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Abstract. Data sharing is becoming an integral part of many aspects
of our daily lives. We propose a method for controlling access to data
and knowledge through fine-grained, user-specified explicitly represented
policies. We present an overview of a policy formalism and mechanisms
to facilitate distributed data sharing. We provide a breakdown of how our
approach defines compliance and violation, specifically providing a new
outlook on violation of permissions within the context of data sharing.
We also examine how our mechanisms have been adapted to support
socially responsible interactions between participants, whilst still pro-
viding them with control over their own data. We also explore a series
of planned experiments investigating how users understand and interact
with policies in a simplified version of our formalism.

1 Introduction

Data sharing is becoming an integral part of many aspects of our daily lives.
With the emergence of data-driven technologies that employ intelligent sensor
devices in an environment, such as smart cities [5,45] and smart homes [18], data
exchange and data sharing has to be addressed. While data sharing can provide
benefits and services to users, it is important to regulate it to allow users to
retain control of their data, addressing issues related to information governance.
Not only is it important to give control to individual users, but to maximise the
benefit to all users in data-sharing ecosystems.

Usually, data sharing is specified (and constrained) through the use of data
access policies. These policies specify how data may (or may not) be accessed,
changed and used. The traditional management of typical access policies tends to
be centralised [1,11,14,40]. This poses a number of problems, such as information
ownership and reliance on a central authority that may allow the manipulation
of these policies, and which answers queries regarding current policy settings for
data. A counter proposal to such a centralised form of policy management is
provided in [37] which describes a distributed architecture for normative regu-
lations.

We envisage a data-sharing economy where data can be safely exchanged
between participants. In addition to data, we also consider participants sharing
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data access policies amongst themselves. To achieve this, we present the following
elements: an information model to support fine-grained policies, and a proposal
for a distributed data-sharing infrastructure.

We present a language to specify data access policies that is based on deon-
tic concepts such as prohibition, permission and obligation. We equipped this
language with fully distributed mechanisms to support participants making deci-
sions on how they should go about sharing data in a socially responsible manner.
That is, we enable participants to anticipate consequences and minimise their
negative effects where possible.

In this paper we present a language and associated mechanisms which are
sufficiently expressive to capture many data exchange scenarios but that can
also be presented at a higher level that we hope will aid users with less technical
experience in creating and interpreting policies. This language draws on existing
proposals, selecting some of their features and adding others where required, to
build a minimal but sufficient feature set to address data exchange scenarios.

We aim to answer the following research questions:

Q1 What information/knowledge is needed to represent policies to regulate data
sharing in a machine-processable fashion?

Q2 What mechanisms can we provide, using the information model and their
representations (from Q1), to enable rational decisions about data sharing
and policy-compliance?

Q3 Can our information model and their representations (from Q1) and mech-
anisms (from Q2) be sufficient to support data sharing in a distributed and
secure fashion?

In this paper we will primarily focus on Q1, but some detail will be provided on
how we are addressing Q2 and Q3.

In Section 2, we present an outline of our approach, including details of
its important distributed aspects. In Section 3 we provide details of our policy
language designed to regulate data exchange between peers. Section 4 introduces
the mechanisms that drive our solution and how they are adapted to maximise
social welfare. Section 5 discusses related work and in Section 6 we conclude
with a discussion of what we have achieved and what we plan to do as future
work.

2 A Data Exchange Economy

Our approach builds on work on peer-to-peer networks [4,34], in which partic-
ipants (whether sensors, individuals, or companies) are peers, and where each
of them is a self-interested party taking part in an economy where data is be-
ing exchanged. Peers hold a unique identifier, which is distributed by a central
authority. This central authority also provides peers with neighbours to commu-
nicate with.

As we work in a fully distributed environment, each of our peers holds their
own (possibly incomplete) information about other peers. Peers collect informa-
tion as they interact with other peers, storing records of all interactions they



take part in. As our peers gather additional information about the peer-to-peer
network (e.g., data, goals, and policies of other peers), we allow them to exchange
this information, in addition to just exchanging data.

Every peer defines a set of policies that determine how they will interact with
other peers. These policies can be updated as time passes to reflect changes in the
peers’ goals or knowledge about other peers. Our policies may express general
regulatory statements such as for example, “no drug records and medical records
can be obtained by the same party”, or more specific, such as “I will only provide
10 records to each person”. Our peers function autonomously, exchanging data
with respect to their policies, and any goals (get this piece of data, send this
piece of data to as many peers as possible, etc.) they have been given. Users
do not influence the data exchange process directly, which is one way we ensure
that all participants follow our mechanisms/transaction protocol.

Since our peers function independently of any central authority, it is impor-
tant that our solution has a secure way to determine what events occurred in
the past. For instance, to ensure no more than ten records of data are provided,
we have to be able to verify how many records were provided in previous inter-
actions. Without a central storage location, we turn to distributed storage. We
considered current distributed ledger technologies, such as Blockchain [16,25],
but concluded that these would provide too many unnecessary features. For sim-
plicity, we created a solution where peers maintain a set of records, accessible
only to themselves, of any transaction they had been a part of. These transaction
records cannot be tampered with and do not need to be synchronised amongst
peers. Moreover, records can only be accessed through our mechanisms.

Another challenge is how to apply and enforce penalties without having any
kind of enforcing body. In our case, penalties are accrued by violating policies,
and our mechanisms have built-in functionality to penalise peers. Our proposed
solution establishes a barrier for entry, in which peers must pay to participate in
“cycles”, that is, a fixed unit of time within the network. We impose penalties as
“penalty cycles” where, for the duration of that cycle, a peer’s ability to partici-
pate in the network will be limited. The peer will respond to incoming messages,
but will not perform any beneficial actions, such as sending data requests. This
is not a penalty that can be bypassed without leaving the network, as it is built
into the mechanisms through which the peer participates in the network. If a
peer does leave the network, and manages to spoof their identity, they will have
successfully avoided the penalty. They will, however, potentially have lost access
to data they could previously access, as the policies which permitted them access
will not necessarily apply to their new identity.

3 Policy Language

We have proposed an information model and associated formal syntax for a
policy language designed to regulate data exchange. We will give a short overview
of some of the necessary concepts for this language here, before looking more in
depth at the structure of a policy.



Policies make use of predicates to describe the conditions in which they ap-
ply, and the actions which they regulate. These predicates have been designed to
describe our data exchange scenarios, and provide a convenient way to capture
concepts of data exchange, and support the back-end mechanisms of our frame-
work. These predicates can be conveniently changed and adapted to fit other
domains, so long as appropriate supporting mechanisms are available.

We use the following three atoms within our predicates: identity which refers
to the identity of a specific peer (pId), or the identity of a group of peers (gId);
data which identifies a specific type of data (di), for instance, temperature
records or GPS data; and time which uses cycles, the time taken for a peer
to perform a fixed set of operations) to document the relative passing of time.

The primary interactions our peers have with each other are through trans-
actions, that is, a record of predicates establishing an exchange between two
peers regulated by policies. Peers hold a collection of predicates that represents
their knowledge of the world. This collection is their knowledge base (P̂), and
is subdivided into “states” (Pi), where each state is a collection of predicates
associated with a specific time cycle i.

With these concepts in place, we can now discuss our policies in more detail.
Policies are defined by peers to describe how their data may be accessed by
other peers. These policies may express regulatory statements such as “no more
than 10 records can be accessed by any peer”, “temperature records can only be
accessed by members of my family”, or “GPS data may be accessed, but cannot
be sent on by the recipient”. A policy, π, in our formalism is a tuple of the form
〈CA,CD,msrc

tgtA, ur , up〉, where[24]:

– CA and CD refer to the non-empty set of activation and deactivation condi-
tions, respectively. Activation conditions are the predicates (and constraints)
which must hold for the policy to become “active”. The policy will remain
active until all of the deactivation conditions hold.

– m is the deontic modality of the policy, either P, F, or O for Permission,
Prohibition, and Obligation. These are the standard deontic modalities rep-
resenting, respectively, what can, must not, or must be performed.

– src is the chain of assignment for the policy, i.e. the identities of all those
who have held and passed on the policy starting with the peer who enforces
it, of the form {pId1 , pId2 , . . . , pIdn}. This set shows not just everyone who
has held this policy, but the order in which they held it (i.e., pId1 passed it
to pId2 , who passed it to pId3 ).

– tgt is the identity of the group targeted by this policy.
– A is the non-empty set of actions which this policy permits, prohibits, or

obliges. These actions are predicates that can, for instance, allow access to
data, require a peer to adopt a policy, or prohibit a peer from sending data
to anyone. A is of the form {a0,a1, . . . ,an}. This set of actions is joined
by implicit conjunctions, for permissions all actions must occur together,
for prohibitions all actions must not occur together, and for obligations all
actions must occur before a deadline. Disjunctions can be modelled by having
alternative policies for each of the disjuncts.



– ur and up are real numbers (ur , up ∈ R) representing the reward/penalty
accrued by compliance or violation of this policy. We will discuss compli-
ance/violation in the next section.

This definition of policies draws together a number of proposals. The notion
of activation/deactivation conditions has been well studied [24,23]. The notion of
deontic modality and an associated set of actions are a standard feature of reg-
ulatory norms [22,44]. Having specific roles targeted by policies is used in many
scenarios, specifically we take this from traditional role-based access control [36].
The chain of assignment is a concept taken from blockchain, used to create a
so-called “audit trail” for policies. Rewards and penalties are a game theoretic
concept that we adapt to allow for utility calculations, and to provide incentives
to comply with our policies. For a full version of the formalism associated with
our language we refer readers to the following technical document [8].

Let us take the three example policies we gave above and represent them
in our formalism. Some of the representations below have been simplified for
presentation, we will note in the text below each example any simplifications
which have been made.

Example 1. “No more than 10 records can be accessed by each peer”

π1 =


recordsAccessed(gany ,dany ,−∞,+∞, n), n < 10,
recordsAccessed(gany ,dany ,−∞,+∞, n), n ≥ 10,

P
{pId1,pId2}
gIdany

access(dany , gIdany , 10 ),

5, 10


This policy allows any peer to access 10 records of any data. This policy is
active when fewer than 10 records of any data have been accessed (for all time,
between −∞ and +∞). This policy deactivates when 10 or more records of any
data have been accessed (for all time). We have simplified this policy slightly for
presentation, as the access action would need to refer to 10, minus the number
of records accessed so far. This would be achieved in our formalism through
variables and constraints.

Example 2. “Temperature records can only be accessed by members of my fam-
ily”

π2 =


>,
⊥,
P
{pId4 }
gId1

access(d1 , gId1 ,∞),

2, 0


This policy allows members of a family (represented by group gId1) to access as
many temperature records (represented by data type d1) as they like. The policy
is always active (vacuously true >), and never deactivates (vacuously false ⊥).

3.1 Policy Compliance/Violation

With a definition of a policy (and related concepts) in place, we can now discuss
the notion of policy compliance and violation. That is, how do we determine



whether a peer is complying with, or violating, a given policy? In all cases,
a policy must be active when a transaction takes place for a peer to be in
compliance/violation with it. A policy π is active in state Pi if there exists a
state Pj prior to Pi where the activation conditions held, and there is no state
between Pj and Pi where the activation or deactivation conditions hold. If there
is a more recent state where the activation conditions hold, this should be used as
Pj instead – if we consider situations where a policy has activated, deactivated,

and then activated again. We assume there exists a predicate active(π, P̂, i)
which returns whether policy π is active in state Pi (from a sequence of states

P̂). The full specification of active() and its auxiliary functions are detailed in
the following technical document [8].

We define two predicates which determine, respectively, whether a policy π
was complied/violated in statePi (from a sequence of states P̂), compliedX (π, P̂, i)

and violatedX (π, P̂, i), where X stands for one of the deontic modalities P,F,O.
We show pseudocode for permission only as we handle these differently from
existing approaches as we explain next. Our definition for prohibitions are not
too different to that of permission. We will provide a short informal description
of obligation compliance/violation.

Compliance and violation of a permission are where our approach differs
from the standard approaches in the literature [24,15,3]. The two traditional
approaches are: 1) everything is prohibited unless permitted, or 2) permissions
as exceptions to prohibitions. Most approaches have issues, in particular, with
the notion of violating a permission. We provide a clear definition of permission
violation specifically relating to our intended scenario of a data sharing envi-
ronment. A permission, in our approach, is used to provide access to data by
other participants. Peers will adopt policies due to their bootstrapping (by the
peers designer) or as a result of interaction with other peers. In both cases, this
permission becomes an obligation to provide data when requested that a peer
is permitted to access [20,26]. So a permission is complied with when data, on
request by a permitted peer, is provided by the holder of the permission. A per-
mission is violated when the data, on request by a permitted peer, is not provided
by the holder of the permission. It may appear then that a permission is really
just a recast obligation, but it is closer to being a combination of the two: a per-
mission for a peer to access data, and an obligation on the data holder to provide
that data. Note that, in both scenarios, the permission is complied/violated by
the holder of that permission. This definition of permissions is a more natural
way of capturing commonly occurring phenomena of data exchange.

To more clearly illustrate this, we provide the pseudocode for compliedP() in
Algorithm 1. Given the proof in Theorem 1 below, we show that we can compute
violatedP() as ¬compliedP().

We establish below an important result, namely, that according to our defi-
nitions, compliance and violation of permissions are dual concepts, that is, if a
permission is complied with then it cannot be violated, and vice-versa.

Theorem 1 (Permission Compliance/Violation Relation). Given a pol-

icy π with modality P, a sequence of states P̂, and a cycle to check compliance



Algorithm 1 Permission Compliance

Require: A policy π = 〈CA,CD,m
src
tgtA, ur , up〉, a sequence of states P̂ = 〈P0, . . . ,Pi, . . . ,Pn〉, a

cycle index i
Ensure: Complied, a Boolean variable indicating that π was complied with
1: procedure compliedP()
2: Complied ← ⊥
3: if active(π, P̂, i) ∧ there is a request for an action a ∈ A in Pi then . Without a request,

the policy is neither complied with nor violated.
4: Complied ← >
5: for all a′ ∈ A do
6: if a′ did not happen in state Pi then
7: Complied ← ⊥
8: break
9: end if
10: end for
11: end if
12: end procedure

for i, compliance is equivalent to not violating. That is, compliedP(π, P̂, i) ≡
¬violatedP(π, P̂, i).

Proof. Our proof assumes that there has been a request for at least one of the
actions inA. (⇒) The actions associated with a policy π are the set of actionsA.
Compliance of a permission can only occur when all actions in A occur in state
Pi. Violation of a permission can only occur when there exists at least one action
in A that does not occur in state Pi. If a permission is complied with in state Pi
then all actions in A occur in that state, and there can be no action in A that
does not occur. Therefore, if a permission is complied with in a state, it cannot
possibly be violated in that state, so compliedP(π, P̂, i) ⇒ ¬violatedP(π, P̂, i).
(⇐) To prove the opposite, if a permission is not violated in state Pi then there
no action in A that does not occur in that state, and all actions in A have
occurred. Therefore, if a permission is not violated in a state, it must always be
complied with in that state, so compliedP(π, P̂, i)⇐ ¬violatedP(π, P̂, i).

As stated previously, we do not consider that our definitions of compliance/violation
of prohibitions contain any details of interest. Instead, we will briefly summarise
the definitions for obligations.

We establish that an obligation has been complied with by a peer pId in
state i if, and only if, the policy π was active in that state (active(π, P̂, i)), a
transaction with pId has occurred in that state, and all of the actions (a ∈ A)
associated with the policy have been logged as performed by pId in one of the
states i to i + deadline(a) (where deadline(a) returns the number of cycles that
the obliged action a must be completed within). Violation is similar, except it
occurs when at leasts one of the actions (a ∈ A) associated with the policy has
reached its deadline (i + deadline(a)) and does not have a corresponding entry
from pId in any of the states i to i + deadline(a).



4 Decision Mechanisms

Within our approach peers, once provided with policies, function autonomously.
Due to this, they must be equipped with appropriate mechanisms to allow them
to make decisions relating to transactions. These decisions broadly fall into two
categories, depending on the peer’s role in the transaction. If the peer is the one
providing data (the policy holder), we call that peer the provider. If the peer is
the one requesting data (from the provider), we call that peer the requestor.

4.1 Decisions by the Provider

During the course of a transaction, the provider sends a selection of their poli-
cies to the requestor. These policies are those which are relevant to the trans-
action in question, and represent the conditions for accessing (or not accessing)
the requested data. The provider must make decisions regarding what policies
to provide to the requestor during a transaction. Often this decision will be
straightforward, as the provider can just provide all policies relevant to the cur-
rent transaction. However, when there are conflicting policies in this set, the
provider must choose which policies to send. In this case, the provider will come
up with one or more conflict-free permission policy sets to send to the requestor.
These sets can be thought of as “offers” for interactions in which the requestor
can access data from the provider. Policies in these sets need not be currently
active, but it must be possible for the requestor to take actions to activate them;
if they are not active the requestor can suspend the transaction, complete the
necessary actions, then return to complete it. For instance, a policy that can only
be accessed at a certain time would be acceptable, but not one that requires the
requestor to have a different identity. For each of these sets, the provider can
calculate a utility value. This utility value is trivial to calculate for permissions
and prohibitions, but slightly more complex for obligations. We sketch this in
Definition 1, as ProfitAllow (Π), which calculates the profit of a set of policies
(representing an offer).

Definition 1 (Policy Profit (Provider)). For a set of policies Π = {π1, π2,

. . . , πn}, where πi = 〈CiA,CiD,misrci

tgtiA
i, ui

r , u
i
p〉, with three subsets, one for each

modality, ΠP = {πi ∈ Π|mi = P}, ΠF = {πi ∈ Π|mi = F}, ΠO = {πi ∈
Π|mi = O}, we define two profit functions, ProfitAllow : Π → n ∈ R and
ProfitDeny : Π → n ∈ R as follows:

ProfitAllow (Π) =
∑

πi∈ΠP

ui
r −

∑
πj∈ΠF

uj
p +

∑
πk∈ΠO

profitObl(πk )

ProfitDeny(Π) =
∑

πi∈ΠF

ui
r −

∑
πj∈ΠP

uj
p

As noted above, the profit of obligations is less trivial to calculate, but be-
low we outline a mechanism, profitObl(π), which quantifies the profit of a given
obligation. This calculation performs two operations, for each action associated
with an obligation. First, it calculates the direct reward to the provider if the
requestor completes the action. This varies depending on the type of action, for



instance, an action that obliges data to be sent to the provider has a profit equal
to the value of that data (a value set by each peer for each type of data). The sec-
ond operation relates to the passing of obligations. Within our solution, peers are
able to pass obligations between each other. When passing on an obligation, the
provider forfeits any rewards or penalties that would be accrued by compliance
or violation of this obligation. To calculate the utility of passing an obligation,
the provider considers the likelihood of completion using its knowledge about the
state of the peer-to-peer network, and weights the reward/penalty of the obli-
gation with this value. The probability of completion is by no means exhaustive
and is at best an estimate using current (potentially inaccurate) knowledge.

The provider may also come up with a single prohibition policy set, that
is, the set of policies that will trigger if the requestor’s data request is refused
(prohibitions that will be complied with, and permission that will be violated).
This prohibition set is only used if it is the most profitable set, calculated by
ProfitDeny(Π) in Definition 1.

4.2 Decisions by the Requestor

The decisions made by the requestor are the counterpart to those made by the
provider. They relate to deciding whether to accept an offer for access to data
via a set of policies. When there are multiple potential policy sets sent by the
provider, then the requestor also must determine which, if any, to accept. This
again involves determining the utility of each of the policy sets. When the re-
questor has received policy sets, it does not have to worry too much about
fairness to the provider, as the provider will already have eliminated any poli-
cies it deems disadvantageous (for example those that have no incentive for the
provider). The requestor does however have to select the fairest policy set, for
both parties, from those that were provided.

We will start by detailing how the requestor can calculate the utility of a
policy set, before discussing how the fairest set can then be chosen. The utility
calculation varies depending on the modality of the policy:

– The utility of a permission considers the value of data that can be accessed,
and the cost of any actions required to activate the associated policy. It also
considers the penalty of any policies the requestor holds to not access that
data, and the reward of any policies the requestor holds that require access
to that data.

– The utility of a prohibition considers the value of data that can no longer
be accessed, or the cost of any actions required to deactivate the associated
policy. It also considers the penalty of any policies the requestor holds that
requires access to that data, and the reward of any policies the requestor
holds to not access that data.

– The utility of an obligation considers either the cost to complete the obliged
actions, or the penalty of violating the obliged actions.

The utility of a policy set is the sum of the utility of the policies within that
set, weighted by the likelihood of finding another (potentially better) offer. This



weighting is determined by knowledge of other peers and what data they hold;
most often this weighting will have a value close to one, having little effect, as a
peer may have no knowledge of other potential data sources.

Each of the three modalities makes reference to the cost to complete an ac-
tion. To discuss this calculation we must first discuss the main actions catered
for in our formalism. These come in two broad forms: data related actions, and
policy related actions. Data related actions involve obtaining, deleting, or pro-
viding data. Policy related actions involve the adoption or revocation of policies.
Adoption of policies is how our peers are able to pass obligations and access
rights between each other as currency. Considering these two types of actions
give shape to how we can calculate the cost to complete a given action.

Data related actions consider the average length of a transaction (in cycles),
and the value of the data (and quantity) involved. Policy related actions are
more complex, as the requestor must consider currently held policies which are
blocked by adopting a new policy, especially when that policy is obliged by
another participant. In the case of policy revocation, they must also consider
any penalties associated with not holding that policy if it has been obliged by
another participant. In addition to this, all actions add the reward/penalty of
the policy weighted by the probability of completing/not completing that action
before its deadline. This considers knowledge of the peer-to-peer network, the
average time to complete transactions, and current obligations.
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Fig. 1: An example of how the requestor chooses a policy set

As to how the requestor then chooses the fairest policy set, we use a four
stage process, carried out by the requestor in the transaction. We use pareto op-
timality as an initial selection mechanism, and then choose the pair from those
remaining with the best profit ratio. The stages are detailed below, and illus-
trated with an example in Figure 1:

Stage 1. Provider and requestor compute their personal utility for each policy
set. Each cell in Figure 1 represents a policy set and associated utilities (Provider
Utility : Requestor Utility).



Stage 2. The requestor removes those sets which have a value below the min-
imum profit of either party (less than 10 in this example).
Stage 3. The requestor selects the sets that have the highest utilities for both

parties, i.e. the pareto frontier, the sets where neither utility could be improved
without lowering the other, that is, there exists no other set with a higher utility
for both parties.
Stage 4. The requestor then calculates the normalised ratio between the util-

ities (highest value divided by lowest value, to ensure proportional ratios). The
requestor then chooses the fairest (closest to 1) set from these utilities, choosing
the highest requestor utility if a tie occurs.

This operation is run by the requestor which may appear to give them an
advantage, but it is performed as part of our blackbox mechanism without the
influence of the participant, so it can be considered tamperproof. This operation
ensures that profit is spread as evenly as possible between both parties, and
prioritises fairness over total profit. We assume that for any given policy we can
accurately compute the utility to ourselves.

The primary criticism of pareto optimality is that it gives no consideration to
equitable distribution. This is why we only use it to identify the pareto frontier,
and then go on to select the fairest of these options. Selecting the ratio that
is closest to a 1:1 distribution is always the fairest, if not necessarily the best
(consider two sets, 100:19 and 20:20), of the pareto frontier. While it is possible
for a sub-optimal outcome to have a better ratio, it would only be removed if
there is a policy set that is better for one (or both) parties without harming the
other. In other words, it may filter out fairer ratios (1:2 would be subsumed by
2:5), but no party is worse off in the remaining sets.

Utility is calculated as part of a black-box mechanism, so participants cannot
tamper with it. However the provider does send its utility across the network
(the incentive to do this is to try and ensure they earn themselves a fair deal), so
if they manage to in some way interrupt this and send false values, it does not
gain them anything. Raising the values can just end up getting you a worse deal,
as the requestor will end up with more to try and balance the deal. Lowering
the values will reduce the chances of a policy set being picked, but in this case
the provider could (and should) change their policies to have the same effect.
The requestor does not send utilities and so has no chance to alter them.

5 Related Work

In our peer-to-peer system it is important for peers to have control over who,
when, and how their data is shared. We achieve this through the use of poli-
cies/norms [33,35,44]. Norms are a formal representation of expected behaviours
of software agents, such as prohibitions, and duties. An integral part of norms
concerns deontic logic [42,22], considering permissions, prohibitions, and obliga-
tions. Norms and agents are often associated, using norms to control behaviour
in societies of self-interested components [12].



Our work draws upon the concept of combining policies with data reported
in [24], however our work focuses on a distributed environment and provides
supporting mechanisms. The problem of unifying data and policies has, in the
past, been addressed only in a centralised context [30,43]. We extend and adapt
the policy language and mechanisms from our earlier work in [6] and [7].

We consider normative conflict detection [13,31] and resolution [10,38,39,29].
Conflict detection in our approach is performed when determining whether to
accepted a policy related obliged action. That is, when an obligation will cause
you to either adopt a new or revoke an old policy, we perform some simple conflict
detection to determine how this will conflict with current goals and obligations.
We do not attempt to make the policy set of each participant conflict free, only
to balance the risk of potential conflict. If conflict does occur, the participant
will resolve it by attempting to choose the solution with the highest utility (see
Section 4).

Role Based Access Control (RBAC) shares some similarities with our work,
though with a stronger focus on a controlled environment. Research has been
carried out to address RBAC in a distributed environment [9,21,28], but many
issues, such as a reliance on the ability to observe and control principals, have
not yet been satisfactorily resolved. [9] uses user-to-user relationships to form
a “path” of authorisation, but does not consider user-to-resource relationships
which limits its usefulness. [21] focuses on transactions passing between two
secure environments, rather than between two (potentially) insecure parties. [28]
discusses automating compliance within a single secure environment, but does
not discuss implementing this in a fully distributed environment.

An important concept within our solution is that of social welfare [32,27].
We use this to refer to the notion of fairness in peer transactions. A number
of our mechanisms to promote social welfare are based on concepts from game
theory [41]. Through our profit evaluation functions, we equate policy sets within
transactions as moves in a game with associated pay-outs.

The distributed portions of our work are based on established peer-to-peer
(P2P) technologies and operations [4,34]. P2P refers to networks in which “peers”
communicate directly with each other, with minimal reliance on a centralised
server. P2P networks can have a variety of different topologies but broadly they
are either structured, where peers must organise themselves according to a set
of conditions, or unstructured, where peers have a set of unrelated “neighbours”
with which they communicate. Peer-to-peer simulations are based on a “net-
work” of agents, lightweight independent processes which each act according to
their own agenda, while still following a prescribed protocol [19]. Agents can
be cast as a community of interconnected components, as in the Internet of
Things [2,17].

6 Conclusions, Discussions, and Future Work

In this paper we proposed a solution which enables users to control how their
data is used and traded within a fully distributed environment. This is achieved



through the use of fine-grained, user-specified access policies. Our solution com-
prises a policy formalism, associated semantics, and an outline of the supporting
mechanisms. These mechanisms make allowances to maximise the utility to all
parties involved in transactions, and include provisions for security without a
centralised authority.

We present the most recent version of our language and mechanisms that we
have been developing for some time now. Currently we are extending our mech-
anism (and their implementation) to accommodate recent extension to the lan-
guage. We have preliminary versions of a prototype where we can simulate large-
scale scenarios, however these do not reflect the latest version of our language
and mechanisms This prototype will then be used to run a series of experiments
to measure the performance and suitability of our language and mechanisms.

We are currently planning an evaluation to determine how participants un-
derstand and interact with policies, conducted as three experiments. Experiment
1 examines if participants understand how policy activation (CA) and deactiva-
tion (CD) conditions work by having them determine what policies are active
in a specific context. Experiment 2 tests if participants can understand how a
set of policies will affect the actions involved in a specific task by having them
consider how a set of active policies will hinder completing a task. Experiment 3
is a variant of experiment 2 that asks participants to consider how policies affect
the performance of members of a team that they are in charge of.

In terms of the mechanisms themselves, there are a number of extensions
we could make to them to expand their usefulness. For instance, our framework
allows for policies to dynamically change over time. At the moment these changes
would have to be driven by the user. However, with all the information that our
peers gather, we could enable them to make informed changes to their policy set
in response to events. These policy changes could occur at any time, and could
be in response to interactions, goal changes, and new knowledge about other
peers and data.

Another area we could improve is to outfit our peers with more complex
reasoning mechanisms to provide some limited ability to predict outcomes based
on past experience. We have some provisions for this at the moment, relating to
predicting potential sources for data, but we could build upon this. Our peers
have the ability to request not just data, but specific pieces of knowledge about
other peers in the network, so combining this with better prediction would allow
our peers to form more strategic plans. Importantly, these decisions are operating
on incomplete information, so our mechanisms must allow peers to take this into
account.

As an extra evaluation with the extended prototype incorporating the latest
version of the language, we plan to conduct a game theoretic evaluation. We
have made initial explorations into standard game theoretic properties (nash
equilbiria, pareto optimality, etc.), but would like to carry out a more extensive
evaluation of these properties.
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