to counting in base d (see Section 4).
Notice that rti can be also defined as the ith digit in the base d representation
of t′. Claim 2 follows from these two observations. Due to space limitation, a
complete proof for this claim is provided in Appendix E.

Having shown that the amount of data exchanged during the first steps of the
reshuffling procedure depends only on t, we can simulate the view of any of the

23

servers by a sequence of arbitrary encrypted data of the appropriate length. Next,
Sc receives (k+ s) ·di tagged encrypted records (Claim 2). In Claim 3 below, we
show that these records have unique addresses, therefore their tags will also be
unique (with overwhelming probability). Furthermore, these tags are computed
using a random function that has not been used before (fresh epoch). Hence,
the view of Sc can be simulated as a sequence of (k+ s) · di arbitrary encrypted
records with random distinct tags. Once Sc successfully creates the hash table,
it sends it to Sa and Sb via the client. The size of the hash table is fixed. Again,
since the entries of the hash tables are encrypted, they are indistinguishable from
any arbitrary sequence of encrypted records, and can be simulated as such.

Claim 3 At all times during the execution, any non-empty record of the form
(v, ·) will appear at most once in all hash tables in the hierarchy.

Proof. A label v can be either a virtual address or a dummy label of some type.
A real virtual address can be added to the top level of the hierarchy once it is
queried, in such a case, it is removed from its prior location and replaced by a
dummy hash block. Dummy blocks, of any type, are labeled with a counter that
is incremented after the creation of each block, thus cannot reoccur. ut

Corollary 1. The tagging function Fs(·) will not be computed twice on the same
input throughout the executions of Algorithm 2 during the ORAM simulation.

Proof. Otherwise, the same v would have appeared twice during the pass in
Step 3 of Algorithm 2, in contradiction to Claim 3. ut

To summarize, to simulate the view of the servers during the reshuffling
phase, Sima(`) and Simb(`) output a sequence of encrypted arbitrary records of
the appropriate length (which is fixed due to Claims 1 and 2), whereas Simc(`)
outputs a sequence of encrypted arbitrary records that are tagged using distinct
uniform values (a, b, c alternate between 0,1,2 throughout the phases). From
Corollary 1 and the security of the underlying symmetric encryption and PRFs,
these outputs are indistinguishable from the views of the servers at the reshuffles.

We proceed to simulating the access pattern during queries. A query for
a block v begins, independently of v, with downloading all blocks in the top
level, and all headers in the stash. Next, a PIR is invoked over the stash. From
the assumed security of the underlying PIR scheme, there exist two simulators
SimPIR

0 (m),SimPIR
1 (m), that simulate the individual views of the two servers

(resp.) involved in the protocol, given only the size of the queried array, m. We
use these simulators to simulate the view of the servers involved in the PIR over
the stash, and in the other PIR invocations to follow.

It remains to show that the identity of the blocks over which the PIRs are
called, i.e. the values Qji that a server Sa sees during the execution of Algo-
rithm 1, can be simulated as well. Recall that, at every execution of the al-
gorithm, Qji is computed, for every i, j, as Hi.Lookup(τ, κji), where τ is a tag

computed using Fs, and κji is the used hash key. We denote by 〈Qji 〉a the se-

quence of Qji values seen by Sa at all executions of Algorithm 1 during the

24

ORAM simulation (these values correspond to levels i that are stored in Sa).
We also denote by 〈τ〉a and 〈κji 〉a the values used to compute 〈Qji 〉a.

Claim 4 The same v will not be queried upon twice at the same hash table (in
Algorithm 1) between two reshuffles of the table during the ORAM execution.

Proof. For a dummy address v =’dummy ◦ t’, the lemma is trivial, since it can
be queried only at access t. If a virtual address v is queried at hash table T ji ,

it will be written to the top level. If v reaches level i before T ji is shuffled down

to level i+ 1, then it would be placed in a hash table T j
′

i for j′ > j. Therefore,
subsequent queries to v will find v either at some level above level i, or at hash

table T j
′

i . In both cases, the client will perform a dummy query at hash table

T ji (hence the importance of the reverse order scan over the hash tables). ut

Corollary 2. The tagging function Fs will not be computed twice on the same
input throughout the executions of Algorithm 1 during the ORAM simulation.

Proof. Consider two different inputs (i, j, eji , v), (i′, j′, eji
′
, v′). If i = i′, j = j′ and

eji = eji
′
, then, due to Lemma 4, v 6= v′. ut

Claim 5 The sequence 〈τ〉a, defined above, is computationally indistinguishable
from a uniform sequence of unique tags, given the view of Sa during the reshuf-
fles.

Proof. The claim follows from Corollary 2, and from the fact that the tags 〈τ〉a
correspond to levels that are not hashed by Sa. The view of Sa during the
reshuffles of such levels consist of encrypted data only, and is computationally
independent of 〈τ〉a (from the security of the underlying encryption scheme).
The view of Sa during the reshuffles of any other level are also independent of
〈τ〉a since they consist of encrypted data, and random tags that are computed
for different values of i. ut

Claim 6 The sequence 〈κji 〉a, defined above, is computationally indistinguishable
from a uniform sequence of hash keys, given the view of Sa during the reshuffles.

Proof. The values in 〈κji 〉a are uniformly chosen by a server other than Sa under
the constraint that keys do not cause a failure in the build up of the correspond-
ing hash tables. From the definition of a hashing scheme (Definition 3), a failure
occurs with a negligible probability over the choice of the key. The distribution
of 〈κji 〉a is clearly computationally independent of the view of Sa during the
reshuffles, which consists of encrypted data, and random tags at levels in which
the hash keys 〈κji 〉a are not used. ut

To conclude, in Claims 5 and 6, we show that 〈τ〉a and 〈κji 〉a (resp.) are indis-
tinguishable from sequences of uniformly chosen values, given the view obtained
at the reshuffles. Therefore, to simulate the values 〈Qji 〉a, the simulator Sima(`)
computes the output of Hi.Lookup for uniformly random sequence of tags and
hash keys. This completes the proof of Lemma 1, and hence Theorem 3.

25

6 A Family of Multi-Server ORAM Schemes

In this section, we show how to use oblivious hashing, rather than regular hash-
ing, to obtain our sub-logarithmic (m,m− 1)-ORAM, for any m > 2.

Theorem 4 (Multi-server ORAM using oblivious hashing). Let d be a
parameter, and define L = logdN . Assume the existence of one-way functions,
and a collection {Hi}Li=1, where Hi is an oblivious (di−1(k + s),mi, s)-hashing
scheme. Then, for any m ≥ 2, there exists an (m,m − 1)-ORAM scheme that
achieves the following overhead for block size B = Ω(β logN + αd logN)

O

(
k + L+

L∑
i=1

mi

di−1k

)

where α := maxi CLookup(Hi) and β := maxi
CBuild(Hi)
di−1k .

For instantiating the multi-server construction, we suggest using the obliv-
ious variant of the hashing schemes from [GM11, KLO12, CGLS17] (see Ap-
pendix C). Here, in contrary to the construction in Section 5, two-tier hashing
obtains (slightly) better results, both in overhead and in the minimal required
B (see Table 1).

Instantiation 4 (m-server ORAM using two-tier hashing) Assume the ex-
istence of one-way functions. Then, for any m ≥ 2, there exists a (m,m − 1)-
ORAM scheme that achieves overhead of O(logN/ log logN) for block size of
B = Ω(log2N).

For clarity of presentation, we first present the special case of our construction
in the two-server setting. We then show how to generalize the construction to
the setting where more servers are involved. In Appendix A, we show how to
de-amortize the construction to obtain a worst-case ORAM scheme.

6.1 Two-Server ORAM: Overview

Our two-server ORAM solution is based on the three-server scheme from Sec-
tion 5. We make the following modifications to reduce the number of servers.

Back to oblivious hashing. Now that we limit ourselves to using two servers only,
each of which has to hold a replicate of the data for the PIR queries, we lose the
ability to perform the reshuffles through a ”third-party”. Hence, we require now
that the underlying hashing schemes are oblivious, and the build-up of the hash
table is done using the oblivious Build procedures, where the client is the CPU,
and one of the servers takes the role of the RAM.

Recall that the tags were essential for the security of the three-server scheme
since the reshuffles were made by one of the servers, to which we did not want
to reveal the identity of the blocks being reshuffled. Now that the reshuffling is
done using oblivious hashing that hides any information about the records that
are being hashed, or the hash keys used to hash them, using tags is not necessary
anymore. Instead, the blocks are hashed, and accessed, by their headers.

26

Optimizing the reshuffles. Creating a hash table at level i using Hi.Build, incurs
an overhead of CBuild(Hi) when naively applied. We observe that in any hashing
scheme (by Definition 3), the only input relevant for the build-up of a hash table
is the tags or, in our case, the headers of the blocks being reshuffled. Based on
this observation, we suggest the following solution. The reshuffles are modified so
that the build-up of the hash tables is given, as input, the set of headers, rather
than the blocks themselves. Since the headers are smaller than the blocks by a

factor of at least β := maxi
CBuild(Hi)
di−1k (see Theorem 4), the overhead incurred by

the build-ups is cut by β, making it linear in di−1k.

Finalizing with a matching procedure. As the headers are hashed, we still have
to move the data to the new hash table. To securely match the data to the
hashed headers, we suggest a method that involves tagging the data elements,
and permuting them randomly by the servers. Thus, tags are still used, however,
in a totally different context.

6.2 Two-Server ORAM: Full Construction

Data Structure. We start with the scheme from Section 5. The server storage
remains as is, except the data is now distributed among two servers, rather than
three. All levels in the hierarchy, as well as the stash, are duplicated and stored
in S0 and S1. The protocol guarantees that, at the end of every round, the data
in the two servers will be identical.

Query. Every virtual access is simulated as described in Algorithm 1, with the
exception that the target block is queried upon in the hash tables by its virtual
address, rather than its tag: Hi.Lookup(v, κji) rather than Hi.Lookup(τ, κji). Also,
all reads and writes, as well as the PIR queries, are made now to S0 and S1.

Reshuffles. The key modification made to the scheme lays in the reshuffling
procedure. The reshuffles are still performed in the same frequency. However, the
roles of the servers change, as only two servers participate in the protocol. First,
S0 prepares all headers of blocks that have to be reshuffled into the destination
hash table, and, together with the client, invokes the appropriate oblivious Build
procedure to hash the blocks into a new hash table.

Now that the headers are shuffled, it remains to match them to the data.
The matching procedure begins with tagging the headers. S0 sends the shuffled
headers, one by one to the client. The client decrypts every header, computes its
tag using a new epoch, and sends the tag back to S0. The headers corresponding
to empty slots in the hash table are tagged using numbered values, e.g. ’empty◦1’.
Notice that the number of empty slots in the hash table and stash, combined, is
fixed and independent of the input. Next, S1 sends the records (headers and data)
that correspond to the shuffled headers, one by one, in a random order. Among
the actual records, S1 also sends as many (numbered) empty records as required
to match the number of empty records in the newly-reshuffled hash table. The
client tags every record he receives from S1, and forwards it S0 together with its

27

tag. S0 can easily match every record he receives to a header in the hash table
or stash, according to the tags. Once this is complete, S0 sends the new hash
table and stash to S1, through the client. Refer to Algorithm 3 for full details.

Algorithm 3 Two-Server Construction: Reshuffle

Reshuffling headers into table T ji+1

1: S0 sends all records in levels 1, . . . , i and the stash, one by one, to the client. The
client re-encrypts every record he receives and forwards it to S1, while eliminating
all empty records. S1 inserts every record he receives to a temporary array Y .
Server S1 now sends every header in Y back to S0, through the client.

2: Let Ŷ be the array of encrypted headers received by S0. The client generates

a fresh hashing key κji ← Hi.Gen(N), and, together with S0, invokes (T̂ , Ŝ) ←
Hi.Build(κji , Ŷ) to obliviously hash the headers into a hash table and stash.

Matching data to headers.
3: S0 sends (T̂ , Ŝ), record by record, to the client. The client decrypts every header

v he receives, and computes a tag τ ← Fs(i+ 1, j, eji+1, v). If the header is empty,

then τ ← Fs(i+ 1, j, eji+1, empty ◦ z), where z is a counter that starts at 1 and and
increments after every empty header. Notice that the number of empty headers,
denoted by Z, depends only on i. The client sends the tag back to S0.

4: S1 inserts Z empty records (empty◦1, ·), . . . , (empty◦Z, ·) to Y . Server S1 permutes
Y randomly, and sends it, one record at a time, to the client.

5: The client re-encrypts every record (v, x) it receives, and sends it to S0 with a tag
τ , that is the output of Fs on v with the appropriate epoch.

6: S0 matches every tagged record it receives to one of the tags it received in Step 3,

and inserts the corresponding record to its appropriate slot (either in T̂ or Ŝ).

7: At this point, S0 holds the newly reshuffled hash table and stash, headers and data.
The tags are discarded. S0 sends both the table and the stash to S1, via the client.
Both servers replace the old stash and T ji+1 with the new data.

6.3 From Two Servers to m Servers

We generalize the ideas behind the two-server construction from Section 6.1
to construct a family of (m,m − 1)-ORAM schemes. The construction of the
two-server scheme consists of two main parts: queries and reshuffles. In order
to transform the construction to the multi-server setting, we transform each of
these components while maintaining their security.

Query using multi-server PIR. To obliviously simulate a query to a block, the
client follows the protocol used in the two-server construction (Algorithm 1).
However, now that we want to achieve privacy against any colluding subset of
corrupt servers, we use an m-server PIR protocol which guarantees such a pri-
vacy. That is, instead of invoking two-server PIRs to query blocks from the stash
and hierarchy levels, the client now uses an (m,m − 1)-PIR protocol involving
all m servers, where the joint view of any m − 1 servers is (computationally)
independent of the target index. In particular, we can use the straight-forward

28

m-server generalization of the basic PIR protocol from [CGKS98]. Since this
protocol, as well as many known m-server PIRs, follow the standard PIR setting
where the data is assumed to be replicated in all of the servers, the servers during
the ORAM execution will hold identical replicates of the same data structure.

Extending the matching procedure. Reshuffles of levels are done in the same
frequency, and in a very similar manner as in the two-server protocol. The only
change we make is in matching procedure. To match the content to the tags, we
cannot rely only on two servers, since they might be both corrupt. Instead, we let
all servers participate. The reshuffling procedure from Algorithm 3 is followed up
to Step 5. After the client receives the permuted records from S1, he re-encrypts
them and forwards them to S2. S2, in its turn, randomly permutes the records it
receives, and forwards them to S3 (if it exists), through the client. This continues
until all servers, except S0, have received the records and permuted them on their
own. Once they all had, the client tags the records and sends them to S0, who
matches them to the shuffled headers, as described in Steps 5 and 6. Lastly, the
new final hash table and stash are sent to all servers.

We note that different servers can be used to reshuffle different levels, thus
distributing the load of work and communication equally among all servers.

6.4 Analysis

Complexity. The query complexity of the m-server scheme is identical to that
of the three-server construction, and is equal to O(k + L). To obliviously con-
struct a hash table and a stash for a level i, the client and the servers ex-

change CBuild(Hi) = O(βdi−1k) records (recall β := maxi
CBuild(Hi)
di−1k). However,

since the build-up is done over tags of size logN bits, rather than whole blocks
of size Ω(β logN), the cost of O(βdi−1k) tags translates to O(di−1k) overhead
in blocks. The matching procedure also has a linear cost in the size of the level,
that is O(mi). Since the reshuffling of the level occurs every di−1k rounds, this

amortizes to O(1+mi/d
i−1k) overhead per level, and O(L+

∑L
i=1

mi

di−1k) overall.

Security. Following Definition 2, it suffices to prove the following Lemma.

Lemma 2 (Security of the m-server ORAM). Let Viewa(y) be the view
of server Sa during the execution of the m-server ORAM protocol, described in
Section 6, over a virtual access pattern y = ((v1, x1), . . . , (v`, x`)). For any subset
of servers A ⊆ {0, . . . ,m− 1} of size |A| ≤ m− 1, there exist a simulator SimA,
such that for every y of length `, the distributions SimA(`) and 〈Viewa(y)〉a∈A
are computationally indistinguishable.

We make the same assumptions taken in the analysis of the three-server
scheme: encryption is secure, and the tagging functions are random.

First, consider the view of the servers at the reshuffles in the two-server case.
Claims 1 and 2 are true for the multi-server scheme as well, therefore, the amount
of encrypted data exchanged in Step 1 of Algorithm 3 is oblivious, and therefore

29

so is the view of the servers. From Definition 4, the view seen in Step 2 can be
also simulated by producing an access pattern for an arbitrary execution of the
obliviousHi.Build procedure. As for the matching procedure (Steps 3-7), the view
of S1 consists of the newly constructed hash table and stash, both encrypted and
of fixed size, and therefore can be simulated arbitrarily. S0 receives a sequence
of tags computed using Fs. We show below that these tags are computed for
unique headers.

Claim 7 The tagging function Fs(·) will not be computed twice on the same
input in Step 3 of Algorithm 3 throughout the executions of the algorithms during
the ORAM simulation.

Proof. For headers v that are of the form ′empty ◦ z′ the claim is trivial. It is
also easy to verify that Claim 3 is true for the m-server ORAM construction as
well, thus implying the claim for non-empty headers. ut

Since unique, the sequence of tags seen by the server is indistinguishable from
uniform distinct values, and Sim0 simulates them as such. Lastly, S0 receives a
sequence of tagged records. The records themselves are encrypted, and therefore
can be simulated. The tags were obtained by tagging the same set of headers
already tagged previously, however, in an order that is generated by S1. Since
S1 applies a uniformly random permutation, that is not known to S0 and is
independent of previous reshuffles, over the headers, the view of S0 in Step 5
of the algorithm can be simulated by taking the sequence of tags generated
previously by Sim0, and permute them randomly.

In the multi-server setting, we take the seemingly hardest case in which S0
is among the m− 1 corrupt servers. To simulate the view of S0, up to Step 5 of
the algorithm, we follow the steps taken above. The combined view of all other
corrupt servers consists of sequences of encrypted records of fixed lengths. We
argue that the sequence of tagged records, received by S0 once all servers took
their turn, can be simulated by randomly permuting the tags that were seen
previously in Step 3. The key observation to make here is that, since there is at
least one honest server that permutes the records randomly, using a permutation
unknown to the adversary, the order of the tagged records is random from the
adversary’s point of view, and is independent of the input. More specifically,
every permutation that the honest server may choose yields a different order of
the records. Since the permutation is chosen uniformly at random, the order of
the records distributes uniformly.

The access pattern seen by the servers during the queries is even easier than
the three-server construction from Section 5, since now we rely on the oblivious-
ness of the Lookup procedure (see Definition 4), rather than on the randomness
of the tags (as in Claim 5). From Definition 4, the sequence of Hi.Lookup(v, κji)
values is indistinguishable from a sequence generated for an arbitrary sequence
of addresses v using random hash keys. Thus, SimA simulates the queries to the
hash tables by generating random keys using Gen, and computing Lookup over
an arbitrary sequence of addresses. The transcripts of the (m − 1)-private PIR
protocols, can be simulated from the security definition of PIR.

30

7 Conclusion and Open Questions

In this paper, we presented a family of efficient distributed ORAM schemes,
that achieve both sub-logarithmic overhead, and commit to a small block size.
Although our parameters match the lower bound proven in [AFN+17] for PIR-
based ORAM, we use techniques that are not captured in the model considered
in their proof. It remains an open question whether we can further develop
these techniques to surpass their bound, without using additively homomorphic
encryption (AHE), or linear server work.

By allowing the servers to perform a linear amount of computation, we have
shown that constant overhead ORAM is achievable. Our 4-server construction
is simple, and does not use a complex data structure for the server storage, but
rather stores it as a plain array. The simplicity of the construction opens the pos-
sibility to use it as a building block, to further reduce the overhead of distributed
ORAM protocols, in exchange for increasing server-side computations.

References

ACMR95. M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel
randomized load balancing. In Proceedings of the Twenty-seventh Annual
ACM Symposium on Theory of Computing, STOC ’95, pages 238–247, New
York, NY, USA, 1995. ACM.

AFN+17. I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren. Asymptoti-
cally tight bounds for composing ORAM with PIR, volume 10174 LNCS of
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), pages 91–120.
Springer Verlag, Germany, 2017.

AIK06. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM
J. Comput., 36(4):0097-5397, December 2006.

AKL+18. G. Asharov, I. Komargodski, W-K. Lin, K. Nayak, and E. Shi. Optorama:
Optimal oblivious RAM. Cryptology ePrint Archive, Report 2018/892,
2018.

AKS83. M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Com-
puting, STOC ’83, pages 1–9, New York, NY, USA, 1983. ACM.

AKST14. D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious
storage. In Hugo Krawczyk, editor, Public-Key Cryptography – PKC 2014,
pages 131–148, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

BGI15. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015, pages 337–367, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

BIW07. O. Barkol, Y. Ishai, and E. Weinreb. On locally decodable codes, self-
correctable codes, and t-private PIR. In M. Charikar, K. Jansen, O. Rein-
gold, and J. D. P. Rolim, editors, Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, pages 311–325, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

CGKS98. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. J. ACM, 45(6):965–981, November 1998.

31

CGLS17. T-H. H. Chan, Y. Guo, W-K. Lin, and E. Shi. Oblivious hashing revisited,
and applications to asymptotically efficient ORAM and OPRAM. Cryptol-
ogy ePrint Archive, Report 2017/924, 2017.

CKN+18. T-H. H. Chan, J. Katz, K. Nayak, A. Polychroniadou, and E. Shi. More
is less: Perfectly secure oblivious algorithms in the multi-server setting.
Cryptology ePrint Archive, Report 2018/851, 2018.

CMS99. C. Cachin, S. Micali, and M. Stadler. Computationally private information
retrieval with polylogarithmic communication. In Jacques Stern, editor,
Advances in Cryptology — EUROCRYPT ’99, pages 402–414, Berlin, Hei-
delberg, 1999. Springer Berlin Heidelberg.

DG16. Z. Dvir and S. Gopi. 2-server PIR with subpolynomial communication. J.
ACM, 63(4):39:1–39:15, September 2016.

DS17. J. Doerner and A. Shelat. Scaling ORAM for secure computation. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, pages 523–535, New York, NY, USA, 2017.
ACM.

DvF+16. S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs.
Onion ORAM: A constant bandwidth blowup oblivious RAM, volume 9563
of Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), pages 145–174.
Springer Verlag, Germany, 1 2016.

FNR+15. C. W. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov. Bucket ORAM:
Single online roundtrip, constant bandwidth oblivious ram. IACR Cryptol-
ogy ePrint Archive, 2015:1065, 2015.

GI14. N. Gilboa and Y. Ishai. Distributed point functions and their applications.
In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology
– EUROCRYPT 2014, pages 640–658, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

GKK+12. S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and
Y. Vahlis. Secure two-party computation in sublinear (amortized) time. In
Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, CCS ’12, pages 513–524, New York, NY, USA, 2012. ACM.

GM11. M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In Luca Aceto, Monika Hen-
zinger, and Jǐŕı Sgall, editors, Automata, Languages and Programming,
pages 576–587, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

GO96. O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious RAMs. J. ACM, 43(3):431–473, May 1996.

Gol87. O. Goldreich. Towards a theory of software protection and simulation by
oblivious RAMs. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, STOC ’87, pages 182–194, New York, NY, USA,
1987. ACM.

Goo11. M. T. Goodrich. Randomized shellsort: A simple data-oblivious sorting
algorithm. J. ACM, 58(6):27:1–27:26, December 2011.

GR05. C. Gentry and Z. Ramzan. Single-database private information retrieval
with constant communication rate. In Lúıs Caires, Giuseppe F. Ital-
iano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Au-
tomata, Languages and Programming, pages 803–815, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

32

IKOS08. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with
constant computational overhead. In Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, STOC ’08, pages 433–442, New
York, NY, USA, 2008. ACM.

KLO12. E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-based
oblivious RAM and a new balancing scheme. In Proceedings of the Twenty-
third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12,
pages 143–156, Philadelphia, PA, USA, 2012. Society for Industrial and
Applied Mathematics.

KMW09. A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo
hashing with a stash. SIAM J. Comput., 39(4):1543–1561, December 2009.

KO97. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Proceedings of the 38th
Annual Symposium on Foundations of Computer Science, FOCS ’97, pages
364–, Washington, DC, USA, 1997. IEEE Computer Society.

LN18. K. G. Larsen and J. B. Nielsen. Yes, there is an oblivious RAM lower bound!
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryp-
tology CRYPTO 2018, pages 523-542, Cham, 2018. Springer International
Publishing.

LO13. S. Lu and R. Ostrovsky. Distributed oblivious RAM for secure two-party
computation. In Amit Sahai, editor, Theory of Cryptography, pages 377–
396, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

MBM15. T. Moataz, E. Blass, and T. Mayberry. Chf-oram: A constant communica-
tion ORAM without homomorphic encryption. Cryptology ePrint Archive,
Report 2015/1116, 2015.

OS97. R. Ostrovsky and V. Shoup. Private information storage (extended ab-
stract). In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 294–303, New York, NY, USA,
1997. ACM.

Ost90. R. Ostrovsky. Efficient computation on oblivious RAMs. In Proceedings
of the Twenty-second Annual ACM Symposium on Theory of Computing,
STOC ’90, pages 514–523, New York, NY, USA, 1990. ACM.

PPRY18. S. Patel, G. Persiano, M. Raykova, and K. Yeo. Panorama: Oblivious RAM
with logarithmic overhead. Cryptology ePrint Archive, Report 2018/373,
2018.

PR04. R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144,
May 2004.

PR10. B. Pinkas and T. Reinman. Oblivious RAM revisited. In Proceedings of the
30th Annual Conference on Advances in Cryptology, CRYPTO’10, pages
502–519, Berlin, Heidelberg, 2010. Springer-Verlag.

RYF+13. L. Ren, X. Yu, C. W. Fletcher, M. van Dijk, and S. Devadas. Design space
exploration and optimization of path oblivious RAM in secure processors.
SIGARCH Comput. Archit. News, 41(3):571–582, June 2013.

SCSL11. E. Shi, T. H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with
O((logn)3) worst-case cost. In Dong Hoon Lee and Xiaoyun Wang, edi-
tors, Advances in Cryptology – ASIACRYPT 2011, pages 197–214, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

SvDS+13. E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path oram: An extremely simple oblivious RAM protocol. In

33

Proceedings of the 2013 ACM SIGSAC Conference on Computer Commu-
nications Security, CCS ’13, pages 299–310, New York, NY, USA, 2013.
ACM.

WCS15. X. Wang, H. Chan, and E. Shi. Circuit ORAM: On tightness of the
Goldreich-Ostrovsky lower bound. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15,
pages 850–861, New York, NY, USA, 2015. ACM.

WGK18. X. Wang, D. Gordon, and J. Katz. Simple and efficient two-server ORAM.
Cryptology ePrint Archive, Report 2018/005, 2018.

ZMZQ16. J. Zhang, Q. Ma, W. Zhang, and D. Qiao. Mskt-oram: A constant
bandwidth ORAM without homomorphic encryption. Cryptology ePrint
Archive, Report 2016/882, 2016.

A From Amortized Overhead to Worst-Case Overhead

Up to this point, in all of our constructions and analysis, we referred to the
amortized overhead an ORAM protocol incurs. Although we have achieved an
overall sub-logarithmic overhead, some operations, specifically reshuffles of large
levels, might require sending Ω(N) blocks in a round. This might be unwanted
in several applications, in which we may have to guarantee that every query,
without exceptions, incurs a bounded worst-case amount of overhead. Ostrovsky
and Shoup [OS97] were the first to construct a worst-case ORAM scheme. They
achieved a O(log3N) worst-case overhead by de-amortizing the classic hierar-
chical solution from [GO96]. Since then, many works have tackled the worst-
case version of the ORAM problem, either by de-amortizing existing schemes
(e.g. [KLO12]), or by constructing new tree-based ORAMs [SCSL11,SvDS+13].

In this section, we show how to de-amortize our two-server construction from
Section 6.1 in order to obtain a two-server oblivious RAM scheme with an equal
worst-case overhead. The same method can be used also to de-amortize the
(m,m − 1)-ORAM schemes, however, it fails when applied to the three-server
scheme from Section 5.

A.1 Overview

We follow the techniques used in [OS97] and [KLO12]. The idea is to ’spread’ the
reshuffles and perform them throughout many rounds, rather than in a single
round. Once a level has to be reshuffled, it is not reshuffled immediately, instead,
a reshuffling process starts:

1. The full level is put aside and marked as ’inactive’, while the protocol con-
tinues as usual with a new empty ’active’ instance of the level.

2. In the round when the process starts, and in every round to follow, a fixed
amount of ρ blocks is exchanged between the client and servers as part of the
reshuffle. The blocks are shuffled into an empty hash table in a larger active
level. Up until the completion of the process, the destination hash table is
not accessed and is treated as if it was empty.

34

During the process, the client might have to query the inactive levels for
blocks that reside there. Therefore, during the search for a block, PIR pro-
tocols are performed over the inactive levels as well.

3. The process ends when the reshuffle is complete and all blocks reside in a
newly created hash table in both servers.

The rate of the process, i.e. ρ, has to be chosen wisely. On the one hand, ρ has
to be small enough so the overall amortized overhead, caused by the reshuffling
of all levels, does not exceed O(k + L). On the other hand, very small ρ means
slow long-lasting reshuffling processes, which might lead to storage overflow and
undesired overhead, as reshuffles will overlap and stack over time. In fact, for
every level i = 1, . . . , L, we choose a different rate ρi, that depends on the
parameters of the hashing scheme Hi, and that guarantees that a reshuffling
process of level i ends before a new one starts. Thus, it would be sufficient to
have only two instances of every level, alternating between active and inactive.

This approach introduces few obstacles, for which we suggest the following
solutions.

Reshuffles are Unproportional to Level Size. Take the top level as an example.
The top level has to be reshuffled every k queries. The level is not always reshuf-
fled into the next level, but it may be reshuffled, together with other blocks, to
much larger ones (levels of size up to Θ(N)). Reshuffles to large levels clearly re-
quire large amount of communication, therefore require large number of rounds
to complete, during which, the top level is reshuffled many times. This situation
forces us to maintain lots of inactive instances of the top level, as it is reshuffled
very frequently, while the reshuffles last for unproportionally long periods.

To solve this problem, we reshuffle levels separately of each other: level i is
always reshuffled into the next empty hash table in level i+ 1 (when all its hash
tables are full). Furthermore, we add an extra hash table to every level in the
hierarchy, making it d tables in a level. Conceptually, these two modifications do
not change much in the scheme: levels are still reshuffled in the same frequency,
and the reshuffling of levels 1, . . . , i to level i+1 is replaced by a cascading series
of reshuffles, starting from the top level, and ending with level i reshuffled into
level i+ 1. However, this change is necessary for the de-amortization.

Inactive Levels are Immutable. In the amortized two-server scheme, whenever
a block is found and read from the hierarchy, it is wiped out and marked as a
dummy block, before it is re-written to the top level. To maintain the integrity
of the reshuffling process, we clearly cannot alter the content of an inactive level
while it is being reshuffled. Therefore, we allow having duplicated blocks in the
hierarchy, and we avoid wiping out blocks after they are queried.

Duplicates Compromise Security. The uniqueness of tags in the hierarchy played
an essential role in the security of the scheme in Section 6.1. Now that we al-
low duplicates, the scheme is no longer secure, as repeated tags, which indicate
identical block addresses, might appear. We suggest the following solution. We

35

add a single bit to the header of every block that indicates whether its content is
up to date. The blocks inserted to the top level are marked as up-to-date. Every
time a block is read, it is marked as outdated. Before the start of the reshuffling
process of any level, the client eliminates outdated blocks, and thus we guarantee
uniqueness of tags in every hash table, which is, in fact, sufficient for the security
of the scheme.

A.2 De-amortization in Details

We modify the scheme from Section 6.1 as follows.

Data Structure. The following changes are made to the data structure:

– An additional hash table is added to every level.
– We double every level in the hierarchy into two instances: one initially

marked as ’active’, the other as ’inactive’. The two instances are identi-
cal in structure, but they operate separately, and each has its own hashing
key.

Block Headers. In addition to the virtual address, we require that the header
of every block contains an up-to-date bit, that indicates whether the block is
up-to-date and its content is relevant. The bit is encrypted together with the
virtual address, however, it is not involved in the computation of the tags. The
notion of a block is extended to (v, u, x), with u ∈ {up-to-date, outdated} being
the up-to-date bit.

Queries. The query procedure (Algorithm 1) is worst-case efficient. Nonetheless,
in order to support the new reshuffling method, we make a couple of modifica-
tions:

– The target block is searched for in the inactive levels as well. Clearly, out-
to-date blocks are ignored during the scan.

– Instead of wiping out blocks that are found in the hierarchy, and replacing
them with dummy hash blocks (Algorithm 1, Step 17), the client marks them
as unread, by toggling the up-to-date bit off.

Reshuffles. As a first step towards de-amortized reshuffles, we make the following
changes.

– A level is reshuffled once its all hash tables are full.
– A level is always reshuffled to the next empty hash table in the subsequent

level (the first bullet guarantees that there is at least one empty hash table).

Notice that, as a consequence to these changes, the last hash table of every level
is never accessed while it is active, as the level is immediately reshuffled once it
is filled. Thus, the purpose of adding an extra hash table is to ’make room’ for
blocks that are pending to be reshuffled to a larger level.

36

The reshuffling of a level begins with marking it as inactive, and replacing it
by the other instance of the level, which is guaranteed to be clear and already
reshuffled to the next level, as we show later on (Lemma ?? below).

The reshuffling proceeds following the reshuffling procedure of the scheme in
Section 6.1, and is performed over many rounds. In every round of the reshuffling
procedure of level i, ρi blocks are exchanged between the client and servers. We
choose ρi = Θ(mi

di−1k) (exact value is provided in the analysis section).

Lastly, the reshuffling procedure is adjusted to handle outdated blocks. Just
before the reshuffling begins, the client replaces all outdated blocks, that reside in
the level, with numbered dummy hash blocks. More specifically, S0 (or S1) sends
all records in the level, one by one, to the client. The client decrypts every record
(v, u, x) it receives. If u = up-to-date, then the client re-encrypts the record and
sends it back to both S0 and S1. Otherwise, the client replaces the record with
(dummyHash ◦ r, ·, ·), where r is a counter that increments whenever a dummy
hash record is created (this is the only place it happens, as we do not create
dummy blocks in the queries), and sends it back to the servers. The servers, in
their turn, replace the received records with the records in the level, and proceed
with the reshuffling.

Although the reshuffling processes of a level do not overlap, reshuffling pro-
cesses of different levels might be running simultaneously. The chosen values of
ρi guarantee that this does not cause an undesired blow-up in the overhead of
the protocol. However, now that the client has to maintain the state of many
reshuffling processes in parallel, his working memory is no longer constant. To
overcome this issue, the client encrypts the state of every ongoing reshuffling
process, and stores it in one of the servers. When a reshuffling process is re-
sumed, the client downloads its state, and proceeds with the reshuffling. Once
ρi blocks were exchanged, the client pauses the process, and uploads the new
state to the server. Thus, at every moment, the client holds the state of a single
reshuffling process, which is of constant size.

A.3 Analysis

Claim 8 For a carefully chosen value ρi ∈ Θ(mi

di−1k), the reshuffling processes
of level i− 1 in the de-amortized two-server scheme do not overlap.

Proof. During the reshuffling into a hash table in level i, O(di−1k +mi) blocks
are exchanged between the client and servers (see analysis in Section 6.4), specif-
ically, there exists a constant ci, s.t. the cost of the reshuffling is bounded by
ci(d

i−1k + mi). Therefore, the reshuffling process into level i lasts less than
ci
ρi

(di−1k + mi) rounds, and is initiated every di−1k rounds. Hence, for ρi >
cimi

di−1k + 1 the processes do not overlap. ut

Query Overhead. It was shown in Section 6.1 that the worst-case overhead in-
curred by the queries in the amortized two-server scheme is O(k+L), the changes
made to the query procedure do not change that.

37

Reshuffling Overhead. The reshuffling of level i − 1 to a hash table in level i
contributes an amount of ρi blocks to the worst-case overhead. Summing over
all levels, we get O(

∑L
i=1

mi

di−1k).

B Application to Secure Multi-Party Computation

In this section, we briefly describe how our distributed ORAM constructions
can be used in the setting of secure multi-party computation of RAM programs
to achieve efficient protocols. The idea of using oblivious RAM for secure com-
putation was suggested in prior work [OS97, LO13, GKK+12]. Ostrovsky and
Shoup [OS97] were the first to propose a method to use oblivious RAM proto-
cols with simple client circuits (e.g. [KLO12]), to construct secure computation
protocols for functions that are naturally presented as RAM programs, rather
than circuits, and thus avoiding the heavy cost caused by unrolling such pro-
grams into circuits. The main drawback of their approach is the fact that they
use single-server ORAM as a building block, over which they apply two-server
PIR [CGKS98]. That is, they do not take full advantage of the existence of
two servers. Lu and Ostrovsky [LO13] make a better use of the two servers and
achieve a better overhead.

The main idea behind using distributed ORAM for secure computation is
as follows. To securely compute a RAM program in an m-party setting, we use
an m-server ORAM protocol. Each of the servers is simulated by one of the
parties. From the security of the underlying ORAM, the secrecy of the inputs
is protected from the views of the servers. However, it is not guaranteed that
the client’s view is oblivious in the inputs, and therefore, the client has to be
simulated securely. Specifically, the client’s state (its local memory) is secret-
shared among the m-parties. To simulate the next query in the ORAM protocol,
the parties invoke a secure computation protocol to simulate the client’s circuit,
and compute the query to the servers, and the client’s next state, given the
current state. In all of our constructions, the local computations performed by
the client can be described by circuits of size linear in the required word size,
therefore, using a secure computation protocol that incurs a constant overhead
in the size of the circuit (e.g. [IKOS08]) does not cause an undesired blowup.

By using any of our constructions, together with a secure circuit computation
protocol with the appropriate number of parties and privacy, we achieve the
following results. We refer the reader to [OS97,LO13] for further details.

Theorem 5. Suppose there exists a symmetric-key encryption scheme and a
hash function modeled as a random function or an efficient PRF. Suppose that
for any constant m ≥ 2, there exists an m-party secure circuit computation
protocol with constant overhead, that is private against an adversary corrupting
an arbitrary subset of parties (e.g. [IKOS08]). Then, to securely compute a RAM
program that runs in T (n) time with access to S(n) space, with program size
(including inputs) bounded by Λ(n), for input of size n words, there exist

38

– a three-party secure RAM computation protocol in the semi-honest model
with O(ω(1) · log(T + Λ)/ log log(T + Λ)) multiplicative overhead in com-
munication and computational complexity. To achieve optimal overhead, the
protocol requires that the program runs over data of Ω(log1+ε n)-bit words
(or, alternatively, O(log(T+Λ)/ log log(T+Λ)) overhead with Ω(log1.5+ε n)-
bit words).

– for every constant m ≥ 2, an m-party secure RAM computation protocol in
the semi-honest model, that is private against an adversary corrupting an
arbitrary subset of parties, with O(log(T +Λ)/ log log(T +Λ)) multiplicative
overhead in communication and computation complexity. To achieve optimal
overhead, the protocol requires that the program runs over data of Ω(log2 n)-
bit words.

– a four-party secure RAM computation protocol in the semi-honest model with
constant multiplicative overhead in communication and O(S(n)) overhead in
computation complexity. To achieve optimal overhead, the protocol requires
that the program runs over data of Ω(λ log n)-bit words, where λ is a security
parameter. In this construction we also assume the existence of constant-
depth PRGs (with minimal expansion) [AIK06].

all protocols incur an additive one-time cost of O(Λ logΛ/ log logΛ) for setup.

C Hashing

We hereby formally define a hashing scheme, and an oblivious hashing scheme.
As will be shown below, these definitions capture many of the known hashing
schemes, especially those applicable to ORAM.

Definition 3. A (n,m, s)-Hashing Scheme is a tuple H = (Gen,Build, Lookup),
where Gen and Lookup are PPT algorithms, and Build is a program in the stan-
dard RAM model (see Section 2). The scheme operates in two phases:

1. Build-up.

k ← H.Gen(N)

(T, S)← H.Build(k,X)

The input to H.Build is a key, k, generated by H.Gen, and a set of n distinctly
tagged values X = {(τ, x) | τ ∈ [N]}. The output consists of:
– An array T of size m, referred to as the hash table. Every position in T

is either empty or contains some record (τ, x).
– A stash S, that contains at most s tagged values,

The build-up might fail with probability at most N−ω(1) over the choice of
k. The build-up complexity of H, denoted by CBuild(H) is the amount of
data blocks exchanged between the CPU and RAM in an H.Build invocation.

2. Queries.

Q← H.Lookup(τ, k)

39

The input to H.Lookup is a tag τ ∈ [N], and a key k. The output of H.Lookup
is a set of positions Q ⊆ [m]. Let (T, S, k) be the output of a previously
performed construction phase on input (k,X). If (τ, x) ∈ X for some x, then
either (τ, x) resides in T [j] for some j ∈ Q, or (τ, v) resides in the stash S.
The query complexity of H, denoted by CLookup(H), is the maximal size
of a set Q returned by H.Lookup.

Definition 4. An Oblivious Hashing Scheme H is a hashing scheme where

– H.Build is oblivious in k,X. That is, for any two distinct inputs, (k,X) and
(k′, X ′) of the same length, the corresponding access patterns produced by
H.Build are computationally indistinguishable.

– For any two sequences of distinct tags τ = (τ1, . . . , τ`) and τ ′ = (τ ′1, . . . , τ
′
`),

the outputs of H.Lookup on τ and τ ′ are computationally indistinguishable.

For completeness, we provide below an overview of the hash schemes that
were considered in the oblivious RAM context.

Standard hashing. To store n tagged values, standard hashing generates a hash
table that is a plain array of m = cn buckets (e.g. c = 2, 4), each of size O(log n),
and a hash function hk : [N] → {1, . . . ,m}. A record (τ, x) is stored in bucket
hk(τ) in the array. When hk is thought of as a random oracle, the probability
of an overflow is negligible in N . In their classic hierarchical solution, Goldreich
and Ostrovsky [GO96] constructed an oblivious variant of standard hashing with
build-up complexity of O(n log n), by using PRFs as hash functions, and oblivi-
ous sort [AKS83,Goo11] to obliviously store the data in the hash table. Lu and
Ostrovsky [LO13] showed that by using a (shared) stash of size O(logN), the
bucket size can be reduced to O(logN/ log logN) while maintaining a negligible
failure probability.

Cuckoo hashing. Cuckoo hashing [PR04] is a variant of standard hashing, that
was found to be useful in some ORAM schemes [PR10, GM11, KLO12, LO13].
In cuckoo hashing, every bucket may contain at most one record, and two hash
functions h0k, h

1
k are used. A record (τ, x) is initially stored in h0k(τ), and is moved

to h1k(τ) once another record is inserted into h0k(τ). Notice that this strategy
might cause a long chain, or even a cycle of block relocations. In such case,
new functions are chosen, and the structure is updated. It was shown that the
amortized insertion time in cuckoo hashing isO(1). A variant of cuckoo hashing is
stashed cuckoo hashing, presented by Kirsch et al. [KMW09]. In stashed cuckoo
hashing, a stash of size s is used to handle overflows. They show that using a
constant size stash, inserting n elements into a table of size Θ(n) will fail with
probability O(n−s). Goodrich and Mitzenmacher [GM11] showed that a table of
size Ω(log7N) with a stash of size O(logN) fails with probability negligible in
N . Oblivious sorting was shown to be useful also to construct oblivious cuckoo
hashing scheme with build-up complexity of O(n log n) [PR10,GM11,CGLS17].

40

Two-tier hashing. In two-tier hashing [ACMR95], as the name suggests, the data
is stored in two standard hash tables, each with a different hash function. Every
table contains O(n/b) buckets, each of capacity b = logεN for ε ∈ (0.5, 1). A
record (τ, v) is inserted to the appropriate bucket in the first tier, if the bucket is
full, then the record is inserted to the second tier. Chan et al. [CGLS17] presented
an oblivious variant of two-tier hashing with build-up complexity of O(n log n),
and used it to construct oblivious RAM. Although their ORAM scheme has an
overhead asymptotically equal to the ORAM based on cuckoo hashing [KLO12],
its advantage lays in the simplicity of oblivious two-tier hashing, both in con-
struction and analysis, relative to oblivious cuckoo hashing.

D Single-server Query Procedure [KLO12]

Below is a pseudo-code of the query procedure of the single-server ORAM scheme
from [KLO12], which is described in a high level in Section 4.

Algorithm 4 Single-Server Balanced Hierarchy: Query

1: Allocate a local register of the size of a single entry.
2: Initialize a flag found← 0.
3: Download the top level and stash S, record by record. If a record (v, x) was found,

then store it in the local register, and mark found← 1.
4: for every level i = 1 . . . L do
5: t′ ← bt/kc
6: r ← b(t′ mod di)/di−1c
7: for every hash table j = r . . . 1 do
8: If not found, Q← Hi.Lookup(v, κji). Else, Q← Hi.Lookup(dummy ◦ t, κji).
9: Download records T ji [Q], record by record. If a record (v, x) was found, then

store it in the local register, and mark found← 1.
10: end for
11: end for
12: If the query is a write query, overwrite x in the register.
13: Read each entry of the entire top level from both servers one at a time, re-encrypt

it, then write it back, with the following exception: if the the entry (v, x) was first
found at the top level, then overwrite x with the (possibly) new value from the
register, otherwise, write (v, x) in the first empty spot of the form (empty, ·).

14: Increment the counter t, and reshuffle the appropriate levels.

E Proof of Claim 2

In this section, we prove Claim 2 from Section 5.3. We re-state it here for con-
venience.

Claim 2 Let t be a multiple of k, and denote t′ = t/k. For every 1 ≤ i ≤ L,
define rti := b(t′ mod di)/di−1c. Then,

(i) the top level is full prior to the reshuffle at round t, and is empty afterwards.

41

(ii) for every other level 1 ≤ i ≤ L, once the reshuffle is completed, the first rti

tables in level i (i.e., T 1
i , . . . , T

rti
i) are full (contain di(k + s) records each),

and all other tables in level i are empty.

Proof. We prove the lemma using induction. For t = 0, we have i∗ = 0 and
rti = 0 for every i, the entire storage is empty, therefore the lemma is trivially
correct. Suppose the lemma holds true for some t = t′ · k ≥ 0. Let i∗ be the
smallest value of i for which rt+ki > 0. Notice that i∗ is also the largest integer i
for which di−1 | t′+1 (the level to which the reshuffle of round t+k is done). We
proceed by proving the lemma is correct at round t+ k for four different groups
of levels:

1. The top level : from the induction hypothesis, the top level is empty when
the reshuffle at round t is finished. Performing queries t, . . . , t+k fills up the
top level entirely (as it is not reshuffled down during this time). The reshuffle
after query t+ k empties the top level, thus, (i) holds.

2. Levels 1 ≤ i < i∗: the reshuffle at round t + k evicts all blocks from levels
smaller than i∗ to hash table T ri∗i∗ . Therefore, once the reshuffle is done, levels
i = 1, . . . , i∗− 1 are empty, matching the fact that rt+ki = 0 and proving the
lemma for such i’s.

3. Level i∗: from the choice of i∗, there exists some 0 < r < d for which t′+1 =
q ·di∗+r ·di∗−1. It also holds that rt+ki∗ = r, and rti∗ = b(t′ mod di

∗
)/di

∗−1c =
b(r ·di∗−1−1)/di

∗−1c = r−1. These give rt+ki∗ = rti∗+1. By induction, we can
imply that after the reshuffle of round t, T ri∗ is empty. Furthermore, all hash
tables in levels i < i∗ are all full prior to the reshuffle, i.e. contain di−1(k+s)
blocks, since rti = d− 1 for such i’s. The reshuffle procedure in round t + k
takes all blocks in levels i = 0, . . . , i∗ − 1 and stash, and inserts them into

T ri∗ and the stash. The count of these blocks is s+ k +
∑i∗−1
i=1 di−1(k + s) =

di
∗−1(k + s), making T ri∗ full (notice that blocks that are sent to the stash

are replaced by dummy stash blocks). Since the other tables in level i∗ are
untouched in rounds t and t+ k, the lemma holds for i∗.

4. Levels i∗ < i ≤ L: these levels are not involved in the reshuffle at round t+k,
and remain unchanged during queries t, . . . , t + k. Thus, it suffices to show
that rti = rt+ki for every such i. Again, we rewrite t′ + 1 = q · di∗ + r · di∗−1
for some 0 < r < d. Take some i > i∗. Using the fact that r > 0, we
get rti = b(t′ mod di)/di−1c = b((q · di∗ mod di) + r · di∗−1 − 1)/di−1c =
b((q · di∗ mod di) + r · di∗−1)/di−1c = rt+ki .

ut

42

	Sub-logarithmic Distributed Oblivious RAM with Small Block Size

