Skip to main content

Design of an Optimal Input Signal for Parameter Estimation of Linear Fractional-Order Systems

  • Conference paper
  • First Online:
Advances in Non-Integer Order Calculus and Its Applications (RRNR 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 559))

Included in the following conference series:

Abstract

The optimal input signal design is a procedure of generating an informative excitation signal to extract the model parameters with maximum accuracy during the estimation process. Non-integer order calculus is a very useful tool, which is often utilized for modeling and control purposes. In the paper, we present a novel optimal input formulation and a numerical scheme for fractional order LTI system identification. The Oustaloup recursive approximation (ORA) method is used to determine the fractional order differentiation in an integer order state-space form. Then, the presented methodology is adopted to obtain an optimal input signal for fractional order system identification from the order interval \(0.5 \le \alpha \le 2.0\). The fundamental step in the presented method was to reformulate the problem into a similar fractional optimal input design problem described by Lagrange formula with the set of constraints. The methodology presented in the paper was verified using a numerical example, and the computational results were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monje, C.A., Chen, Y., Vinagre, B., Xue, D., Feliu, V.: Fractional Orders Systems and Controls: Fundamentals and Applications. Advances in Industrial Control. Springer, London (2010). https://doi.org/10.1007/978-1-84996-335-0

    Book  MATH  Google Scholar 

  2. Chen, Y., Petráš, X.D.: Fractional order control - a tutorial. In: Proceedings of ACC 2009, American Control Conference, pp. 1397–1411 (2009)

    Google Scholar 

  3. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behaviour of real materials. Trans. ASME’84 51(4), 294–298 (1984). https://doi.org/10.1115/1.3167615

    Article  MATH  Google Scholar 

  4. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circ. Syst. Fundam. Theory Appl. 47(1), 25–40 (2000). https://doi.org/10.1109/81.817385

    Article  Google Scholar 

  5. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  6. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)

    Google Scholar 

  7. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). https://doi.org/10.1142/3779

    Book  MATH  Google Scholar 

  8. West, B., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21746-8

    Book  Google Scholar 

  9. Petras, I.: Fractional-Order Nonlinear Systems. Springer, New York (2011). https://doi.org/10.1007/978-3-642-18101-6_4

    Book  MATH  Google Scholar 

  10. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999). https://doi.org/10.1155/2013/802324

    Book  MATH  Google Scholar 

  11. Valério, D., Costa, J.: An Introduction to Fractional Control. IET, London (2013)

    MATH  Google Scholar 

  12. Sheng, H., Chen, Y.D., Qiu, T.S.: Fractional Processes and Fractional-Order Signal Processing. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2233-3

    Book  MATH  Google Scholar 

  13. Mozyrska, D., Torres, D.F.M.: Modified optimal energy and initial memory of fractional continuous-time linear systems. Sig. Process. 91(3), Special Issue: SI, 379–385 (2011). https://doi.org/10.1016/j.sigpro.2010.07.016

    Article  Google Scholar 

  14. Monje, C., Vinagre, B., Feliu, V., Chen, Y.: Tuning and autotuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008). https://doi.org/10.1016/j.conengprac.2007.08.006

    Article  Google Scholar 

  15. Kalaba, R., Spingarn, K.: Control, Identification, and Input Optimization. Plenum Press, New York (1982)

    Book  Google Scholar 

  16. Ljung, L.: System Identification: Theory for the User. Prentice Hall Inc., Upper Saddle River (1999)

    MATH  Google Scholar 

  17. Hussain, M.: Review of the applications of neural networks in chemical process control-simulation and on-line implementation. Artif. Intell. Eng. 13, 55–68 (1999). https://doi.org/10.1016/S0954-1810(98)00011-9

    Article  Google Scholar 

  18. Gevers, M., Ljung, L.: Optimal experiment designs with respect to the intended model application. Automatica 22(5), 543–554 (1986)

    Article  MathSciNet  Google Scholar 

  19. Bombois, X., Scorletti, G., Gevers, M., Van den Hof, P.M.J., Hildebrand, R.: Least costly identification experiment for control. Automatica 42(10), 1651–1662 (2006). https://doi.org/10.1016/j.automatica.2006.05.016

    Article  MATH  Google Scholar 

  20. Bombois, X., Hjalmarsson, H., Scorletti, G.: Identification for robust deconvolution filtering. Automatica 46(3), 577–584 (2010)

    Article  MathSciNet  Google Scholar 

  21. Rivera, D., Lee, H., Braun, M., Mittelmann, H.: Plant friendly system identification: a challenge for the process industries. In: Proceeding of the SYSID 2003, Rotterdam, The Netherlands, pp. 917–922 (2003)

    Google Scholar 

  22. Narasimhan, S., Rengaswamy, R.: Plant friendly input design: convex relaxation and quality. IEEE Trans. Autom. Control 56, 1467–1472 (2011)

    Article  MathSciNet  Google Scholar 

  23. Potters, M.G., Bombois, X., Forgione, M., Modén, P.E., Lundh, M., Hjalmarsson, H., Van den Hof, P.M.J.: Optimal experiment design in closed loop with unknown, nonlinear and implicit controllers using stealth identification. In: Proceedings of European Control Conference, Strasbourg, France, pp. 726–731 (2014)

    Google Scholar 

  24. Larsson, C.A., Rojas, C.R., Bombois, X., Hjalmarsson, H.: Experiment evaluation of model predictive control with excitation (MPC-X) on an industrial depropanizer. J. Process Control 31, 1–16 (2015)

    Article  Google Scholar 

  25. Annergren, M., Larson, C.A., Hjalmarsson, H., Bombois, X., Wahlberg, B.: Application-oriented input design in system identification. Optimal input design for control. IEEE Control Syst. Mag. 37, 31–56 (2017)

    Article  Google Scholar 

  26. Jakowluk, W.: Fractional-order linear systems modeling in time and frequency domains. In: 16th IFIP TC8 International Conference in Computer Information Systems and Industrial Management, pp. 502–513. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-59105-6_43

    Chapter  Google Scholar 

  27. Jakowluk, W.: Optimal input signal design for a second order dynamic system identification subject to D-efficiency constraints. In: 14th IFIP TC8 International Conference in Computer Information Systems and Industrial Management, pp. 351–362. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-24369-6_29

    Chapter  Google Scholar 

  28. Jakowluk, W.: Plant friendly input design for parameter estimation in an inertial system with respect to D-efficiency constraints. Entropy 16(11), 5822–5837 (2014). https://doi.org/10.3390/e16115822

    Article  Google Scholar 

  29. Jakowluk, W.: Free final time input design problem for robust entropy-like system parameter estimation. Entropy 20(7), 528 (2018). https://doi.org/10.3390/e20070528

    Article  Google Scholar 

  30. Mozyrska, D.: Multiparameter fractional difference linear control systems. Discret. Dyn. Nat. Soc. 2014, 8 (2014). https://doi.org/10.1155/2014/183782

    Article  MathSciNet  Google Scholar 

  31. Tricaud, C., Chen, Y.: Solving fractional order optimal control problems in Riots\(\_95\) a general-purpose optimal control problem solver. In: 3rd IFAC Workshop on Fractional Differentiation and Its Applications, Ankara, Turkey (2008)

    Google Scholar 

  32. Schwartz, A., Polak, E., Chen, Y.: Riots a MATLAB toolbox for solving optimal control problems. Version 1.0 for Windows (1997). http://www.schwartz-home.com/RIOTS/

  33. Kaczorek, T.: Minimum energy control of fractional positive continuous-time linear systems using Caputo-Fabrizio definition. Bull. Pol. Acad. Sci. Tech. Sci. 65, 45–51 (2017). https://doi.org/10.1515/bpasts-2017-0006

    Article  Google Scholar 

  34. Mozyrska, D., Torres, D.F.M.: Modified optimal energy and initial memory of fractional continuous-time linear systems. Sig. Process. 91, Special Issue: SI, 379–385 (2011). https://doi.org/10.1016/j.sigpro.2010.07.016

    Article  Google Scholar 

Download references

Acknowledgement

The present study was supported by a grant S/WI/3/18 from the Bialystok University of Technology and funded from the resources for research by the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiktor Jakowluk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jakowluk, W. (2020). Design of an Optimal Input Signal for Parameter Estimation of Linear Fractional-Order Systems. In: Malinowska, A., Mozyrska, D., Sajewski, Ł. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_10

Download citation

Publish with us

Policies and ethics