Skip to main content

Fair Hitting Sequence Problem: Scheduling Activities with Varied Frequency Requirements

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11485))

Abstract

Given a set \(V=\{v_1,\ldots , v_n\}\) of n elements and a family \(\mathcal{{S}} = \{ S_1, S_2, \ldots , S_m\}\) of (possibly intersecting) subsets of V, we consider a scheduling problem of perpetual monitoring (attending) these subsets. In each time step one element of V is visited, and all sets in \(\mathcal{{S}}\) containing v are considered to be attended during this step. That is, we assume that it is enough to visit an arbitrary element in \(S_j\) to attend to this whole set. Each set \(S_j\) has an urgency factor \(h_j\), which indicates how frequently this set should be attended relatively to other sets. Let \(t_i^{(j)}\) denote the time slot when set \(S_j\) is attended for the i-th time. The objective is to find a perpetual schedule of visiting the elements of V, so that the maximum value \(h_j\left( t_{i+1}^{(j)}-t_i^{(j)}\right) \) is minimized. The value \(h_j\left( t_{i+1}^{(j)}-t_i^{(j)}\right) \) indicates how urgent it was to attend to set \(S_j\) at the time slot \(t_{i+1}^{(j)}\). We call this problem the Fair Hitting Sequence (FHS) problem, as it is related to the minimum hitting set problem. In fact, the uniform FHS, when all urgency factors are equal, is equivalent to the minimum hitting set problem, implying that there is a constant \(c_0>0\) such that it is NP-hard to compute \((c_0\log m)\)-approximation schedules for FHS.

We demonstrate that scheduling based on one hitting set can give poor approximation ratios, even if an optimal hitting set is used. To counter this, we design a deterministic algorithm which partitions the family \(\mathcal {S}\) into sub-families and combines hitting sets of those sub-families, giving \(O(\log ^2 m)\)-approximate schedules. Finally, we show an LP-based lower bound on the optimal objective value of FHS and use this bound to derive a randomized algorithm which with high probability computes \(O(\log m)\)-approximate schedules.

The work has been supported in part by the European project “Geospatial based Environment for Optimisation Systems Addressing Fire Emergencies” (GEO-SAFE), contract no. H2020-691161, by the Italian National Group for Scientific Computation GNCS-INdAM, by Networks Sciences and Technologies (NeST) initiative at University of Liverpool, and by the Polish National Science Center (NCN) grant 2017/25/B/ST6/02010.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anily, S., Glass, C.A., Hassin, R.: The scheduling of maintenance service. Discret. Appl. Math. 82(1–3), 27–42 (1998)

    Article  MathSciNet  Google Scholar 

  2. Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)

    Article  Google Scholar 

  3. Chan, M.Y., Chin, F.: Schedulers for larger classes of pinwheel instances. Algorithmica 9(5), 425–462 (1993)

    Article  MathSciNet  Google Scholar 

  4. Chuangpishit, H., Czyzowicz, J., Gąsieniec, L., Georgiou, K., Jurdziński, T., Kranakis, E.: Patrolling a path connecting a set of points with unbalanced frequencies of visits. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 367–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_26

    Chapter  Google Scholar 

  5. Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: SPAA, pp. 241–250 (2013)

    Google Scholar 

  6. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5_59

    Chapter  Google Scholar 

  7. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. In: ISAAC, pp. 343–354 (2015)

    Google Scholar 

  8. D’Emidio, M., Di Stefano, G., Navarra, A.: Priority scheduling in the Bamboo Garden Trimming Problem. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 136–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10801-4_12

    Chapter  Google Scholar 

  9. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

    Article  MathSciNet  Google Scholar 

  10. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

    Article  MathSciNet  Google Scholar 

  11. Gąsieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bamboo Garden Trimming Problem (perpetual maintenance of machines with different attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_18

    Chapter  MATH  Google Scholar 

  12. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  13. Hagen, M.: Algorithmic and Computational Complexity Issues of MONET, Dr. rer. nat., Friedrich-Schiller-Universit at Jena (2008)

    Google Scholar 

  14. Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two distinct numbers. Theor. Comput. Sci. 100(1), 105–135 (1992)

    Article  MathSciNet  Google Scholar 

  15. Lin, S.-S., Lin, K.-J.: A pinwheel scheduler for three distinct numbers with a tight schedulability bound. Algorithmica 19(4), 411–426 (1997)

    Article  MathSciNet  Google Scholar 

  16. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discret. Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  Google Scholar 

  17. Nilsson, B.: Guarding art galleries - methods for mobile guards. Ph.D. thesis, Department of Computer Science, Lund University, Sweden (1995)

    Google Scholar 

  18. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  19. Ntafos, S.: On gallery watchmen in grids. Inf. Process. Lett. 23(2), 99–102 (1986)

    Article  MathSciNet  Google Scholar 

  20. Romer, T.H., Rosier, L.E.: An algorithm reminiscent of euclidean-gcd for computing a function related to pinwheel scheduling. Algorithmica 17(1), 1–10 (1997)

    Article  MathSciNet  Google Scholar 

  21. Raz, R., Safra, M.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of STOC, pp. 475–484 (1997)

    Google Scholar 

  22. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. Discret. Math. 2(4), 550–581 (1989)

    Article  MathSciNet  Google Scholar 

  23. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, vol. 1, no. 1, pp. 973–1027 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Radzik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cicerone, S. et al. (2019). Fair Hitting Sequence Problem: Scheduling Activities with Varied Frequency Requirements. In: Heggernes, P. (eds) Algorithms and Complexity. CIAC 2019. Lecture Notes in Computer Science(), vol 11485. Springer, Cham. https://doi.org/10.1007/978-3-030-17402-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17402-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17401-9

  • Online ISBN: 978-3-030-17402-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics