Skip to main content

Using Fractional Calculus in an Attempt at Modeling a High Frequency AC Exciter

  • Conference paper
  • First Online:
Advances in Non-Integer Order Calculus and Its Applications (RRNR 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 559))

Included in the following conference series:

Abstract

The paper is an attempt of an application of the fractional order derivative in modeling of power system elements.

The electrical part of the generating unit contains, first of all, the power generator equipped with an excitation system. Three other components may be identified, when the electromachine excitation system is considered. This type of excitation uses an AC electric machine as an exciting device.

The mathematical model of high frequency AC exciter with additional regulator, being one of three possible submodels of electromagnetic excitation system model, was chosen intentionally and used as a simulation platform. The presented model in its simplicity includes all elements that characterise far more advanced and extended models, for example power generators. It contains gain factors and time constants as well as saturation components. Another important factor is that this particular model operates only using positive signals developed by an additional regulator. The paper presents the method and exemplary results of parameter estimation of the fractional model of the high frequency AC exciter with an additional regulator. To preserve full reliability of the computations, true waveforms measured in a power plant were used as input and output signals of the model. The advantages of applying fractional order calculus were verified by comparing measured and computed model output waveforms. Both integer and fractional order models were used in computations.

The aspect of filtering the recorded measurement signals is also presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. General Electric, Energy Management System – PSLF – GE Energy Consulting (2018). https://www.geenergyconsulting.com/practice-area/software-products/pslf

  2. Siemens, PSSÂźSINCAL All-in-one Simulation Software for the Analysis and Planning of Power Networks (2018). www.siemens.com/global/en/home/products/energy/services/transmission-distribution-smart-grid/consulting-and-planning/pss-software/pss-sincal.html

  3. Majka, Ɓ., Paszek, S.: Mathematical model parameter estimation of a generating unit operating in the Polish National Power System. Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 409–416 (2016)

    Google Scholar 

  4. Prastyaningrum, I., Handhika, J.: Mathematically analysis to improve efficiency of simple AC generator in term of special relativity. In: AIP Conference Proceedings 2014, p. 020124-1:6. AIP Publishing (2018)

    Google Scholar 

  5. Lewandowski, M., Majka, Ɓ., ƚwietlicka, A.: Effective estimation of angular speed of synchronous generator based on stator voltage measurement. Int. J. Electr. Power Energy Syst. 100, 391–399 (2018)

    Article  Google Scholar 

  6. Singh, A.K., Pal, B.C.: Dynamic Estimation and Control of Power Systems, 1st edn. Academic Press, London (2018)

    Google Scholar 

  7. Paszek, S., NocoƄ, A.: Optimisation and Polyoptimisation of Power System Stabilizer Parameters. LAP LAMBERT Academic Publishing, SaarbrĂŒcken (2014)

    MATH  Google Scholar 

  8. BuƂa, D., Lewandowski, M.: Steady state simulation of a distributed power supplying system using a simple hybrid time-frequency model. Appl. Math. Comput. 319, 195–202 (2018)

    Google Scholar 

  9. BuƂa, D., Lewandowski, M.: Comparison of frequency domain and time domain model of a distributed power supplying system with active power filters (APFs). Appl. Math. Comput. 267, 771–779 (2015)

    MATH  Google Scholar 

  10. IEEE Standard Definitions for Excitation Systems for Synchronous Machines. In: IEEE Std 421.1-2007 (Revision of IEEE Std 421.1-1986), pp. 1–33 (2007). https://doi.org/10.1109/IEEESTD.2007.385319

  11. IEEE Guide for Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems. In: IEEE Std 421.2-2014 (Revision of IEEE Std 421.2-1990), pp. 1–63 (2014). https://doi.org/10.1109/IEEESTD.2014.6845300

  12. IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. In: IEEE Std 421.5-2016 (Revision of IEEE Std 421.5-2005), pp. 1–207 (2016). https://doi.org/10.1109/IEEESTD.2016.7553421

  13. Feltes, J.W., Orero, S., Fardanesh, B., Uzunovic, E., Zelingher, S., Abi-Samra, N.: Deriving model parameters from field test measurements. IEEE Comput. Appl. Power 15(4), 30–36 (2002)

    Article  Google Scholar 

  14. Hannett, L.N., Feltes, J.W.: Testing and model validation for combined-cycle power plants. In: In: Conference Proceedings on IEEE Power Engineering Society Winter Meeting, vol. 3, pp. 664–670 (2001)

    Google Scholar 

  15. Majka, Ɓ., Paszek, S.: Algorithms for estimation of model parameters of excitation system of an electrical machine. Acta Tech. CSAV (Ces. Akad. Ved) 55(2), 179–194 (2010)

    Google Scholar 

  16. Paszek, S., NocoƄ, A.: Parameter polyoptimization of PSS2A power system stabilizers operating in a multi-machine power system including the uncertainty of model parameters. Appl. Math. Comput. 267, 750–757 (2015)

    MATH  Google Scholar 

  17. Sierociuk, D., Malesza, W.: Fractional variable order anti-windup control strategy. Bull. Pol. Acad. Sci.: Tech. Sci. 66(4), 427–432 (2018)

    Google Scholar 

  18. Domansky, O., Sotner, R., Langhammer, L., Jerabek, J., Psychalinos, C., Tsirimokou, G.: Practical design of RC approximants of constant phase elements and their implementation in fractional-order PID regulators using CMOS voltage differencing current conveyors. In: Circuits, Systems, and Signal Processing, pp. 1–27. Springer, Heidelberg (2018). https://doi.org/10.1007/s00034-018-0944-z

    Article  Google Scholar 

  19. SpaƂek, D.: Model generatora synchronicznego z uƂamkowym regulatorem napiÈ©cia PIbDa. In: Conference Aktualne problemy w elektroenergetyce APE 2015, pp. 51–59 (2015)

    Google Scholar 

  20. Sowa, M.: A harmonic balance methodology for circuits with fractional and nonlinear elements. Circ. Syst. Sig. Process. 37(11), 4695–4727 (2018)

    Article  MathSciNet  Google Scholar 

  21. Czuczwara, W., Latawiec, K.J., Stanislawski, R., Ɓukaniszyn, M., Kopka, R., Rydel, M.: Modeling of a supercapacitor charging circuit using two equivalent RC circuits and forward vs. backward fractional-order differences. In: Progress in Applied Electrical Engineering (PAEE) (2018). https://doi.org/10.1109/PAEE.2018.8441060

  22. Kapouleaa, S., Psychalinos, C., Elwakil, A.S.: Single active element implementation of fractional-order differentiators and integrators. AEU-Int. J. Electron. Commun. 97, 6–15 (2018)

    Article  Google Scholar 

  23. Jakubowska-Ciszek, A., Walczak, J.: Analysis of the transient state in a parallel circuit of the class RLbCa. Appl. Math. Comput. 319, 287–300 (2018)

    Google Scholar 

  24. Jakubowska, A., Walczak, J.: Analysis of the transient state in a series circuit of the class RLbCa. Circ. Syst. Sig. Process. Spec. Issue: Fract.-Order Circ. Syst.: Theory Des. Appl. 35(6), 1831–1853 (2016)

    MATH  Google Scholar 

  25. Carvalho, A.R., Pinto, C.M., Baleanu, D.: HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. AAdv. Differ. Equ. 2018, 2 (2018). https://doi.org/10.1186/s13662-017-1456-z

  26. Baranowski, J., Pia̧tek, P., Kawala-Janik, A., ZagĂłrowska, M., Bauer, W., DziwiƄski, T.: Non-integer order filtration of electromyographic signals. In: Latawiec, K., Ɓukaniszyn, M., StanisƂawski, R. (eds.) Advances in Modelling and Control of Non-integer-Order Systems. Lecture Notes in Electrical Engineering, vol. 320, pp. 231–237. Springer, Cham (2015)

    Google Scholar 

  27. Kawala-Janik, A., et al.: Implementation of low-pass fractional filtering for the purpose of analysis of electroencephalographic signals. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds.) Non-integer Order Calculus and its Applications. RRNR 2017. Lecture Notes in Electrical Engineering, vol. 496, pp. 63–73. Springer, Cham (2019)

    Google Scholar 

  28. Voyiadjis, G.Z., Sumelka, W.: Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the Caputo-Almeida fractional derivative. J. Mech. Behav. Biomed. Mater. 89, 209–216 (2019)

    Article  Google Scholar 

  29. Bia, P., Mescia, L., Caratelli, D.: Fractional calculus-based modeling of electromagnetic field propagation in arbitrary biological tissue. Math. Probl. Eng. 2016, 11 (2016)

    Article  MathSciNet  Google Scholar 

  30. Oprzȩdkiewicz, K., Mitkowski, W., Gawin, E., Dziedzic, K.: The Caputo vs. Caputo-Fabrizio operators in modeling of heat transfer process. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 501–507 (2018)

    Google Scholar 

  31. Lewandowski, M., Walczak, J.: Optimal base frequency estimation of an electrical signal based on Prony’s estimator and a FIR filter. Appl. Math. Comput. 319, 551–561 (2018)

    Google Scholar 

  32. Lewandowski, M., Walczak, J.: Current spectrum estimation using Prony’s estimator and coherent resampling. COMPEL 33(3), 989–997 (2014)

    Article  Google Scholar 

  33. WrĂłbel, T.: Pra̧dnice zwiÈ©kszonej czÈ©stotliwoƛci. Wydawnictwo Ministerstwa Obrony Narodowej, Poland, Warsaw (1972)

    Google Scholar 

  34. Walker, J.H.: High frequency alternators. J. Inst. Electr. Eng. London 31, 67–80 (1946)

    Google Scholar 

  35. Li, P., Chen, L., Wu, R., Tenreiro Machado, J.A., Lopes, A.M., Yuan, L.: Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay. J. Frankl. Inst. 355(15), 7749–7763 (2018)

    Article  MathSciNet  Google Scholar 

  36. Dassios, I.K., Baleanu, D.I.: Caputo and related fractional derivatives in singular systems. Appl. Math. Comput. 337, 591–606 (2018)

    MathSciNet  Google Scholar 

  37. Brociek, R., SƂota, D., WituƂa, R.: Reconstruction of the thermal conductivity coefficient in the time fractional diffusion equation. In: Latawiec, K., Ɓukaniszyn, M., StanisƂawski, R. (eds.) Advances in Modelling and Control of Non-integer-Order Systems. Lecture Notes in Electrical Engineering, vl. 320, pp. 239–247. Springer, Cham (2015)

    Google Scholar 

  38. www.mathworks.com/help/signal/ref/filtfilt.html?searchHighlight=filtfilt (2018)

  39. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981). https://doi.org/10.1109/PROC.1981.12022

    Article  Google Scholar 

  40. www.mathworks.com/help/matlab/math/solve-differential-algebraic-equations-daes.html (2018)

  41. Sowa, M., Kawala-Janik, A., Bauer, W.: Fractional differential equation solvers in octave/Matlab. In: 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR) (2018)

    Google Scholar 

  42. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6, 16 (2018)

    Article  Google Scholar 

  43. Sowa, M.: Application of a SubIval numerical solver for fractional circuits. In: Proceedings of the 20th International Research Conference, New York, USA, 27–28 August 2018, pp. 2560–2564 (2018)

    Google Scholar 

  44. Sowa, M.: A local truncation error estimation for a SubIval solver. Bull. Pol. Acad. Sci.: Tech. Sci. 66(4), 475–484 (2018)

    Google Scholar 

  45. Sowa, M.: Application of SubIval in solving initial value problems with fractional derivatives. Appl. Math. Comput. 319, 86–103 (2018)

    MathSciNet  Google Scholar 

  46. Sowa, M.: Application of SubIval, a method for fractional-order derivative computations in IVPs. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 407, pp. 489–499. Springer, Cham (2017)

    Google Scholar 

  47. Sowa, M.: Solutions of circuits with fractional, nonlinear elements by means of a SubIval solver. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds.) Non-integer Order Calculus and its Applications. Lecture Notes in Electrical Engineering, vol. 496, pp. 217–228. Springer, Cham (2019)

    Google Scholar 

  48. Sowa, M.: A subinterval-based method for circuits with fractional order elements. Bull. Pol. Acad. Sci. Tech. Sci. 62(3), 449–454 (2014)

    MathSciNet  Google Scholar 

  49. http://msowascience.com (2018)

  50. http://octave.org/doc/v4.2.1/Nonlinear-Programming.html (2018)

  51. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Heidelberg (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ɓukasz Majka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Majka, Ɓ. (2020). Using Fractional Calculus in an Attempt at Modeling a High Frequency AC Exciter. In: Malinowska, A., Mozyrska, D., Sajewski, Ɓ. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_5

Download citation

Publish with us

Policies and ethics