Skip to main content

Frequency Method for Determining the Equivalent Parameters of Fractional-Order Elements L\(_{\beta }\)C\(_{\alpha }\)

  • Conference paper
  • First Online:
Book cover Advances in Non-Integer Order Calculus and Its Applications (RRNR 2018)

Abstract

The paper proposes a method for the determination of parameters of the fractional-order elements, i.e. the supercapacitor and the fractional-order coil. The method is based on the phase resonance phenomenon in a series circuit containing the fractional-order element L\(_{\beta }, \)(C\(_{\alpha }\)) and the classic reactance element - capacitor C, or induction coil L. In the case of determining the parameters of the fractional-order coil L\(_{\beta }\), the two resonance frequencies have to be measured, in the circuit containing this coil and two switchable classic capacitors C\(_{1}\), C\(_{2}\). Similarly, when calculating the supercapacitor parameters, two resonance frequencies also need to be measured in a circuit containing a supercapacitor and two switchable reference inductances L\(_{1}\), L\(_{2}\). The developed method allows the determination of the lossy parameters of the fractional-order elements too. The paper presents a detailed description of the developed method, its physical basis, simulation and experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barsali, S., Ceraolo, M.: Frequency dependent parameter model of supercapacitors. Measurement 43, 1683–1689 (2010)

    Article  Google Scholar 

  2. Cuadras, A., Ovejas, V.A.: Supercapacitor impedance in time and frequency domains. In: Proceedings of 9th International Multi-conference on Systems, Signals and Devices, pp. 1–6 (2012)

    Google Scholar 

  3. Dzielinski, A., Sierociuk, D., Sarwas, G.: Ultracapacitor parameters identification based on fractional-order model. In: Proceedings of European Control Conference on ECC 2009, Budapest, pp. 196–200 (2009)

    Google Scholar 

  4. Efe, M.O.: Fractional order systems in industrial automation—a survey. IEEE Trans. Ind. Inform. 7(4), 582–591 (2011)

    Article  Google Scholar 

  5. Freeborn, T.J., Maundy, B.J., Elwakil, A.S.: Accurate time domain extraction of supercapacitor fractional-order model parameters. In: IEEE International Symposium on Circuits and Systems ISCAS 2013, pp. 2259–2262 (2013)

    Google Scholar 

  6. Freeborn, T.J., Maundy, B., Elwakil, A.S.: Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renew. Sustain. Energy 4(3), 1–7 (2015)

    Article  Google Scholar 

  7. Freeborn, T.J., Maundy, B., Elwakil, A.S.: Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE J. Emerg. Sel. Top. Circ. Syst. 3(3), 367–376 (2013)

    Article  Google Scholar 

  8. Jakubowska, A., Walczak, J.: Analysis of the transient state in a series circuit of the class RL\(_{\beta }\)C\(_{\alpha }\). Circ. Syst. Sig. Process. Spec. Issue: Fractional-Order Circ. Syst. Theory Des. Appl. 35(6), 1831–1853 (2016)

    Article  MathSciNet  Google Scholar 

  9. Jakubowska-Ciszek, A., Walczak, J.: Analysis of the transient state in a parallel circuit of the class RL\(_{\beta }\)C\(_{\alpha }\). Appl. Math. Comput. 319, 287–300 (2018)

    Google Scholar 

  10. Jakubowska-Ciszek, A., Walczak, J.: The method of determining the parameters of the fractional-order models for fractional-order coils and supercapacitors and the system for implementing the method. Patent Application No. 426049, Patent Office of the Republic of Poland (2018)

    Google Scholar 

  11. Khaligh, A., Zhihao, L.: Battery, ultracapacitor, fuel cell and hybrid energy storage systems for electric, hybrid electric, fuel cell and plug-in hybrid electric vehicles, state of the art. IEEE Trans. Veh. Technol. 59(6), 2806–2814 (2010)

    Article  Google Scholar 

  12. Lewandowski, M., Orzyłowski, A.: Fractional-order models: the case study of the supercapacitor capacitance measurement. Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 449–457 (2017)

    Google Scholar 

  13. Magin, R.L.: Fractional calculus in bioengineering: a tool to model complex dynamics. In: IEEE 13-th Carpathian Control Conference (ICCC), pp. 464–469 (2012)

    Google Scholar 

  14. Majka, L.: Applying a fractional coil model for power system ferroresonance analysis. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 467–474 (2018)

    Google Scholar 

  15. Majka, L.: Fractional derivative approach in modeling of a nonlinear coil for a ferroresonance analyses. In: Non-integer Order Calculus and Its Applications (2017). https://doi.org/10.1007/978-3-319-78458-8_13

    Google Scholar 

  16. Martin, R.: Modeling electrochemical double layer capacitor, from classical to fractional impedance. In: The 14th Medditeranean Electrotechnical Conference, Ajaccio, pp. 61–66 (2008)

    Google Scholar 

  17. Maundy, B.J., Elwakil, A., Freeborn, T., Allagui, A.: Determination of supercapacitor metrics using a magnitude-only method. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1186–1189 (2016)

    Google Scholar 

  18. Maundy, B.J., Elwakil, A., Freeborn, T., Allagui, A.: Improved method to determine supercapacitor metrics from highpass filter response. In: 28th International Conference on Microelectronics (ICM), pp. 25–28 (2016)

    Google Scholar 

  19. Piotrowska, E., Rogowski, K.: Analysis of fractional electrical circuit using Caputo and conformable derivative definitions. In: Non-integer Order Calculus and Its Applications (2019, in press). https://doi.org/10.1007/978-3-319-78458-8_16

    Google Scholar 

  20. Radwan, A.G., Fouda, M.E.: Optimization of fractional-order RLC filters. Circ. Syst. Sig. Process. 32, 2097–2118 (2013)

    Article  MathSciNet  Google Scholar 

  21. Radwan, A.G., Maundy, B.J., Elwakil, A.S.: Fractional-order oscillators. In: Oscillator Circuits: Frontiers in Design, Analysis and Applications, pp. 25–49 (2016)

    Google Scholar 

  22. Rosales, J.J., Guia, M., Gomez, F., Aguilar, F., Martinez, J.: Two dimensional fractional projectile motion in a resisting medium. Central Eur. J. Phys. 12(7), 517–520 (2014)

    Google Scholar 

  23. Schafer, J., Kruger, K.: Modelling of lossy coils using fractional derivatives. J. Phys. D: Appl. Phys. 41, 367–376 (2008)

    Google Scholar 

  24. Sierociuk, D., Sarwas, G., Twardy, M.: Resonance phenomena in circuits with ultracapacitors. In: Proceedings of International Conference on Environment and Electrical Engineering, EEEIC, pp. 197–202 (2013)

    Google Scholar 

  25. Soltan, A., Radwan, A.G., Soliman, A.M.: Fractional-order mutual inductance: analysis and design. Int. J. Circ. Theory Appl. 44(1), 85–97 (2015)

    Article  Google Scholar 

  26. Sowa, M.: A subinterval-based method for circuits with fractional order elements. Bull. Pol. Acad. Sci. Tech. Sci. 62(3), 449–454 (2014)

    MathSciNet  Google Scholar 

  27. Sowa, M.: A harmonic balance methodology for circuits with fractional and nonlinear elements. Circ. Syst. Sig. Process. 37(11), 4695–4727 (2018). https://doi.org/10.1007/s00034-018-0794-8

    Article  MathSciNet  Google Scholar 

  28. Stankiewicz, A.: Fractional order RLC circuits. In: International Conference ELMECO and AoS, Naleczow, Poland, pp. 1–4 (2017)

    Google Scholar 

  29. Tripathy, M.C., Mondal, D., Biswak, K., Sen, S.: Experimental studies on realization of fractional inductors and fractional-order bandpass filters. Int. J. Circ. Theory Appl. 43, 1183–1196 (2015)

    Article  Google Scholar 

  30. Tsirimokou, G., Psychalinos, C., Elwakil, A.S.: Fractional-order electronically controlled generalized filters. Int. J. Circ. Theory Appl. 45(5), 595–612 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Jakubowska-Ciszek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jakubowska-Ciszek, A., Walczak, J. (2020). Frequency Method for Determining the Equivalent Parameters of Fractional-Order Elements L\(_{\beta }\)C\(_{\alpha }\). In: Malinowska, A., Mozyrska, D., Sajewski, Ł. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_19

Download citation

Publish with us

Policies and ethics