Skip to main content

Complex Dynamics in Basic Two-Component Auto-Oscillation Systems with Fractional Derivatives of Different Orders

  • Conference paper
  • First Online:
  • 389 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 559))

Abstract

On the basis of simple two-component nonlinear incommensurate fractional-order systems with positive and negative feedbacks, some general properties of fractional auto-oscillation systems are established. By linear stability analysis and numerical simulation, it is shown that fractional derivative orders and ratio between them can substantially change the stability conditions of the system and lead to appearing of complex oscillations and attractors, which cannot be found in their integer counterparts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrawal, O.P., Tenreiro Machado, J.A., Sabatier, J.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Elsevier, New York (2007)

    MATH  Google Scholar 

  2. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013)

    Book  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  4. Povstenko, Y.: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Springer, Heidelberg (2016)

    MATH  Google Scholar 

  5. Tarasov, V.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg (2011)

    Google Scholar 

  6. Klafter, J., Lim, S.C., Metzler, Y.: Fractional Dynamics: Recent Advances. World Scientific, Singapore (2011)

    Book  Google Scholar 

  7. Petras, I.: A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38, 140–147 (2008). https://doi.org/10.1016/j.chaos.2006.10.054

    Article  Google Scholar 

  8. Tavazoei, M., Haeri, M., Attari, M., Boluoki, S., Siami, M.: More details on analysis of fractional order Van der Pol oscillator. J. Vibr. Control 15, 803–819 (2009). https://doi.org/10.1177/1077546308096101

    Article  MathSciNet  MATH  Google Scholar 

  9. Gafiychuk, V., Datsko, B.: Stability analysis and limit cycle in fractional system with Brusselator nonlinearities. Phys. Lett. 372, 4902–4904 (2008). https://doi.org/10.1016/j.physleta.2008.05.045

    Article  MATH  Google Scholar 

  10. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007). https://doi.org/10.1016/j.jmaa.2006.01.087

    Article  MathSciNet  MATH  Google Scholar 

  11. Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Heidelberg (2011)

    Book  Google Scholar 

  12. Caponetto, R., Dongola, G., Fortuna, V., et al.: Fractional Order Systems: Modeling and Control Applications. World Scientific Publishing Company, Singapore (2010)

    Book  Google Scholar 

  13. Vasiliev, V.A., Romanovskii, Y.M., Chernavskii, D.S., et al.: Autowave Processes in Kinetic Systems: Spatial and Temporal Self-Organization in Physics, Chemistry, Biology, and Medicine. Springer, Berlin (1987)

    Book  Google Scholar 

  14. Datsko, B., Gafiychuk, V.: Complex nonlinear dynamics in subdiffusive activator-inhibitor systems. Commun. Nonlinear Sci. Numer. Simul. 17, 1673–1680 (2012). https://doi.org/10.1016/j.cnsns.2011.08.037

    Article  MathSciNet  MATH  Google Scholar 

  15. Datsko, B., Gafiychuk, V.: Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point. Fractional Calc. Appl. Anal. 21, 237–253 (2018). https://doi.org/10.1515/fca-2018-0015

    Article  MathSciNet  MATH  Google Scholar 

  16. Gafiychuk, V., Datsko, B.: Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems. Phys. Rev. E 75, 055201 (2007). https://doi.org/10.1103/PhysRevE.75.055201

    Article  Google Scholar 

  17. Gafiychuk, V., Datsko, B.: Inhomogeneous oscillatory solutions in fractional reaction-diffusion systems and their computer modeling. Appl. Math. Comput. 198, 251–260 (2008). https://doi.org/10.1016/j.amc.2007.08.065

    Article  MathSciNet  MATH  Google Scholar 

  18. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergamon Press, Oxford-New York-Toronto (1966)

    MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  20. Kerner, B.S., Osipov, V.V.: Autosolitons. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  21. Cross, M., Hohenberg, P.: Pattern formation out of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993). https://doi.org/10.1103/RevModPhys.65.851

    Article  MATH  Google Scholar 

  22. Nicolis, G., Prigogine, I.: Self-organization in Non-equilibrium Systems. Wiley, New York (1997)

    MATH  Google Scholar 

  23. Kerner, B.S., Osipov, V.V.: Stochastic inhomogeneous structures in nonequilibrium systems. JETP 52, 1122–1132 (1980). 1980JETP...52.1122K

    Google Scholar 

  24. Gafiychuk, V., Datsko, B., Meleshko, V.: Mathematical modeling of time fractional reaction-diffusion systems. J. Comput. Appl. Math. 220, 215–225 (2008). https://doi.org/10.1016/j.cam.2007.08.011

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2008). https://doi.org/10.1016/j.camwa.2009.08.019

    Article  MathSciNet  MATH  Google Scholar 

  26. Matignon, D.: Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 2, 963–970 (1996). 10.1.1.40.4859

    Google Scholar 

  27. Gafiychuk, V., Datsko, B.: Spatiotemporal pattern formation in fractional reaction-diffusion systems with indices of different order. Phys. Rev. E 77, 066210-1–066210-9 (2008). https://doi.org/10.1103/PhysRevE.77.066210

    Article  MathSciNet  Google Scholar 

  28. Datsko, B., Gafiychuk, V.: Mathematical modeling of fractional reaction-diffusion systems with different order time derivatives. J. Math. Sci. 165, 392–402 (2010). https://doi.org/10.1007/s10958-010-9807-2

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Datsko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datsko, B. (2020). Complex Dynamics in Basic Two-Component Auto-Oscillation Systems with Fractional Derivatives of Different Orders. In: Malinowska, A., Mozyrska, D., Sajewski, Ł. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_8

Download citation

Publish with us

Policies and ethics