
Subset Feedback Vertex Set in Chordal and Split
Graphs

Geevarghese Philip1, Varun Rajan2, Saket Saurabh3,4, and Prafullkumar Tale5

1 Chennai Mathematical Institute, Chennai, India. gphilip@cmi.ac.in
2 Chennai Mathematical Institute, Chennai, India. varunrajan09@gmail.com

3 The Institute of Mathematical Sciences, HBNI, Chennai, India. saket@imsc.res.in
4 Department of Informatics, University of Bergen, Bergen, Norway.

5 The Institute of Mathematical Sciences, HBNI, Chennai, India. pptale@imsc.res.in

Abstract. In the SUBSET FEEDBACK VERTEX SET (SUBSET-FVS) problem
the input is a graph G, a subset T of vertices of G called the “terminal”
vertices, and an integer k. The task is to determine whether there exists
a subset of vertices of cardinality at most k which together intersect all
cycles which pass through the terminals. SUBSET-FVS generalizes several
well studied problems including FEEDBACK VERTEX SET and MULTIWAY CUT.
This problem is known to be NP-Complete even in split graphs. Cygan et
al. proved that SUBSET-FVS is fixed parameter tractable (FPT) in general
graphs when parameterized by k [SIAM J. Discrete Math (2013)]. In split
graphs a simple observation reduces the problem to an equivalent instance
of the 3-HITTING SET problem with same solution size. This directly implies,
for SUBSET-FVS restricted to split graphs, (i) an FPTalgorithm which solves
the problem in O?(2.076k) time 6[Wahlström, Ph.D. Thesis], and (ii) a
kernel of size O(k3). We improve both these results for SUBSET-FVS on
split graphs; we derive (i) a kernel of size O(k2) which is the best possible
unless NP ⊆ coNP/poly, and (ii) an algorithm which solves the problem
in time O∗(2k). Our algorithm, in fact, solves SUBSET-FVS on the more
general class of chordal graphs, also in O∗(2k) time.

1 Introduction

In a covering or transversal problem we are given a universe of elements U , a
family F (F could be given implicitly), and an integer k, and the objective is
to check whether there exists a subset of U of size at most k which intersects
all the elements of F . A number of natural problems on graphs are of this form.
For instance, consider the classical FEEDBACK VERTEX SET (FVS) problem. Here,
given a graph G and a positive integer k, the objective is to decide whether
there exists a vertex subset X (a feedback vertex set of G) of size at most k
which intersects all cycles, that is, for which the graph G−X is a forest. Other
examples include ODD CYCLE TRANSVERSAL, DIRECTED FEEDBACK VERTEX SET

and VERTEX COVER (VC). These problems have been particularly well studied in
parameterized complexity [6,4,19,21,24,22].

6 The O?() notation hides polynomial factors.

ar
X

iv
:1

90
1.

02
20

9v
1

 [
cs

.D
S]

 8
 J

an
 2

01
9

2 Philip, Rajan, Saurabh and Tale

Recently, a natural generalization of covering problems has attracted a lot of
attention from the point of view of parameterized complexity. In this generaliza-
tion, apart from U , F and k, we are also given a subset T of U and the objective
is to decide whether there is a subset of U of size at most k that intersects all
those sets in F which contain an element in T . This leads to the subset variant of
classic covering problems; typical examples include SUBSET FEEDBACK VERTEX

SET (SUBSET-FVS), SUBSET DIRECTED FEEDBACK VERTEX SET and SUBSET ODD

CYCLE TRANSVERSAL. These three problems have received considerable attention
and they have all been shown to be fixed-parameter tractable (FPT) with k as the
parameter [6,4,19].

In this paper we study the SUBSET-FVS problem when the input is a split graph
or, more generally, a chordal graph. The SUBSET-FVS problem was introduced
by Even et al.[9], and generalizes several well-studied problems like FVS, VC,
and MULTIWAY CUT [10]. The question whether the SUBSET-FVS problem is fixed
parameter tractable (FPT) when parameterized by the solution size was posed
independently by Kawarabayashi and the third author in 2009. Cygan et al. [6]
and Kawarabayashi and Kobayashi [19] independently answered this question
positively in 2011. Wahlström [24] gave the first parameterized algorithm where
the dependence on k is 2O(k). Lokshtanov et al. [21] presented a different FPT
algorithm which has linear dependence on the input size. On the flip side, Fomin
et al. presented a parameter preserving reduction from VC to SUBSET-FVS [10,
Theorem 2.1], thus ruling out the existence of an algorithm with sub-exponential
dependence on k under the Exponential-Time Hypothesis. Most recently, Hols
and Kratsch [18] used matroid-based tools to show that SUBSET-FVS has a
randomized polynomial kernelization with O(k9) vertices.

All the results that we described above hold for arbitrary input graphs. The
SUBSET-FVS problem has also been studied with the input restricted to various
families of graphs; in particular, to chordal graphs and split graphs. Recall that7

(i) a graph is chordal if it does not contain induced cycles of length four or larger,
(ii) a split graph is one whose vertex set can be partitioned into a clique and
an independent set, and (iii) every split graph is chordal. The problem remains
NP-Complete even on split graphs [10]. Golovach et al. designed the first exact
exponential time algorithm for SUBSET-FVS on chordal graphs in their pioneering
work [14]; this algorithm runs in O?(1.6708n) time on a chordal graph with n
vertices. Chitnis et al. improved this bound to O?(1.6181n) [3].

In this article we study SUBSET-FVS on chordal and split graphs from the point
of view of parameterized complexity. For a given set of vertices T , a T -cycle is a
cycle which contains at least one vertex from T . Formally, we study the following
problem on chordal graphs:

7 See Section 2 for formal definitions.

Subset Feedback Vertex Set in Chordal and Split Graphs 3

SUBSET FVS IN CHORDAL GRAPHS Parameter: k
Input: A chordal graph G = (V,E), a set of terminal vertices T ⊆ V , and an
integer k
Question: Does there exist a set S ⊆ V of at most k vertices of G such that
the subgraph G[V \ S] contains no T -cycle?

When the input graph in SUBSET FVS IN CHORDAL GRAPHS is a split graph then
we call it the SUBSET FVS IN SPLIT GRAPHS problem.

It is a simple observation (see Lemma 1) that in order to intersect every T -
cycle in a chordal graph it is sufficient—and necessary—to intersect all T -triangles
in the graph. This yields a parameter-preserving reduction from SUBSET FVS
IN SPLIT GRAPHS to 3-HITTING SET (3-HS). This, in turn, implies the existence
of a polynomial kernel for SUBSET FVS IN SPLIT GRAPHS, of size O(k3) [1],
and an FPT algorithm which solves the problem in time O?(2.076k) [23]. Note
that when we formulate SUBSET FVS IN SPLIT GRAPHS in terms of 3-HS in this
manner, we lose a lot of structural information about the input graph. It is natural
to suspect that this lost information could have been exploited to obtain better
algorithms and smaller kernels for the original problem. This was most recently
vindicated by the work of Le et al. [20] who designed kernels with a sub-quadratic
number of vertices for several implicit 3-HS problems on graphs, improving on
long-standing quadratic upper bounds in each case. Our work is in the same
spirit as that of Le et al.: we obtain improved results for two implicit 3-HITTING

SET problems—namely: intersecting all T -triangles in chordal (respectively, split)
graphs—by a careful analysis of structural properties of the input graph.

Our results and methods: Our main result is a quadratic-size kernel for SUBSET

FVS IN SPLIT GRAPHS, with a linear-sized “clique side”; more precisely:

Theorem 1. There is a polynomial-time algorithm which, given an instance (G;T ; k)
of SUBSET FVS IN SPLIT GRAPHS, returns an instance (G′;T ′; k′) of SUBSET FVS IN

SPLIT GRAPHS such that (i) (G;T ; k) is a YES instance if and only if (G′;T ′; k′) is
a YES instance, and (ii) |V (G′)| = O(k2), |E(G′)| = O(k2), and k′ ≤ k. Moreover,
the split graph G′ has a split partition (K ′, I ′) with |K ′| ≤ 10k.

Our kernelization algorithm for SUBSET FVS IN SPLIT GRAPHS involves non-trivial
applications of the Expansion Lemma, a combinatorial tool which was central
to the design of the quadratic kernel for UNDIRECTED FVS [22]. Given an input
graph (G,T, k) and a split partition (K, I) of V (G), where K is a clique and I is
an independent set, we first reduce the input to an instance (G;T ; k) where the
terminal set T is exactly the independent set I from a split partition (K, I) of G.
Then we show that if a (non-terminal) vertex v ∈ K has at least k+1 neighbours
in I then we can either include v in a solution, or safely delete an edge incident
with v; we use the Expansion Lemma to identify such an irrelevant edge incident
to v ∈ K. This leads to an instance where each v ∈ K has at most k neighbours
in I. We now apply the Expansion Lemma to this instance to bound the number
of vertices in K by 10k; this gives the bound of O(k2) on |I|.

We complement this upper bound with a matching lower bound on the bit
size of any kernel for this problem:

4 Philip, Rajan, Saurabh and Tale

Theorem 2. For any ε > 0, the SUBSET FVS IN SPLIT GRAPHS problem parame-
terized by the solution size does not admit a polynomial kernel of size O(k2−ε) bits,
unless NP ⊆ coNP/poly.

Our third result is an improved FPT algorithm for SUBSET FVS IN CHORDAL

GRAPHS which, in addition, runs in time linear in the size of the input graph:

Theorem 3. SUBSET FVS IN CHORDAL GRAPHS admits an algorithm with running
time O(2k(n+m)). Here n,m are the number of vertices and the edges of the input
graph G, respectively.

We obtain this improvement by designing a branching strategy based on a careful
analysis of the clique-tree structure of the input chordal graph.

Organization of the rest of the paper: We state various definitions and pre-
liminary results in Section 2. We prove the quadratic kernel upper bound for
SUBSET FVS IN SPLIT GRAPHS in Section 3 and the corresponding lower bound in
Section 4. We derive the O?(2k) algorithm for SUBSET FVS IN CHORDAL GRAPHS

in Section 5, and conclude in Section 6.

2 Preliminaries

2.1 Graphs

All our graphs are finite, undirected, and simple. We mostly conform to the
graph-theoretic notation and terminology from the book of Diestel [8]. We
describe the few differences from Diestel and some notation and terms of our
own, and reproduce some definitions from Diestel for ease of reference. Let G be
a graph. For a vertex v in V (G) we use NG(v) to denote the open neighbourhood
{u ∈ V (G) | vu ∈ E(G)} of v, and NG[v] to denote its closed neighbourhood
N(v) ∪ {v}. We drop the subscript G when there is no ambiguity. The length of a
path or cycle is the number of edges in the path (or cycle). An edge uv is a bridge
if it is not contained in any cycle of G. An edge e in G is a chord of a cycle C if (i)
both the endvertices of e are in C, and (ii) edge e is not in C. An induced cycle is a
cycle which has no chord. A vertex v of degree exactly one in a tree T is a leaf of
the tree, unless v is the designated root vertex (if one exists) of T . A matching M
in G is a set of edges no two of which share an endvertex. The endvertices of the
edges in M are saturated by M . M is between vertex sets X,Y if X ∩ Y = Ø and
each edge in M has one end each in X and Y , respectively. A maximum matching
of G is a matching of the largest size in G.

Let S ⊆ V (G) and F ⊆ E(G) be a vertex subset and an edge subset of
G, respectively. We use (i) G[S] to denote the subgraph of G induced by S,
(ii) G − S to denote the graph G[V \ S], and (ii) G − F to denote the graph
(V (G), (E(G) \ F)). A triangle is a cycle of length three. Set S is a feedback vertex
set (FVS) of G if G− S is a forest. A path P (or cycle C) passes through S if P (or
C) contains a vertex from S. Let T ⊆ V (G) be a specified set of vertices called
terminal vertices (or terminals). A T -cycle (T -triangle) is a cycle (triangle) which

Subset Feedback Vertex Set in Chordal and Split Graphs 5

passes through T . Graph G is a T -forest if it contains no T -cycle. Vertex set S is
a subset feedback vertex set (subset-FVS) of G with respect to terminal set T if
the graph G− S is a T -forest. Note that S may contain vertices from T , and that
G− S need not be a forest. Set S is a subset triangle hitting set (subset-THS) of G
with respect to terminal set T if G − S contains no T -triangle. More generally,
we say that a vertex v hits a cycle C if C contains v. Vertex set S hits a set C of
cycles if for each cycle C ∈ C there is a vertex v ∈ S which hits C. We elide the
phrase “with respect to T ” when there is no ambiguity.

Kn is the complete graph on n vertices. A subset S ⊆ V (G) of vertices of
graph G is a clique if its vertices are all pairwise adjacent, and is an independent
set if they are all pairwise non-adjacent. A clique C in G is a maximal clique if C
is not a proper subset of some clique in G. A vertex v of G is a simplicial vertex (or
is simplicial) in G if N [v] is a clique. In this case we say that N [v] is a simplicial
clique in G and that v is a simplicial vertex of N [v].

Fact 1 ([2], Lemma 3). Vertex v is simplicial in graph G if and only v belongs to
precisely one maximal clique of G, namely the set N [v].

2.2 Chordal Graphs and Clique Trees

A graph G is chordal (or triangulated) if every induced cycle in G is a triangle;
equivalently, if every cycle of length at least four has a chord. If G is a chordal
graph then [15]: (i) every induced subgraph ofG is chordal; (ii)G has a simplicial
vertex, and if G is not a complete graph then G has two non-adjacent simplicial
vertices. Whether a graph H is chordal or not can be found in time O(|V (H)|+
|E(H)|), and if H is chordal then a simplicial vertex of H can be found within
the same time bound [15].

The number of maximal cliques in a chordal graph G is at most |V (G)| and
they can all be enumerated in time O(|V (G)| + |E(G)|) ([15, Theorem 4.17]).
Let C(G) be the set of maximal cliques of a chordal graph G. A clique tree8 of G is
a graph TG with the following properties:

1. The vertex set of TG is the set C(G).
2. TG is a tree.
3. (Clique Intersection Property) Let C1, C2 be any two maximal cliques of G,

and let C ′ = C1 ∩ C2. If C is a maximal clique of G which lies on the path
from C1 to C2 on TG, then it is the case that C ′ ⊆ C.

Fact 2.

1. A connected graph G is chordal if and only if it has a clique tree [2, Theo-
rem 3.1].

2. A clique tree TG of a chordal graph G can be computed in O(|V (G)|+ |E(G)|)
time [13, Theorem 12].

8 We refer readers to monograph of J. Blair and B. Peyton for an introduction to clique
trees [2].

6 Philip, Rajan, Saurabh and Tale

3. Let G be a connected chordal graph and TG a clique tree of G. For each vertex v
of G, the set of all nodes of TG which contain v form a connected subgraph (a
subtree) of TG [2, Theorem 3.2].

We also need

Observation 1 Let G be a connected graph with at least two vertices and let TG be
a clique tree of G. If C is a leaf node of TG then C is a simplicial clique in G.

Proof. Let C be a leaf node of TG and let C ′ be the unique neighbour of C in TG.
Since C is a maximal clique we have that C \ C ′ 6= Ø. Pick a vertex v ∈ C \ C ′.
Since C is a clique we have that C ⊆ N [v].

If there is a vertex u ∈ (N [v] \ C) then let C ′′ be a maximal clique which
contains the set {u, v}. Then C ′′ is distinct from C and C ′. Now (i) v ∈ (C ∩C ′′),
(ii) v /∈ C ′, and (iii) C ′ is a maximal clique which lies on the path from C to C ′′

in TG. This contradicts the Clique Intersection Property of TG. Hence we get that
N [v] ⊆ C as well. Thus C = N [v] is a simplicial clique in G.

2.3 Split Graphs

A graph G is a split graph if its vertex set can be partitioned into a clique and
an independent set in G. Such a partition is called a split partition of G. We use
(K, I) to denote the split partitions of the graphs. We refer to vertex sets K and I
as the clique side and independent side, respectively, of graph G. We say that an
edge uv in G[K] is highlighted if there is a vertex x in I such that the vertices
{x, u, v} induce a triangle in G. Every split graph is a chordal graph as well [16].
Given a graph G as its adjacency list we can (i) check if G is a split graph, and if
it is, (ii) find a partition V (G) = K] I into a clique K and independent set I,
both in time O(|V (G)|+ |E(G)|) [17].

If a chordal graph G contains a cycle then it contains an induced cycle, and
every induced cycle in G is—by definition—a triangle. Conversely, if G contains
a triangle then it trivially contains a cycle. Thus a chordal graph contains a cycle
if and only if it contains a triangle. This carries over to subset feedback vertex
sets in chordal (and therefore split) graphs in a natural way.

Lemma 1. Let G be a chordal graph and let T ⊆ V (G) be a specified set of terminal
vertices. A vertex subset S ⊆ V (G) is a subset-FVS of G with respect to T if and only
if the graph G− S contains no T -triangles.

Proof. If S is a subset-FVS of G with respect to T then—by definition—the graph
G− S contains no T -triangles. For the reverse direction, let S be a subset-THS
of G with respect to T , and let H = G− S. Since H is an induced subgraph of
G we get that H is chordal. Assume for the sake of contradiction that there is a
T -cycle in H. Let C be a T -cycle in H of the smallest length `. Then ` ≥ 4 and
we get that C has a chord. Now this chord is part of two cycles C ′, C ′′ such that
(i) each of {C ′, C ′′} has length strictly smaller than C, and (ii) the union of the
vertex sets of C ′ and C ′′ is the vertex set of C. Thus at least one of {C ′, C ′′}, say
C ′, is a T -cycle H of length strictly smaller than `, a contradiction.

Subset Feedback Vertex Set in Chordal and Split Graphs 7

We use (G;T ; k) to denote an instance of SUBSET FVS IN CHORDAL GRAPHS

or SUBSET FVS IN SPLIT GRAPHS where G is the input graph, T is the specified
set of terminals, and k is the parameter.

Corollary 1. An instance (G;T ; k) of SUBSET FVS IN CHORDAL GRAPHS (or of
SUBSET FVS IN SPLIT GRAPHS) is a YES instance if and only if there is a vertex
subset S ⊆ V (G) of size at most k such that S is a T -THS of G.

Lemma 2. If G is a chordal graph and uv is a bridge in G then the graph G−{uv}
is also chordal. If H is a split graph with at least three vertices on the clique side and
uv is an edge with exactly one end in the clique side of H then the graph H − {uv}
is also split. If uv is a bridge in such a split graph H then the graph H − {uv} is
also split.

Proof. Let G be a chordal graph. If an edge xy is a chord of some cycle C then
xy lies in a cycle C ′ whose vertex set is a strict subset of the vertex set of C. So
we get, since uv is a bridge in G, that uv is not a chord of any cycle in G.

Suppose G − {uv} is not chordal. Then it contains an induced cycle C of
length four or more. Since edge uv is not present in graph G − {uv} it is not
present in cycle C either. Thus cycle C is present in graph G. Since uv is not a
chord of cycle C we get that C is an induced cycle of length at least four in G,
which contradicts the chordality of G.

Now let H be a split graph with at least three vertices on its clique side, and
let (K, I) be a split partition of H. Since every edge in H[K] is part of a cycle,
any bridge uv of H has one end in each of K, I. The sets K and I remain a clique
and an independent set, respectively, once we delete any such edge uv. Hence
H − {uv} is a split graph.

Since chordal graphs and split graphs are (respectively) closed under taking
induced subgraphs [15] we get

Corollary 2. Let H be a graph obtained from a graph G by repeatedly deleting
vertices and/or bridges of the remaining graph at each stage.

1. If G is a chordal graph then so is H.
2. If G is a split graph and at least three of the clique vertices of G remain in H

then H is a split graph.

Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS. A subset
S ⊆ V (G) of vertices ofG is a solution of this instance if S is a T -FVS (equivalently,
a T -THS) of G.

2.4 Parameterized Algorithms and Kernelization

We give a quick overview of the main concepts from parameterized complexity
relevant to our work; we refer interested readers to [5] for a detailed exposition
on the subject. An instance of a parameterized problem is of the form (I; k)
where I is an instance of a (classical) decision problem—whose answer is one of

8 Philip, Rajan, Saurabh and Tale

YES/NO—and k ∈ N is the parameter; (I; k) is defined to be a YES (respectively,
NO) instance if I is a YES (respectively, NO) instance. A parameterized problem
is said to be fixed parameter tractable (FPT) if there exists an algorithm A, a
computable function f , and a constant c such that, given any instance (I; k) of
the parameterized problem, the algorithm A correctly decides whether (I; k) is
an YES instance or not in time O(f(k)|I|c). The algorithm A is an FPT algorithm;
if c = 1 holds then A is a linear FPT algorithm. Instances (I; k) and (I ′; k′) of
a parameterized problem are equivalent if (I; k) is a YES instance if and only if
(I ′; k′) is a YES instance. A kernel for a parameterized problem is an algorithm
B that, given an instance (I, k) of the problem, works in time O((|I|+ k)c) and
returns an equivalent instance (I ′, k′) of the same problem. We require that k′ is
upper bounded by some computable function of k. If there exists a computable
function g such that size of an output obtained by algorithm B for (I, k) is at
most g(k), we say that problem admits a kernel of size g(k).

Let H be a triangle on the vertex set {x, y, z}. Then IYES = (H; {x}; 1) and
INO = (H; {x}; 0) are constant-size trivial YES and NO instances, respectively,
of both SUBSET FVS IN SPLIT GRAPHS and SUBSET FVS IN CHORDAL GRAPHS.
Our algorithms make use of reduction rules which transform one instance of a
problem to another instance of the same problem. We use (G;T ; k) to represent
the instance given as input to each reduction rule, and (G′;T ′; k′) to represent
the (modified) instance output by the rule. We say that a reduction rule is
safe if for every input instance (G;T ; k) the rule outputs an equivalent instance
(G′;T ′; k′). We update G← G′, T ← T ′, k ← k′ to get the input instance (G;T ; k)
for further processing. We say that an instance (G;T ; k) is reduced with respect
to a reduction rule RR if none of the conditions of rule RR apply to (G;T ; k).
Equivalently: instance (G;T ; k) is reduced with respect to reduction rule RR if,
when given the instance (G;T ; k) as input, rule RR produces as output an instance
(G′;T ′; k′) which is identical to (G;T ; k). We say that a reduction rule RR applies
to an instance (G;T ; k) if (G;T ; k) is not reduced with respect to RR.

2.5 Expansion Lemmas

Let t be a positive integer and G a bipartite graph with vertex bipartition (P,Q).
A set of edges M ⊆ E(G) is called a t-expansion of P into Q if (i) every vertex
of P is incident with exactly t edges of M , and (ii) the number of vertices in Q
which are incident with at least one edge in M is exactly t|P |. We say that M
saturates the endvertices of its edges. Note that the set Q may contain vertices
which are not saturated by M . We need the following generalizations of Hall’s
Matching Theorem known as expansion lemmas:

Lemma 3 ([5] Lemma 2.18). Let t be a positive integer and G be a bipartite
graph with vertex bipartition (P,Q) such that |Q| ≥ t|P | and there are no isolated
vertices in Q. Then there exist nonempty vertex sets X ⊆ P and Y ⊆ Q such that
(i) X has a t-expansion into Y , and (ii) no vertex in Y has a neighbour outside X.
Furthermore two such sets X and Y can be found in time polynomial in the size of
G.

Subset Feedback Vertex Set in Chordal and Split Graphs 9

Lemma 4 ([11]). Let t be a positive integer and G be a bipartite graph with vertex
bipartition (P,Q) such that |Q| > `t , where ` is the size of a maximum matching
in G, and there are no isolated vertices in Q. Then there exist nonempty vertex sets
X ⊆ P and Y ⊆ Q such that (i) X has a t-expansion into Y , and (ii) no vertex in
Y has a neighbour outside X. Furthermore two such sets X and Y can be found in
time polynomial in the size of G.

We need sets X,Y of Lemma 4 with an additional property:

Lemma 5. If the premises of Lemma 4 are satisfied then we can find, in polynomial
time, sets X,Y of the kind described in Lemma 4 and a vertex w ∈ Y such that
there exists a t-expansion M from X into Y which does not saturate w.

Proof. Let X,Y be sets of the kind guaranteed to exist by Lemma 4, and let M be
a t-expansion from X into Y . If |Y | > t|X| then there must exist a vertex which
is not saturated by M . We can find such a vertex w ∈ Y by, for instance, deleting
each vertex y ∈ Y in turn and testing if the resulting graph has t-expansion from
X into Y \ y. Thus it is enough to show that we can find, in polynomial time,
such a pair X,Y for which |Y | > t|X| holds. We give a proof by algorithm. We
start by setting X = Y = Ø. It holds vacuously that (i) there is a t-expansion
from X into Y , and (ii) no vertex in Y has a neighbour outside X, and trivially
that |Y | = t|X|.

1. Find sets X ′ ⊆ P and Y ′ ⊆ Q as guaranteed to exist by Lemma 4. Let M ′ be a
t-expansion from X ′ into Y ′. If |Y ′| > t|X ′| then return ((X ∪X)′, (Y ∪ Y ′)).
Otherwise, if there is a vertex w ∈ Q \ Y ′ which has no neighbour in P \X ′
then return ((X ∪X ′), (Y ∪ Y ′ ∪ {w})).

2. At this point we have |X ′| < |P | and |Y ′| = t|X ′|. From above we get that
there is t-expansion, say M , from X into Y . Since X ∩ X ′ = Ø = Y ∩ Y ′
we get that M ∪M ′ is a t-expansion from X ∪ X ′ into Y ∪ Y ′. Set X̂ ←
X ∪X ′, Ŷ ← Y ∪ Y ′. Then (i) there is a t-expansion from X̂ into Ŷ , (ii) no
vertex in Ŷ has a neighbour outside X̂, and (iii) |Ŷ | = t|X̂|.

3. Let P̂ = (P − X̂), Q̂ = (Q− Ŷ). Consider the subgraph Ĝ = G[P̂ ∪ Q̂] and its
vertex bipartition (P̂ , Q̂). Since t ≥ 1 and the vertices in X̂ ∪ Ŷ are saturated
by a t-expansion from X̂ into Ŷ we get that the subgraph G[X̂∪ Ŷ] contains a
matching of size |X̂|. Since the subgraph Ĝ of G contains none of the vertices
saturated by this matching we get that the size ˆ̀of a maximum matching in
Ĝ satisfies ˆ̀≤ `− |X̂|.
Since every vertex in Q̂ has at least one neighbour in P̂ (otherwise we would
have returned in step (1)) we get that there are no isolated vertices in the set
Q̂ in graph Ĝ. Since |Ŷ | = t|X̂| and |Q| > `t we have that |Q̂| = |Q| − t|X̂| >
`t − t|X̂| = t(` − |X̂|) ≥ tˆ̀. Thus graph Ĝ and its vertex bipartition (P̂ , Q̂)
satisfy the premises of Lemma 4. Set G← Ĝ, P ← P̂ , Q← Q̂,X ← X̂, Y ←
Ŷ and go to step (1).

Correctness. Note that before step (1) is executed it is always the case that (i)
there is a t-expansion from X into Y , (ii) no vertex in Y has a neighbour outside

10 Philip, Rajan, Saurabh and Tale

X, and (iii) |Y | = t|X|. So we get that if the algorithm terminates (which it does
only at step (1)) it returns a correct pair of vertex subsets.

The graph G from the premise of Lemma 4 has a vertex bipartition (P,Q)
with (|P | > 0, |Q| > 0, |Q| > `t), and the sets X̂, Ŷ in steps (2) and (3) satisfy
0 < |X̂| < |P | and |Ŷ | = t|X̂|. So the sets P̂ , Q̂ of step (3) satisfy |P̂ | > 0, |Q̂| >
0, |Q̂| > ˆ̀t. Thus the graph Ĝ computed in step (3) has strictly fewer vertices than
the graph G passed in to the previous step (1). Since we update G← Ĝ before
looping back to step (1), we get that the algorithm terminates in polnomially
many steps.

3 Kernel Bounds for SUBSET FVS IN SPLIT GRAPHS

In this section we show that SUBSET FVS IN SPLIT GRAPHS has a quadratic-size
kernel with a linear number of vertices on the clique side.

Theorem 1. There is a polynomial-time algorithm which, given an instance (G;T ; k)
of SUBSET FVS IN SPLIT GRAPHS, returns an instance (G′;T ′; k′) of SUBSET FVS IN

SPLIT GRAPHS such that (i) (G;T ; k) is a YES instance if and only if (G′;T ′; k′) is
a YES instance, and (ii) |V (G′)| = O(k2), |E(G′)| = O(k2), and k′ ≤ k. Moreover,
the split graph G′ has a split partition (K ′, I ′) with |K ′| ≤ 10k.

Our algorithm works as follows. We first reduce the input to an instance
(G;T ; k) where the terminal set T is exactly the independent set I from a split
partition (K, I) of G. Then we show that if a (non-terminal) vertex v ∈ K has at
least k + 1 neighbours in I then we can include v in a solution or safely delete
one edge incident with v; this leads to an instance where each v ∈ K has at most
k neighbours in I. We apply the expansion lemma (Lemma 4) to this instance to
bound the number of vertices in K by 10k; this gives the bound of O(k2) on the
number of vertices in I.

We now describe the reduction rules. Recall that we use (G;T ; k) and (G′;T ′; k′)
to represent the input and output instances of a reduction rule, respectively. We
always apply the first rule—in the order in which they are described below—
which applies to an instance. Thus we apply a rule to an instance only if the
instance is reduced with respect to all previously specified reduction rules.

Recall that a split graph may have more than one split partition. To keep
our presentation short we need to be able to refer to one split partition which
“survives” throughout the application of these rules. Towards this we fix an
arbitrary split partition (K?, I?) of the original input graph. Whenever we say “the
split partition (K, I) of graph G” we mean the ordered pair ((K? ∩ V (G)), (I? ∩
V (G))). The only ways in which our reduction rules modify the graph are: (i)
delete a vertex, or (ii) delete an edge of the form uv ; u ∈ K?, v ∈ I?. So
((K? ∩ V (G)), (I? ∩ V (G))) remains a split partition of the “current” graph G at
each stage during the algorithm.

Our first reduction rule deals with some easy instances.

Reduction Rule 1 Recall that (K, I) is the split partition of graph G. Apply the
first condition which matches (G;T ; k):

Subset Feedback Vertex Set in Chordal and Split Graphs 11

1. If T = Ø then output IYES and stop.
2. If k < 0, or if k = 0 and there is a T -triangle in G, then output INO and stop.
3. If there is no T -triangle in G then output IYES and stop.
4. If |K| ≤ k + 1 then output IYES and stop.
5. If |K| = k + 2 and there is an edge uv in G[K] which is not highlighted then

output IYES and stop.

Observation 2 If (G;T ; k) is reduced with respect to Reduction Rule 1 then the
clique side K of G has size at least three.

Proof. The second and third parts of the rule ensure that k ≥ 1. The fourth part
now implies |K| ≥ 3.

Lemma 6. Reduction Rule 1 is safe.

Proof. We analyze each part separately.

1. If T = Ø then there are no T -cycles in G. So (G;T ; k) is (vacuously) a YES
instance, as is IYES.

2. If k < 0 then—since there does not exist a vertex subset S of negative
size—(G;T ; k) is a NO instance. If the second part of this condition holds
then (G;T ; k) is clearly a NO instance. Thus in both cases (G;T ; k) is a NO
instance, as is INO.

3. This condition applies to (G;T ; k) only if the previous one does not apply.
Thus k ≥ 0 and so (G;T ; k) is a YES instance, as is IYES.

4. Let S ⊆ K be an arbitrary k-sized set of vertices on the clique side. Deleting
S from G gives a graph H with at most one vertex on the clique side. Since
there are no edges among vertices on the independent side in H we get that
H has no triangles; S is a solution of (G;T ; k) of size at most k. Thus (G;T ; k)
is a YES instance, as is IYES.

5. Let S = K \ {u, v}. Then |S| = k. Since vertices {u, v} have no common
neighbour on the independent side of G, we get that G − S contains no
triangles. Thus (G;T ; k) is a YES instance, as is IYES.

Each remaining rule deletes a vertex or an edge from the graph. We use the
next two observations in our proofs of safeness.

Observation 3 Let (G;T ; k) be a YES instance of SUBSET FVS IN SPLIT GRAPHS

which is reduced with respect to Reduction Rule 1.

1. Let G′ be a graph obtained from G by deleting a vertex v ∈ V (G), and let
T ′ = T \{v}. Then (G′;T ′; k′ = k) is a YES instance. If (G;T ; k) has a solution
S of size at most k with v ∈ S then (G′;T ′; k′ = k − 1) is a YES instance.

2. Let G′ be a graph obtained from G by deleting an edge which has exactly one
of its endvertices in the clique side of G. Then (G′;T ′ = T ; k′ = k) is a YES
instance.

12 Philip, Rajan, Saurabh and Tale

Proof. First we consider the case G′ = G − {v}. From Corollary 2 we get that
graph G′ is a split graph. Since T ′ = T \ {v} ⊆ V (G′) we get that both (G′;T ′; k)
and (G′;T ′; k − 1) are instances of SUBSET FVS IN SPLIT GRAPHS.

Suppose (G;T ; k) is a YES instance, and let S be a solution of (G;T ; k) of size
at most k. Then the graph G− S is a split graph with no T -triangles. We consider
two cases:

1. If v ∈ S then G′− (S \{v}) = (G−{v})− (S \{v}) = G−S. Hence S \{v} is
a T -THS of the split graph G′, of size at most |S| − 1 = k − 1. Thus (G′;T ′ =
T \ {v}; k′ = k − 1) is a YES instance, and so is (G′;T ′ = T \ {v}; k′ = k) .

2. If v /∈ S then the graph G′ − S = (G− {v})− S = G− (S ∪ {v}) is obtained
by deleting vertex v from G−S. Thus G′−S is a split graph. Since deleting a
vertex cannot create a new T -triangle, we get that G′ − S has no T -triangles.
Thus S is an T -THS of G′ of size at most k, and (G′;T ′; k′ = k) is a YES
instance.

Now we consider the case G′ = G − {xy} where edge xy has one end, say x,
in the clique side K of G and the other end y in the independent side I. From
Observation 2 we get |K| ≥ 3, and then from Lemma 2 we get that G′ is a split
graph. Once again, since T ′ = T \ {v} ⊆ V (G′) we get that both (G′;T ′; k) and
(G′;T ′; k − 1) are instances of SUBSET FVS IN SPLIT GRAPHS.

Suppose (G;T ; k) is a YES instance, and let S ⊆ V (G) be a solution of
(G;T ; k) of size at most k. Then graph G− S has no T -cycle. Since deleting an
edge cannot introduce a new cycle, we get that the graph G′−S = (G−S)−{e}
has no T -cycle either. Thus S is a solution of (G′;T ; k) of size at most k, and
(G′;T ; k) is a YES instance.

Observation 4 Let (G′;T ′; k′) be a YES instance of SUBSET FVS IN SPLIT GRAPHS

and let S′ be a T ′-THS of G′ of size at most k′. Let G be a split graph which
can be constructed from graph G′ by adding a vertex v and zero or more edges
each incident with the new vertex v. Then both (G;T1 = T ′; k = k′ + 1) and
(G;T2 = T ′ ∪ {v}; k = k′ + 1) are YES instances of SUBSET FVS IN SPLIT GRAPHS,
and the set S′ ∪ {v} is a solution of size at most k for both these instances.

Proof. Since G is a split graph both (G;T1; k) and (G;T2; k) are instances of
SUBSET FVS IN SPLIT GRAPHS. Since S′ is a T ′-FVS ofG′ of size at most k′ we have
that graphG′−S′ has no T ′-triangle. Let S = S′∪{v}. Then |S| = |S′|+1 ≤ (k′+1)
and G− S = G′ − S′. Thus graph G− S has no T ′-triangle. Since v /∈ V (G− S)
we get that G− S has no triangle which contains vertex v. Thus G− S has no
T ′ ∪ {v}-triangle either. Hence both (G;T1; k) and (G;T2; k) are YES instances of
SUBSET FVS IN SPLIT GRAPHS and the set S′ ∪ {v} is a solution of size at most k
for both these instances.

Reduction Rule 2 If there is a vertex v of degree zero in G then delete v from G to
get graph G′. Set T ′ ← T \ {v}, k′ ← k. The reduced instance is (G′;T ′; k′).

Since adding or deleting vertices of degree zero does not create or destroy
cycles of any kind, we have

Subset Feedback Vertex Set in Chordal and Split Graphs 13

Observation 5 Reduction Rule 2 is safe.

Reduction Rule 3 If there is a non-terminal vertex v in G which is not adjacent to
a terminal vertex, then delete v from G to get graph G′. Set T ′ ← T, k′ ← k. The
reduced instance is (G′;T ′; k′).

Lemma 7. Reduction Rule 3 is safe.

Proof. Let (G;T ; k) be an instance given as input to Reduction Rule 3 and let
(G′;T ′; k′) be the corresponding instance output by the rule. Then G′ = G− {v}
where vertex v is as defined by the rule, and T ′ = T, k′ = k. From Observation 3
we get that if (G;T ; k) is a YES instance then so is (G′;T ′; k′).

Now suppose (G′;T ′; k′) is a YES instance, and let S′ ⊆ V (G′) be a solution
of (G′;T ′; k′) of size at most k′. We claim that S′ is a solution of (G;T ; k) as
well. Suppose not; then graph G− S′ has a T -cycle. Since T ′ = T and G′ − S′ =
G− (S′ ∪ {v}) does not contain any T ′-cycle we get that every T -cycle in G− S′
must contain vertex v.

Let C be a shortest T -cycle of G − S′, and let t be a terminal vertex in C.
Since—by assumption—vertices v and t are not adjacent we get that C contains
at least four vertices. Since C is a cycle of length at least four in the chordal graph
G − S′ we get that C has a chord. This chord is part of two cycles C ′, C ′′ such
that (i) each of {C ′, C ′′} has length strictly smaller than C, and (ii) the union
of the vertex sets of C ′ and C ′′ is the vertex set of C. At least one of the two
cycles C ′, C ′′ contains the terminal t; assume that t is in C ′. If vertex v is also in
C ′ then C ′ is a T -cycle of G − S′ which is shorter than C; this contradicts our
assumption about C. If v is not in C ′ then C ′ is a T -cycle—and hence T ′-cycle—in
G− (S′ ∪ {v}) = G′ − S′, which contradicts our assumption that S′ is a solution
of (G′;T ′; k′).

Thus S′ is a solution of (G;T ; k) of size at most k′ = k, and (G;T ; k) is a YES
instance.

Reduction Rule 4 If there is a bridge e in G then delete edge e (not its endvertices)
to get graph G′. Set T ′ ← T, k′ ← k. The reduced instance is (G′;T ′; k′).

Lemma 8. Reduction Rule 4 is safe.

Proof. Let (G;T ; k) be an instance given as input to Reduction Rule 4 and let
(G′;T ′; k′) be the corresponding instance output by the rule. Then G′ = G− {e}
where e is a bridge in G, T ′ = T, k′ = k.

From Observation 3 we get that if (G;T ; k) is a YES instance then so is
(G′;T ′; k′).

Now suppose (G′;T ′; k′) is a YES instance, and let S′ ⊆ V (G′) be a solution
of (G′;T ′; k′) of size at most k′. Observe that since (i) e is a bridge in G, and (ii)
deleting vertices does not introduce new cycles, edge e, if it exists in graph G−S′,
is a bridge in G−S′ as well. So e cannot be in any cycle in G−S′. Hence if graph
G− S′ has a T -cycle C then C does not contain edge e, which implies that C is
present in the graph G′ − S′ = (G− S′)− {e} as well. But this contradicts our

14 Philip, Rajan, Saurabh and Tale

assumption that S′ is a solution of (G′;T ′; k′). Thus there cannot be a T -cycle in
G − S′. So S′ is a solution of (G;T ; k) of size at most k′ = k, and (G;T ; k) is a
YES instance.

Lemma 9. Let (G;T ; k) be an instance of SUBSET FVS IN SPLIT GRAPHS which is
reduced with respect to Reduction Rules 1, 2, 3 and 4. Then

1. Each vertex in G has degree at least two.
2. Every vertex in G is part of some T -triangle.
3. If (G;T ; k) is a YES instance then every terminal vertex on the clique side of G

is present in every solution of (G;T ; k) of size at most k.

Proof. We prove each claim in turn. Let (K, I) be the split partition of G.

1. Since (G;T ; k) is reduced with respect to Reduction Rule 2 we get that every
vertex in G has degree at least one. If vertex v has degree exactly one then
the only edge incident on v is a bridge, which cannot exist since (G;T ; k) is
reduced with respect to Reduction Rule 4. Thus every vertex in G has degree
at least two.

2. From Observation 2 we get |K| ≥ 3. Consider a vertex v ∈ K. Since (G;T ; k)
is reduced with respect to Reduction Rule 3 we get that v is adjacent to at
least one terminal vertex t. If t ∈ K then v is part of a T -triangle which
contains t. If t ∈ I then let u ∈ K ; u 6= v be another neighbour of t in
K. Such a neighbour exists because t has degree at least two and every
neighbour of t is in K. Since uv is an edge in G[K] we get that {t, u, v} is a
T -triangle which contains vertex v.

Now suppose v is a vertex in I. Then v has at least two neighbours
x, y ∈ K for which xy is an edge. If v is a terminal then it belongs to the
T -triangle {v, x, y}. If v is not a terminal then—since (G;T ; k) is reduced
with respect to Reduction Rule 3—we get that v is adjacent to at least one
terminal vertex, which has to be in K. Set x to be such a terminal neighbour
of v. Then v belongs to the T -triangle {v, x, y}.

3. Suppose not. Let S be a solution of (G;T ; k) of size at most k, and let
t ∈ (K ∩ T) \ S be a terminal vertex on the clique side of G which is not in
S. If there are two other vertices x, y on the clique side which are also not
in S then {t, x, y} is a T -triangle in G− S, a contradiction. So we have that
|K \ S| ≤ 2. Now since (G;T ; k) is reduced with respect to Reduction Rule 1
we have—part (4) of the rule—that |K| ≥ k + 2 = |S| + 2, from which
we get |K \ S| ≥ 2. Thus |K \ S| = 2. Substituting these in the identity
|K| = |K \ S| + |K ∩ S| we get |S| ≤ |K ∩ S| which implies |S| = |K ∩ S|
and S = K ∩ S.

Thus we get that K is of the form K = S ∪ {t, x} for some vertex x. Now
from part (5) of Reduction Rule 1 we get that vertices t and x have a common
neighbour, say y, in set I. So the T -triangle {t, x, y} is present in graph G−S,
a contradiction. Hence t must be in S.

It is thus safe to pick a terminal vertex from the clique side into the solution.

Subset Feedback Vertex Set in Chordal and Split Graphs 15

Reduction Rule 5 If there is a terminal vertex t on the clique side then delete t to
get graph G′. Set T ′ ← T \ {t}, k′ ← k − 1. The reduced instance is G′;T ′; k′).

Lemma 10. Reduction Rule 5 is safe.

Proof. Suppose (G;T ; k) is a YES instance. From Lemma 9 we get that vertex t is
present in every solution of (G;T ; k) of size at most k, and so from Observation 3
we get that (G′;T ′; k′) is a YES instance.

If (G′;T ′; k′) is a YES instance then we get from Observation 4 that (G;T ; k)
is a YES instance as well.

Observation 6 Let (G;T ; k) be reduced with respect to Reduction Rules 1, 2, 3
and 5. Let (K, I) be the split partition of G. Then T = I and every vertex in K has
a neighbour in I.

Proof. Since (G;T ; k) is reduced with respect to Reduction Rule 5 we have that
no vertex on the clique side of G is a terminal. Thus T ⊆ I. Suppose there is
a non-terminal vertex v ∈ I. From part (2) of Lemma 9 we get that v must be
adjacent to some terminal vertex. This cannot happen because every neighbour
of v is in K and none of them is a terminal. So every vertex in I is a terminal.
Thus I ⊆ T , and hence T = I.

Every vertex in K is a non-terminal, and every non-terminal is adjacent to
some terminal vertex. So every vertex in K must have a neighbour in I.

Our kernelization algorithm can be thought of having two main parts: (i)
bounding the number of vertices on the clique side by O(k), and (ii) bounding
the number of independent set vertices in the neighbourhood of each clique-side
vertex by k. We now describe the second part. We need some more notation.
For a vertex v ∈ K on the clique side of graph G we use (i) N1(v) for the
set of neighbours N(v) ∩ I of v on the independent side I, and (ii) N2(v) to
denote the set of all other clique vertices—than v—which are adjacent to some
vertex in N1(v); that is, N2(v) = N(N1(v)) \ {v}. Informally, N2(v) is the second
neighbourhood of v “going via I”. We use B(v) to denote the bipartite graph
obtained from G[N1(v) ∪N2(v)] by deleting every edge with both its endvertices
in N2(v). Equivalently: Let H be the (bipartite) graph obtained by deleting,
from G, every edge which has both its ends on the clique side of G. Then
B(v) = H[N1(v) ∪ N2(v)]. We call B(v) the bipartite graph corresponding to
vertex v ∈ K.

Bounding the Independent-side Neighbourhood of a Vertex on the Clique Side The
first reduction rule of this part applies when there is a vertex v ∈ K which is
part of more than k T -triangles and these T -triangles are pairwise vertex-disjoint
apart from the one common vertex v. In this case any solution of size at most k
must contain v, so we delete v and reduce k.

Lemma 11. Let v ∈ K be a vertex on the clique side of graph G such that the
bipartite graph B(v) contains a matching of size at least k + 1. Then every T -FVS
of G of size at most k contains v.

16 Philip, Rajan, Saurabh and Tale

Proof. Suppose not; let S ⊆ V (G) ; |S| ≤ k be a T -FVS of G of size at most k
such that v /∈ S. Let M = {x1y1, . . . , xk+1yk+1} be a matching in graph B(v).
Note that every edge in M is present in graph G. Further, each edge xiyi ∈M (i)
has one end in the clique side K of G and the other end in the independent side I,
and (ii) forms a triangle {v, xi, yi} in G together with vertex v. Since every vertex
in I is a terminal we get that each triangle of the form {v, xi, yi} is a T -triangle.

Now since S is a T -FVS of G it has a non-empty intersection with every
triangle in the set {{v, xi, yi} ; 1 ≤ i ≤ (k + 1)}. Since v /∈ S we get that S has a
non-empty intersection with every set in the collection {{xi, yi} ; 1 ≤ i ≤ (k+1)}.
Since the vertex pairs {xi, yi} ; 1 ≤ i ≤ (k+1) are pairwise disjoint we get that S
contains at least k+ 1 distinct vertices from the set ∪k+1

i=1 {xi, yi}. This contradicts
the assumption |S| ≤ k.

Reduction Rule 6 If there is a vertex v on the clique side K of graph G such that
the bipartite graph B(v) has a matching of size at least k + 1 then delete vertex v
from G to get graph G′. Set T ′ ← T, k′ ← k− 1. The reduced instance is (G′;T ′; k′).

Lemma 12. Reduction Rule 6 is safe.

Proof. Since—Observation 6—vertex v is not a terminal vertex in G we get that
T ′ ⊆ V (G′). Suppose (G;T ; k) is a YES instance. Then since v is in present in every
solution of (G;T ; k) of size at most k—Lemma 11—we get from Observation 3
that (G′;T ′; k′) is a YES instance.

If (G′;T ′; k′) is a YES instance then from Observation 4 we get that (G;T ; k)
is a YES instance as well.

Let (G;T ; k) be an instance which is reduced with respect to Reduction Rule 6.
We show that if there is a vertex v ∈ K on the clique side of G which has more
than k neighbours in the independent side I, then we can find an edge of the
form vw ; w ∈ I which can safely be deleted from the graph. We get this by a
careful application of the “matching” version (Lemma 4) of the Expansion Lemma
together with Lemma 5. Let v be such a vertex and let P = N2(v), Q = N1(v), t =
1. Then (P,Q) is a bipartition of the graph B(v) corresponding to vertex v. Let
` ≤ k be the size of a maximum matching of B(v). Note that |Q| ≥ (k + 1) > `t
and that—by part (1) of Lemma 9—there are no isolated vertices in set Q. Thus
Lemma 5 applies to graph B(v) together with P,Q, t = 1. Since a 1-expansion
from X into Y contains a matching between X and Y which saturates X we get

Corollary 3. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 6. Suppose there is a vertex v ∈ K on the clique side of G which has more
than k neighbours in the independent side I. Then we can find, in polynomial time,
non-empty vertex sets X ⊆ N2(v) ⊆ K,Y ⊆ N1(v) ⊆ I and a vertex w ∈ Y such
that (i) there is a matching M between X and Y which saturates every vertex of X
and does not saturate w, and (ii) NG(Y) = X ∪ {v}.

Lemma 13. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 6, and let v ∈ K be a vertex on the clique side which has more than k

Subset Feedback Vertex Set in Chordal and Split Graphs 17

neighbours in the independent side I. Let X ⊆ K,w ∈ Y ⊆ I,M ⊆ E(G[X ∪ Y])
be as guaranteed to exist by Corollary 3. Let G′ = G− {vw}, and let S′ be a T -THS
of G′ of size at most k. If v /∈ S′ then (S′ \ Y) ∪X is a T -THS of G′ of size at most
k.

Proof. Let M = {x1y1, . . . , x|X|y|X|} be a matching in G between X and Y which
saturates all of X and does not saturate w. Since vw /∈M we get that matching
M is present in graph G′ as well. Thus {{v, x1, y1}, . . . , {v, x|X|, y|X|}} is a set of
|X|-many T -triangles in G′ which pairwise intersect exactly in {v}. Let S′ be a
T -THS of G′ of size at most k which does not contain v. Then S′ contains at least
one vertex from each of the sets {xi, yi} ; 1 ≤ i ≤ |X|. Let Ŝ = (S′ \ Y) ∪ X.
Then we can get Ŝ from S′ as follows.

– For each edge xiyi ∈M ,
• if S′ ∩ {xi, yi} = {yi} then delete yi from S′ and add xi, and,
• if S′ ∩ {xi, yi} = {xi, yi} then delete yi from S′ (and don’t add anything).

– Delete all of Y \ {y1, . . . , y|X|} from S′.

Thus to get Ŝ from S′ we add at most as many vertices as we delete, and so it is
the case that |Ŝ| ≤ |S′| ≤ k.

Consider the induced subgraphs H ′ = G′−S′ and Ĥ = G′− Ŝ of G′. Of these
H ′ has no T -triangles. Every vertex of Ĥ which is not present in H ′ belongs to
the set Y . So if Ĥ contains a T -triangle then each such T -triangle must contain
a vertex from Y . Now from Corollary 3 we get that N(Y) ⊆ X ∪ {v} and by
definition we have that no vertex in X is present in Ĥ. Thus every vertex in Y
has degree at most one in Ĥ. So no vertex in Y is in any T -triangle in Ĥ. Hence
there are no T -triangles in Ĥ. Thus Ŝ = (S′ \ Y) ∪X is a T -THS of G′ of size at
most k.

Reduction Rule 7 If there is a vertex v on the clique side K of graph G such that
v has more than k neighbours in the independent side I, then find a vertex w ∈ I as
described by Corollary 3 and delete the edge vw to get graph G′. Set T ′ ← T, k′ ← k.
The reduced instance is (G′;T ′; k′).

Lemma 14. Reduction Rule 7 is safe.

Proof. If (G;T ; k) is a YES instance then we get from Observation 3 that (G′ =
G− {vw};T ′; k′) is a YES instance.

Now suppose (G′;T ′; k′) is a YES instance. Let S′ be a T -THS of G′ of size
at most k. If v ∈ S′ then we have G − S′ = G′ − S′ and in this case S′ is a
T -THS of G as well, of size at most k. If v /∈ S′ then from Lemma 13 we get that
Ŝ = (S′ \ Y) ∪X is a T -THS of G′ of size at most k. Thus the graph H ′ = G′ − Ŝ
has no T -triangles. The only difference between graphs H ′ and H = G − Ŝ is
that the latter graph has the extra edge vw. So if H contains a T -triangle then
each such T -triangle must contain both the vertices {v, w}.

From Corollary 3 we know that N(w ∈ Y) ⊆ X ∪ {v}. Thus vertex w has no
neighbours in the graph H ′ = (G− {vw})− Ŝ, and has exactly one neighbour—
namely, vertex v—in the graph H = G − Ŝ. So w is not part of any triangle in
graph H. Thus Ŝ = (S′ \ Y) ∪X is a T -THS of graph G of size at most k.

18 Philip, Rajan, Saurabh and Tale

We now show how to bound the number of vertices on the clique side K of
an instance (G;T ; k) which is reduced with respect to Reduction Rule 7.

Bounding the Size of the Clique Side We partition the clique side K into three
parts and bound the size of each part separately. To do this we first find a 3-
approximate solution S̃ to (G;T ; k). For this we initialize S̃ ← Ø and iterate as
follows: If there is a vertex v in the independent side I such that v is part of a
triangle {v, x, y} in the graph G− S̃—note that in this case {x, y} ⊆ K—then we
set S̃ ← S̃ ∪ {v, x, y}. We repeat this till there is no such vertex v ∈ I or till |S̃|
becomes larger than 3k, whichever happens first.

Reduction Rule 8 Let (G;T ; k) be an instance which is reduced with respect to
Reduction Rule 7 and let S̃ be the set constructed as described above. If |S̃| > 3k
then return INO.

Lemma 15. Reduction Rule 8 is safe.

Proof. By Lemma 9 we have that the terminal set T of graph G is exactly its
independent side I. Hence each triangle whose vertex set is added to S̃ by
the construction is a T -triangle, and these vertex sets are pairwise disjoint. If
|S̃| > 3k then graph G contains more than k pairwise vertex-disjoint T -triangle
and therefore is a NO instance, as is INO.

At this point we have that the cardinality of the approximate solution S̃ is at
most 3k. We now partition the sets K, I into three parts each and bound each
part separately (See Figure 1.):

– KS̃ is the set of clique-side vertices included in S̃: KS̃ = K ∩ S̃.
– IS̃ is the set of independent-side vertices included in S̃: IS̃ = I ∩ S̃.
– K0 is the set of clique-side vertices not in S̃ whose neighbourhoods in the inde-

pendent side I are all contained in IS̃:K0 = {u ∈ (K \KS̃) ; N(u) ∩ I ⊆ IS̃};
– I0 is the set of independent-side vertices not in S̃ whose neighbourhoods are

all contained in KS̃: I0 = {v ∈ I \ IS̃ ; N(v) ⊆ KS̃}
– K1, I1 are the remaining vertices in each set: K1 = K \ (KS̃ ∪ K0) and
I1 = I \ (IS̃ ∪ I0).

– K1 is the set of clique-side vertices not in S̃ which have at least one neighbour
in I outside of IS̃ ∪ I0. Equivalently, it is the set of clique-side vertices not in
KS̃ ∪K0: K1 = K \ (KS̃ ∪K0).

– I1 is the set of independent-side vertices which are not in IS̃ ∪ I0:I1 =

I \ (IS̃ ∪ I0). Since S̃ is a solution each vertex in I1—being a terminal—can
have exactly one neighbour in K1.

We list some simple properties of this partition which we need later in our
proofs.

Observation 7 |KS̃ | ≤ 2k and |IS̃ | ≤ k. Each vertex in K1 has (i) no neighbour in
I0 and (ii) at least one neighbour in I1. Each vertex in I1 has exactly one neighbour
in K1. The bipartite graph obtained from G[K1 ∪ I1] by deleting all the edges in
G[K1] is a forest where each connected component is a star.

Subset Feedback Vertex Set in Chordal and Split Graphs 19

Proof. It follows directly from the construction that |KS̃ | ≤ 2k and |IS̃ | ≤ k.
Let v be a vertex in K1. Then v /∈ KS̃ by construction. If v has a neighbour

w ∈ I0 then w ∈ I0 has a neighbour outside of KS̃ , a contradiction.
Since I is the set of terminals we get—Reduction Rule 3—that vertex v has at

least one neighbour in the set I. Since the vertices in I0 do not have neighbours
outside the set KS̃ we get that v /∈ KS̃ does not have a neighbour in the set
I0. So if v has no neighbour in I0 then its neighbourhood on the independent
side is contained in the set IS̃ , which implies that v is in K0 and not in KS̃ , a
contradiction.

If a vertex v ∈ I1 has two neighbours x, y in the set K1 then—since v ∈ I
is a terminal—the vertices {v, x, y} form a T -triangle which does not intersect
the T -THS S̃ = KS̃ ∪ IS̃ , a contradiction. So each vertex in I1 has exactly one
neighbour in K1, which implies that the bipartite graph obtained from G[K1 ∪ I1]
by deleting all the edges in G[K1] is a forest where each connected component is
a star.

Fig. 1. The figure on the left shows the partition of V (G) as described after Lemma 15.
On the right side, we have graph B as described before Corollary 5. The shaded regions in
S̃ and K1 represent sets X,Y , respectively, as defined in Corollary 5.

Let H be the bipartite graph obtained from G[IS̃ ∪ K0] by deleting all the
edges in G[K0]. Since—Observation 6—every vertex in the set K0 has at least
one neighbour in the set I and since (N(K0) ∩ I) ⊆ IS̃ by construction, we get

20 Philip, Rajan, Saurabh and Tale

that there are no isolated vertices in graph H. So if |K0| ≥ 2|IS̃ | then Lemma 3
applies to graph H with P ← IS̃ , Q← K0, t← 2 and we get

Corollary 4. Let (G;T ; k) be an instance which is reduced with respect to Re-
duction Rule 8, and let the sets KS̃ ,K0,K1, IS̃ , I0, I1 be as described above. If
|K0| ≥ 2|IS | then we can find, in polynomial time, non-empty vertex sets X ⊆ IS̃ ⊆
I, Y ⊆ K0 ⊆ K such that (i) X has a 2-expansion M into Y , and (ii) NG(Y) = X.

Lemma 16. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 8, and let the sets KS̃ ,K0,K1, IS̃ , I0, I1 be as described above. Suppose
|K0| ≥ 2|IS̃ |, and let X ⊆ IS̃ ⊆ I, Y ⊆ K0 ⊆ K,M ⊆ E(G[X ∪ Y]) be as guar-
anteed to exist by Corollary 4. If S is a T -THS of graph G of size at most k then
(S \ Y) ∪X is also a T -THS of G of size at most k.

Proof. Let X = {x1, . . . , x|X|}. For each vertex xi ∈ X let xiy1i , xiy
2
i be the two

edges in M which are incident with xi. Then the set {y11 , y21 , . . . , y1|X|, y
2
|X|} ⊆ Y

has size exactly 2|X|, and the |X|-many sets {{x1, y11 , y21}, . . . , {x|X|, y1|X|, y
2
|X|}}

form pairwise vertex-disjoint T -triangles in G.
The T -THS S of G of size at most k contains at least one vertex from each

of the sets {{xi, y1i , y2i } ; 1 ≤ i ≤ |X|}. Let Ŝ = (S \ Y) ∪X. Then we can get Ŝ
from S as follows.

– For each triangle {{xi, y1i , y2i } ; 1 ≤ i ≤ |X|},
• if xi ∈ S then set S ← S \ {y1i , y2i };
• if xi /∈ S then set S ← (S \ {y1i , y2i }) ∪ {xi}.

– Delete all of Y \ {y11 , y21 , . . . , y1|X|, y
2
|X|} from S.

Thus to get Ŝ from S we add at most as many vertices as we delete, and so it is
the case that |Ŝ| ≤ |S| ≤ k.

Consider the induced subgraphs H = G− S and Ĥ = G− Ŝ of G. Of these
H has no T -triangles. Every vertex of Ĥ which is not present in H belongs to the
set Y . So if Ĥ contains a T -triangle then each such T -triangle must contain a
vertex from Y . Now from Corollary 4 we get that N(Y) = X and by definition
we have that no vertex in X is present in Ĥ. Thus each vertex in Y has degree
zero in Ĥ, and so is not in any T -triangle in Ĥ. Hence there are no T -triangles in
Ĥ. Thus Ŝ = (S \ Y) ∪X is a T -THS of G′ of size at most k.

Reduction Rule 9 If |K0| ≥ 2|IS̃ | then find sets X ⊆ IS̃ and Y ⊆ K0 as described
by Corollary 4. Set G′ ← G−X,T ′ ← T \X, k′ ← k − |X|. The reduced instance
is (G′;T ′; k′).

Lemma 17. Reduction Rule 9 is safe.

Proof. If (G;T ; k) is a YES instance then we get from Lemma 16 that G has
a T -THS S of size at most k which contains all of X. By applying part (1) of
Observation 3 |X| times we get that G′ = G −X,T ′ = T \X, k′ = k − |X| is a
YES instance.

Subset Feedback Vertex Set in Chordal and Split Graphs 21

Now suppose (G′;T ′; k′) is a YES instance. Observe that we can get graph G
from G′ by adding, in turn, each vertex x ∈ X and some edges incident on x, and
also that every vertex that we add in this process is a terminal vertex in graph
G. Hence by applying Observation 4 |X| times we get that (G;T = T ′ ∪X; k =
k′ + |X|) is a YES instance.

At this point we have the bounds |KS̃ | ≤ 2k and |K0| < 2|IS̃ | = 2k. We now
use a more involved application of the Expansion Lemma to bound the size of
the remaining part K1 of the clique side. The general idea is that if K1 is at
least twice as large as the approximate solution S̃ then the 2-expansion which
exists between subsets of these two sets will yield a non-empty set of “redundant”
vertices in K1.

Consider the bipartite graph B obtained from the induced subgraph G[S̃∪K1]
of G by (i) deleting all the edges in the two induced subgraphs G[S̃] and G[K1],
respectively, and (ii) deleting every edge uv ; u ∈ KS̃ , v ∈ K1 if and only if
there is no vertex w ∈ I1 such that {u, v, w} form a triangle in G. Consider a
vertex v ∈ K1. If v has a neighbour w ∈ IS̃ then the edge vw is present in
graph B and so v is not isolated in B. Now suppose v has no neighbour in
IS̃ . From the construction we know that v has no neighbour in I0 either. Then
from Lemma 9 and Observation 6 we get that there is a triangle {v, x, y} in G
where x ∈ (I \ (I0 ∪ IS̃)) = I1 and y ∈ K. Now by construction vertex x ∈ I1
has no neighbour in the set K0, and from Observation 7 we get that x has no
neighbour other than v in the set K1. Thus we get that y ∈ KS̃ , and hence
that the edge vy survives in graph B. Hence v is not isolated in B in this case
either. So if |K1| ≥ 2|S̃| then Lemma 3 applies to the bipartite graph B with
P ← S̃, Q← K1, t← 2 and we get

Corollary 5. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 9, and let the sets K1, S̃,KS̃ , IS̃ ,K and the bipartite graph B be as
described above. If |K1| ≥ 2|S̃| then we can find, in polynomial time, non-empty
vertex sets X ⊆ S̃ = (KS̃ ∪ IS̃), Y ⊆ K1 ⊆ K such that (i) X has a 2-expansion
M into Y , and (ii) NB(Y) = X.

Lemma 18. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 8, and let the sets K1, S̃,KS̃ , IS̃ ,K and the bipartite graph B be as
described above. Suppose |K1| ≥ 2|S̃|, and let X ⊆ S̃ = (KS̃ ∪ IS̃), Y ⊆ K1 ⊆
K,M ⊆ E(G[X ∪ Y]) be as guaranteed to exist by Corollary 4. If S is a T -THS of
graph G of size at most k then (S \ Y) ∪X is also a T -THS of G of size at most k.

Proof. LetX = {x1, . . . , x|X|}. Without loss of generality, letX∩KS̃ = {x1, . . . , x`}
and X ∩ IS̃ = {x`+1, . . . , x|X|}. Note that at most one of these two sets could be
the empty set; this does not affect the remaining arguments.

For each vertex xi ∈ (X ∩ KS̃) let xiyi be an edge in M which is incident
with xi. Then we know by the construction that there is a vertex zi ∈ I1 such
that {xi, yi, zi} is a T -triangle in G. From Observation 7 we get that the vertices
zi ∈ I1 ; 1 ≤ i ≤ ` are pairwise disjoint. Now for each vertex xj ∈ (X ∩ IS̃) let
xjy

1
j , xjy

2
j be the two edges inM which are incident with xj . Then we get that the

22 Philip, Rajan, Saurabh and Tale

vertices {xj , y1j , y2j } form a T -triangle in G. Putting these together we get that the
|X|-many sets {{x1, y1, z1}, . . . , {x`, y`, z`}, {x`, y1` , y2`}, . . . , {x|X|, y1|X|, y

2
|X|}} form

pairwise vertex-disjoint T -triangles in G. The T -THS S of G of size at most k
contains at least one vertex from each of these |X| sets. Let Ŝ = (S \ Y) ∪ X.
Then we can get Ŝ from S as follows.

– For each triangle {{xi, yi, zi} ; 1 ≤ i ≤ `},
• if xi ∈ S then set S ← S \ {yi};
• if xi /∈ S and yi ∈ S then set S ← (S \ {yi}) ∪ {xi}.

– For each triangle {{xj , y1j , y2j } ; `+ 1 ≤ j ≤ |X|},
• if xj ∈ S then set S ← S \ {y1j , y2j };
• if xj /∈ S then set S ← (S \ {y1j , y2j }) ∪ {xj}.

– Delete all of Y \ {y1 . . . , y`, y1`+1, y
2
`+1, . . . , y

1
|X|, y

2
|X|} from S.

Thus to get Ŝ from S we add at most as many vertices as we delete, and so it is
the case that |Ŝ| ≤ |S| ≤ k.

Consider the induced subgraphs H = G− S and Ĥ = G− Ŝ of G. Of these
H has no T -triangles. Every vertex of Ĥ which is not present in H belongs to the
set Y . So if Ĥ contains a T -triangle then each such T -triangle must contain a
vertex from Y .

Assume that there exists a T -triangle {y, z, u} in Ĥ, where vertices y, z, u are
in sets Y, I and K, respectively. As Y is a subset of K1, any vertex in Y is not
adjacent with a vertex in I0. This implies that z belongs to the set IS̃ ∪ I1. Now
from Corollary 5 we get that NB(Y) = X and since Ŝ contains X, no vertex in X
is present in Ĥ. In other words, no vertex in set NG(y)∩ IS̃ is present in graph Ĥ.
This implies that z is in I1. Now, consider the vertex u which is adjacent with z
and hence can not be in set K0. Vertex z, which is in I1, has exactly one neighbor
in K1 (Observation 7). Since both y, u are adjacent with z and y is contained in
Y ⊆ K1, vertex u is contained in set KS̃ . We now argue that vertex u is adjacent
with y even in graph B. This follows from the fact that while constructing graph
B, edge yu is not deleted as there exists z in I1 which is adjacent with both y and
u. Hence vertex u is contained in set X. By definition we have that no vertex in
X is present in Ĥ. Thus our assumption is wrong and no vertex in Y is in any
T -triangle in Ĥ. Hence there are no T -triangles in Ĥ, and Ŝ = (S \ Y) ∪X is a
T -THS of G′ of size at most k.

Reduction Rule 10 If |K1| ≥ 2|S̃| then find sets X ⊆ S̃ and Y ⊆ K1 as described
by Corollary 5. Set G′ ← G−X,T ′ ← T \X, k′ ← k − |X|. The reduced instance
is (G′;T ′; k′).

Lemma 19. Reduction Rule 10 is safe.

Proof. If (G;T ; k) is a YES instance then we get from Lemma 18 that G has
a T -THS S of size at most k which contains all of X. By applying part (1) of
Observation 3 |X| times we get that G′ = G −X,T ′ = T \X, k′ = k − |X| is a
YES instance.

Subset Feedback Vertex Set in Chordal and Split Graphs 23

Now suppose (G′;T ′; k′) is a YES instance. Observe that we can get graph G
from G′ by adding, in turn, each vertex x ∈ X and some edges incident on x, and
also that every vertex that we add in this process is a terminal vertex in graph
G. Hence by applying Observation 4 |X| times we get that (G;T = T ′ ∪X; k =
k′ + |X|) is a YES instance.

Putting all these together, we get

Theorem 1. There is a polynomial-time algorithm which, given an instance (G;T ; k)
of SUBSET FVS IN SPLIT GRAPHS, returns an instance (G′;T ′; k′) of SUBSET FVS IN

SPLIT GRAPHS such that (i) (G;T ; k) is a YES instance if and only if (G′;T ′; k′) is
a YES instance, and (ii) |V (G′)| = O(k2), |E(G′)| = O(k2), and k′ ≤ k. Moreover,
the split graph G′ has a split partition (K ′, I ′) with |K ′| ≤ 10k.

Proof. We describe such a kernelization algorithm. Given an instance (G;T ; k) of
SUBSET FVS IN SPLIT GRAPHS, our kernelization algorithm applies the reduction
rules described in this section, exhaustively and in the given order, to get an
instance (G′;T ′; k′) to which none of the reduction rules applies. That is, if at
least one of the reduction rules applies to the current instance at any point, then
the algorithm applies the first such rule, and repeats the process with the reduced
instance. The algorithm outputs the final instance (G′;T ′; k′) as the kernel. Each
reduction rule can be applied in polynomial time, and either (i) stops directly, or
(ii) deletes at least one vertex or edge from the graph. Thus this entire procedure
runs in polynomial time.

The correctness of this kernelization algorithm follows from the proofs of
safeness of the various reduction rules. We now argue the size bound. If (G′;T ′; k)
is IYES or INO then this bound is trivially correct. Hence we assume that no
reduction rule returns a trivial YES or NO instance. Since Reduction Rule 2 is not
applicable, there are no isolated vertices in the graph. Let (K ′, I ′) be the split
partition of the split graph G′. Since Reduction Rules 6 and 7 are not applicable,
every vertex in K ′ is adjacent with at most k vertices in I ′. Since there are no
isolated vertices in the graph, this implies |I ′| ≤ k · |K ′|. Since Reduction Rule 8
did not return INO we have that the approximate solution, S̃, is of size at most 3k.
Analogous to the definitions after Lemma 15, let K ′

S̃
= K ′ ∩ S̃, I ′

S̃
= I ′ ∩ S̃,K ′0 ={

u ∈ (K ′ \K ′
S̃
) ; N(u) ∩ I ′ ⊆ I ′

S̃

}
,K ′1 = K ′ \ (K ′

S̃
∪K ′0). From Observation 7

we get that |K ′
S̃
| ≤ 2k and |I ′

S̃
| ≤ k hold. Since Reduction Rule 9 is not applicable,

we get that |K0| < 2|I ′
S̃
| < 2k holds. Similarly, since Reduction Reduction Rule 10

is not applicable we get that |K1| < 2|S̃| < 6k holds. Since K ′
S̃
,K0 and K1 form

a partition of K, we get that the cardinality of K is upper bounded by 10k. ut

4 Kernel Lower Bound

In this section we show that the bound of Theorem 1 is essentially tight; we prove

Theorem 2. For any ε > 0, the SUBSET FVS IN SPLIT GRAPHS problem parame-
terized by the solution size does not admit a polynomial kernel of size O(k2−ε) bits,
unless NP ⊆ coNP/poly.

24 Philip, Rajan, Saurabh and Tale

Let Π ⊆ Σ∗ be any language. A polynomial compression for a parameterized
problem Q ⊆ Σ∗ × N is an algorithm C that, given an instance (I; k) of Q, runs
in time O((|I| + k)c) and returns a string y such that (i) |y| ≤ p(k) for some
polynomial p(·), and (ii) y ∈ Π if and only if (I; k) ∈ Q. Here, c is a constant. If
|Σ| = 2, the polynomial p(·) will be called the bitsize of the compression. Dell
and van Melkebeek [7] established following breakthrough result.

Proposition 1. For any ε > 0, the VERTEX COVER problem parameterized by the
solution size does not admit a polynomial compression with bitsize O(k2−ε), unless
NP ⊆ coNP/poly.

Proof (of Theorem 2). We prove a stronger statement, namely that SUBSET FVS
IN SPLIT GRAPHS parameterized by the solution size does not admit a polynomial
compression with bitsize O(k2−ε), to any language, unless NP ⊆ coNP/poly.
Indeed, fix a language Π ⊆ Σ∗, and suppose there exists an algorithm C1 and a
constant δ > 0 such that given an instance (I; k) of SUBSET FVS IN SPLIT GRAPHS

as input, algorithm C1 outputs a string y ∈ Σ of size O(k2−δ) such that (I; k) is a
YES instance of SUBSET FVS IN SPLIT GRAPHS if and only if y is a YES instance
of Π. We show how to design a polynomial compression for VERTEX COVER using
C1, in a way which contradicts Proposition 1. For this we reuse a reduction from
VERTEX COVER to SUBSET FVS IN SPLIT GRAPHS due to Fomin et al.:

Reduction: [10, proof of Theorem 2.1] Let (G, k) be an instance of VERTEX

COVER, where G is an arbitrary graph with n vertices and m edges. We construct
a split graph H with split partition (K, I) as follows. V (H) = K∪̇I contains
n+m vertices: for each vertex u ∈ V (G), there is a vertex u ∈ K, and for each
edge {v, w} ∈ E(G), there is a vertex uvw ∈ I. The edge set E(H) is defined so
that vertices in K are pairwise adjacent, and each vertex uvw of I has exactly
two neighbors: vertices v and w in K. Consequently, K is a clique and I is an
independent set. Fomin et al. show that (G; k) is a YES instance of VERTEX COVER

if and only if (H; k) is a YES instance of SUBSET FVS IN SPLIT GRAPHS.

Our compression algorithm C2 for VERTEX COVER works as follows. Given an
instance (G; k) of VERTEX COVER, algorithm C2 applies the above reduction to
obtain an equivalent instance (H; k) of SUBSET FVS IN SPLIT GRAPHS. On this
instance, C2 runs the hypothetical compression algorithm C1 for SUBSET FVS IN

SPLIT GRAPHS, to produce a string y. By assumption, (H; k) is a YES instance
of SUBSET FVS IN SPLIT GRAPHS if and only if y is a yes instance of Π. By [10,
Theorem 2.1], (H; k) is a YES instance of SUBSET FVS IN SPLIT GRAPHS if and
only if (G; k) is a yes instance of Π. Hence (G; k) is a YES instance of VERTEX

COVER if and only if y is a YES instance of Σ∗, and the size of y is at most
O(k2−δ). Since this entire process can be completed in time polynimal in size of
input (G; k), this contradicts Proposition 1. Thus the compression algorithm C1
cannot exist unless coNP ⊆ NP/poly. Setting the language Π in the definition of
C1 to be SUBSET FVS IN SPLIT GRAPHS itself, we get Theorem 2.

Subset Feedback Vertex Set in Chordal and Split Graphs 25

5 An FPT Algorithm For SUBSET FVS IN CHORDAL GRAPHS

In this section we prove Theorem 3; we show that the SUBSET FVS IN CHORDAL

GRAPHS problem can be solved in O(2k(n+m)) time where n,m are the number
of vertices and edges of G, respectively. Our algorithm consists of the application
of reduction rules and branching rules to the input instance. To bound the running
time we assign a measure to each instance. Given an instance I as input, each
branching rule creates at least two new instances which have strictly smaller
measures than that of I; the algorithm then solves these new instances recursively
and puts their solutions together to obtain a solution for I. Consider an application
of branching rule BR to an instance I whose measure is k. Let r > 1 be a positive
integer, and let ti be a positive real number for i ∈ {1, 2, . . . , r}. Suppose rule BR,
when applied to instance I, creates r new instances I1, I2, . . . , Ir with measures
k−t1, k−t2, . . . , k−tr, respectively. We say that the branching rule BR is exhaustive
if I is a YES instance if and only if at least one of I1, I2, . . . , Ir is a YES instance.
We say that (t1, t2, . . . , tr) is the branching vector corresponding to rule BR. The
contribution of branching rule BR to the running time of the algorithm is O∗(αk),
where α is the unique positive real root of xk−xk−t1 −xk−t2 · · · −xk−tr = 0 [12,
Theorem 2.1].

We first give an informal description of the algorithm. At a high level, the
algorithm proceeds by branching on the vertices of a clique in the input graph.
We use properties of chordal graphs to ensure that we can always find a clique
to branch on, and that this can be done with branching vectorswhich keep the
running time within O?(2k).

We apply reduction rules to ensure that every simplicial clique in the graph
has size at least three, and that every vertex in the graph is part of a T -triangle.
The latter condition implies that every simplicial clique contains at least one
terminal vertex. Let Q = {s, a, b} be a simplicial clique in the graph, where s is a
simplicial vertex. The algorithm branches by picking either of the two vertices
a, b into the solution. This is safe9 since s, a, b is the only T -triangle containing
s. The branching vector is (1, 1) and resolves to a running time of O?(2k). This
branching rule is applied whenever there is a simplicial clique of size three in the
graph.

Let Q = {t, a, b, c, d} ⊆ V (G) be a—not necessarily simplicial—clique of size
five in G which contains a terminal t. If a solution does not contain t, then it must
contain at least three of the vertices {a, b, c, d}. This is because each pair of these
four vertices forms a T -triangle with t. This implies that the three-way branch
{{t}, {a, b}, {c, d}} is correct and complete.10 This branching has the branching
vector (1, 2, 2) which resolves to a running time of O?(2k). Note that if clique Q
contains more than five vertices (including a terminal t) then we can apply this

9 Precise arguments follow.
10 For a given instance (G,T, k) each branch creates new (“smaller”) instances and solves

them recursively. In this case the three branches would be (G−{t}, T \{t}, k−1), (G−
{a, b}, T \ {a, b}, k − 2) and (G− {a, b}, T \ {c, d}, k − 2).

26 Philip, Rajan, Saurabh and Tale

branching to a sub-clique {t, a, b, c, d} (Q. If there is a simplicial clique of size
at least five in the graph then the algorithm applies this branching.

We now come to the case where every simplicial clique in the graph has size
exactly four. Simple branching rules now fail to give a running time within the
O?(2k) bound. We argue if the graph has more than eight vertices at this point
then we can find three simplicial cliques with certain properties. We design a
branching rule which applies to this structure and gives a total running time of
O?(2k).

5.1 Reduction Rules

The first two rules apply at the leaves of the branching tree.

Reduction Rule 11 Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL

GRAPHS. If k ≤ 0 and there is a T -triangle in G then return a trivial NO instance.

Reduction Rule 12 Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL

GRAPHS. If k ≥ 0 and there is no T -triangle in G then return a trivial YES instance.

We can get rid of connected components which are cliques.

Reduction Rule 13 Let (G = (V,E);T ; k) be an instance of SUBSET FVS IN

CHORDAL GRAPHS, and let Q be a connected component of G which is a clique.
Delete Q from G to obtain the graph G′ = G−Q, and let T ′ = T \Q. The reduced
instance is computed as follows:

1. If |Q| ∈ {1, 2}, or if Q contains no terminal, then the reduced instance is
(G′;T ′; k).

2. Else: If Q contains at most two non-terminals, then decrement k by |Q| − 2: the
reduced instance is (G′;T ′; k − (|Q| − 2)).

3. In the remaining case Q contains three or more non-terminals. Let t = |T ∩Q|
be the number of terminals in Q. Decrement k by t: the reduced instance is
(G′;T ′; k − t).

Lemma 20. Reduction Rule 13 is safe.

Proof. Since G′ is induced subgraph of G, any subset-FVS of G is also a subset-
FVS of G′. This implies forward direction in Case 1. For reverse direction in the
same case, notice that no vertices in Q is part of any T -triangle in G and vertices
in clique Q are disjoint from vertices of G′. Hence if S is subset-FVS of G′ then is
also a subset-FVS of G.

Consider clique Q and an optimal subset-FVS S in graph G. In Case 2, clique
Q contains at most two non-terminal vertices. If cardinality of Q \ S is three or
more then vertices in Q \ S forms a T -triangle which contradicts the fact that
S is a subset-FVS. Hence Q \ S contains at most two vertices. By deleting any
|Q|−2 vertices we obtains a cycle-less graph in Q and hence it is irrelevant which
|Q| − 2 vertices are deleted. This proves the forward direction in Case 2. For

Subset Feedback Vertex Set in Chordal and Split Graphs 27

reverse direction, note that adding an isolated edge in graph G′ does not change
its subset-FVS. This observation along with the fact that for any subset X of V (G)
if S is a subset-FVS of G−X of size k − |X| then S ∪X is a subset-FVS of G of
size k.

In Case 3, clique Q contains at least three non-terminal vertices, say y1, y2, y3.
Any subset-FVS can omit exclude at most two terminals in clique Q. If S does
not contains a terminal, say t, then it must include all but one vertices in Q. Let
another vertex excluded by S in clique Q be x. If x is a terminal then S includes
y1, y2, y3. In this case, (S \ {y1, y2, y3}) ∪ {t, x} is a subset-FVS of strictly lesser
cardinality then S. This contradicts the optimality of S. If x is not a terminal then
S contains at least two vertices from set {y1, y2, y3}. Without loss of generality,
let those be y1 and y2. Again in this case, (S \ {y1, y2}) ∪ {t} is a subset-FVS of
strictly lesser cardinality then S which contradicts the optimality of S. Hence S
contains all the terminal vertices in clique Q. Since including all the terminals
in Q kills all T -cycles contained in it and S is optimum, S contains does not
contain any non-terminal vertex in Q. Reverse direction in Case 3 is implied by
correctness proof for Case 1 and the fact that for any subset X of V (G) if S is a
subset-FVS of G−X of size k − |X| then S ∪X is a subset-FVS of G of size k.

Next reduction rule deletes any vertex which is not part of a T -triangle.

Reduction Rule 14 Let (G = (V,E);T ; k) be an instance of SUBSET FVS IN

CHORDAL GRAPHS, and let N be the set of all non terminal vertices in G which do
not have any terminal from T as a neighbour. Delete N from G to obtain the graph
G′ = G−N . The reduced instance is (G′;T ; k).

Lemma 21. Reduction Rule 14 is safe.

Proof. Since G′ is induced subgraph of G, any subset-FVS of G is also a subset-
FVS of G′. This implies the correctness of forward direction. In reverse direction,
consider subset-FVS S′ of G′. If S′ is not a subset-FVS of G then there exists a
T -cycle in G \ S. Since this T -cycle is not contains in G′, it must contain a vertex,
say v, from set N . By Lemma 1, if there exists a T -cycle contains vertex v then
there is a T -triangle containing v. This implies v has a neighbor in terminal set
contradicting the fact that v is in N .

We can safely delete some edges which are not part of any T -triangle, to get a
graph with no “tiny” maximal cliques.

Reduction Rule 15 Let (G = (V,E);T ; k) be an instance of SUBSET FVS IN

CHORDAL GRAPHS, and let e = {u, v} be a bridge in G. Delete the edge e to get the
graph G′ = (V,E \ {e}). The reduced instance is (G′;T ; k).

Lemma 22. Reduction Rule 15 is safe.

Proof. By Lemma 2, G′ is a chordal graph. Since G′ is a subgraph of G, any
subset-FVS of G is also a subset-FVS of G′. This proves the safeness of forward
direction of reduction rule. In graph G′, vertices u, v are different connected

28 Philip, Rajan, Saurabh and Tale

components. If S′ is a subset-FVS of G′ which does not contain either of u or v
then these two vertices are in different connected components of G′ − S′. Hence
adding an edge e = uv in graph G′ − S′ does not add more cycle. If S′ contains
either u or v then graphs G′ − S′ and G− S′ are identical. Hence in either case,
S′ is a subset-FVS of G.

Lemma 23. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS

which is reduced with respect to Reduction Rules 13 and 15. Then every maximal
clique in G is of size at least three.

Proof. Reduction Rule 13 ensures that for any maximal clique Q in the reduced
graph G, some vertex in Q has a neighbour which is not in Q. Thus every maximal
clique in Q has size at least two. Let Q = {u, v} be a maximal clique of size two in
G. Then there is a third vertex w in G such that either {u,w} or {v, w} is an edge
in G. If both these edges are present in G then {u, v, w} is a clique, contradicting
the maximality of Q. So let {u,w} be a non-edge in G.

Reduction Rule 13 ensures that G has at least three vertices, and hence Re-
duction Rule 15 ensures that G has no cut vertex11. G is thus 2-vertex-connected.
In particular, there is a path from u to w which avoids the vertex v; let P be a
shortest such path. Since G is chordal and since {u, v, w} is a path in G, path P
cannot be of length two or more. Thus P is a single edge {u,w}, a contradiction.

At this point, every vertex in the graph is part of at least one T -triangle.

Lemma 24. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS

which is reduced with respect to Reduction Rules 13, 15 and 14. Then every vertex
in G is part of a T -triangle.

Proof. Let v be a vertex in G and let t be a terminal which is adjacent to v. Let
Q be a maximal clique in G which contains the edge {v, t}; such a clique exists,
because the edge {v, t} is a clique by itself. Clique Q contains at least one other
vertex u, and {u, v, t} form a T -triangle which contains v.

Consider a simplicial vertex v in reduced graph G. Either vertex v is a terminal
or by Lemma 24, it is adjacent with some terminal. In either case, simplicial clique
which containing v contains a terminal. Combining this fact with Lemma 23, we
get following Corollary.

Corollary 6. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS

which is reduced with respect to Reduction Rules 13, 14 and 15, and let Q be a
simplicial clique in G. Then Q has size at least three, and contains a terminal vertex.

It remains to argue that these reduction rules can be applied in polynomial
time. In the following Lemma we prove a stronger statement. We prove that not
only each of this reduction rules can be applied in linear time, but we can apply
all these rules exhaustively in linear time.

11 Exercise 2.3.1 in “Graph Theory with Applications” by Bondy and Murty

Subset Feedback Vertex Set in Chordal and Split Graphs 29

Lemma 25. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS.
We can exhaustively apply Reduction Rules 13, 14 and 15 on this instance in time
O(n+m). Here n,m are number of vertices and edges in input graph G.

Proof. Let C be the set of all maximal clique of input graph G. The cardinality of
set C is at most n and we can compute this set in time O(n+m) ([15, Theorem
4.17]). While constructing set C, we can mark all cliques in C which contains
terminal in it. We define strong neighbors of T as set of non-terminal vertices
which are present in maximal clique containing a terminal and is of size at least
three. Given a chordal graph G and set C, one can mark all strong neighbors of
T in time O(n +m). Moreover, all maximal cliques in C of size two are either
bridges or isolated cliques. Given graphG, algorithm computes set C and performs
following steps. Step 1 : Mark all strong neighbors of T and delete remaining
vertices. Step 2 : Find and delete all bridges in graph G. Step 3 : Delete isolated
cliques in graph according to Reduction Rule 13. One iteration of three steps
can be performed in time O(n +m). Next, we argue that only one iteration is
sufficient to get a non-reducible instance.

Consider a graph G′ obtained by above process. We first argue that every
non-terminal vertex in G′ is strong neighbor (and hence neighbor) of T . Suppose
not. Consider a non-terminal vertex v in G′ which is not a strong neighbor of T .
Since vertex v was not deleted in Step 1, v was a strong vertex in G. This implies,
v is part of maximal clique Q of size at least 3. Since we only delete bridge edges
in Step 2, no edge in Q has been deleted. As v is not deleted in Step 3, v is not
a part of isolated clique. This implies Q is not an isolated clique and hence no
vertex in Q has been deleted in Step 3. Hence Q is present in graph G′. Since Q
contains a terminal, vertex v and is of size at least there, this contradicts the fact
that v is not a strong neighborhood of T . All bridges in graph G has been deleted
in Step 2. Step 3 of the algorithm deletes an isolated clique which satisfies certain
criteria. Hence if there is a bridge in G′ then the same bridge is present in G at
the end of Step 2. Hence G′ contains no bridge. Graph G′ also does not contain
any isolated cliques as all such cliques were deleted in Step 3.

5.2 Simple Branching Rules

Our first branching rule ensures that every non-terminal vertex has at least two
terminals in its neighbourhood. So let v be a non-terminal vertex which has
exactly one terminal t in its neighbourhood. Let x be a vertex—as guaranteed
to exist by Lemma 24—such that {v, t, x} is a T -triangle containing v. By our
assumption every T -triangle which contains v also contains t. A solution S as
called as target solution if |S| ≤ k. It follows that if S is a target solution then
(S \ {v}) ∪ {t} is also a target solution. This means that we may assume that
if there exists a target solution then there exists one which does not contain v.
Hence it is safe to branch on any two neighbours of v which form a T -triangle
containing v.

Branching Rule 1 Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL

GRAPHS, let v be a non-terminal vertex which has exactly one terminal neighbour t,

30 Philip, Rajan, Saurabh and Tale

and let {v, t, x} be a T -triangle containing v. Let G1 = G− {t}, G2 = G− {x} and
T1 = T \ {t}, T2 = T \ {x}. The new instances are: (G1;T1; k − 1), (G2;T2; k − 1).

Lemma 26. Branching Rule 1 is exhaustive and it can be executed in timeO(n+m).

Proof. Consider an instance (G;T ; k) of SUBSET FVS IN CHORDAL GRAPHS and let
(G1;T1; k− 1) and (G2;T2; k− 1) be two instances produced by Branching Rule 1
when applied on (G;T ; k). We argue that (G;T ; k) is a YES instance if and only
if either (G1;T1; k − 1) or (G2;T2; k − 1) is a YES instance. Let v, t, x be vertices
in G as specified in the statement of branching rule.

(⇒) Since {v, t, x} is a T -triangle inG, any target solution of (G;T ; k) contains
at least one vertex among them. Consider a target solution S which contains t.
Set S \ {t} is a solution of (G− {t};T1; k − 1). By applying similar argument in
the case when S contains x implies that (G− {x};T2; k − 1) is an YES instance.
We now consider the case when S contains v. Note that any T -cycle passing
through v contains terminal t. Hence if S is a target solution contains v then
(S \ {v}) ∪ {t} is also a target solution. This implies if (G;T ; k) is a YES instance
then either (G1;T1; k − 1) or (G2;T2; k − 1) is also a YES instance.

(⇐) The proof of reverse direction follows from the fact that for any U ⊆ V (G)
if S′ is a target solution of (G−U ;T \U ; k− |U |) then S′ ∪U is a target solution
of (G;T ; k).

To apply this reduction rule, we need to find a vertex which is adjacent with
exactly one terminal. If such vertex exists then it can be found in time O(n+m).

The rest of our branching rules apply to simplicial cliques. As noted above,
this is more or less straightforward when we have a simplicial clique of size either
three, or at least five. Let v be a simplicial vertex in graph G and {v, a, b} its
simplicial clique. By Corollary 6 at least one of {v, a, b} is a terminal, and so
every solution must contain at least one of {v, a, b}. Vertex v is not part of any
triangle in the graphs G−{a} and G−{b}. It follows that if a solution S contains
v then both (S \ {v}) ∪ {a} and (S \ {v}) ∪ {b} are solutions of the same size or
smaller. Thus we get that there is an optimal solution which does not contain v,
and contains at least one of {a, b}. This gives us a two-way branching rule for
such cliques.

Branching Rule 2 Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL

GRAPHS, and let {v, a, b} be a simplicial clique with v being the simplicial ver-
tex. Let G1 = G−{v, a}, G2 = G−{v, b} and T1 = T \ {v, a}, T2 = T \ {v, b}. The
new instances are: (G1;T1; k − 1), (G2;T2; k − 1).

Lemma 27. Branching Rule 2 is exhaustive and it can be executed in timeO(n+m).

Proof. Consider an instance (G;T ; k) of SUBSET FVS IN CHORDAL GRAPHS and let
(G1;T1; k − 1) and (G2;T2; k − 1) be two instance produced by Branching Rule 2
when applied on (G;T ; k). Let v be a simplicial vertex of degree two and a, b be
its neighbors.

(⇒) By Corollary 6 at least one of {v, a, b} is a terminal. Since {v, a, b} is
a T -triangle in G, any target solution of (G;T ; k) contains at least one vertex

Subset Feedback Vertex Set in Chordal and Split Graphs 31

among them. Consider a target solution S which contains a. Set S \ {a} is a
solution of (G− {a};T1; k − 1). In graph G− {a}, vertex v is adjacent with only
b. Reduction Rules 15 and 13 applied to G− a will delete the edge incident of
v and then vertex v. Hence (G − {a};T1; k − 1) is a YES instance if and only
if (G − {a, v};T1; k − 1) is a YES instance. By applying similar argument in
the case when S contains b implies that if a target solution S contains b then
(G−{b, v};T1; k−1) is a YES instance. We now consider the case when S contains
v. We claim that we can construct another solution which excludes v and is of
cardinality at most S. Since v is part of exactly one T -triangles, namely, {v, a, b},
every T -triangle passing through v can be hit by picking either a or b. Hence, if a
target solution S contains v then (S \ {v}) ∪ {a} is also a target solution. This
implies if (G;T ; k) is a YES instance then either (G1;T1; k − 1) or (G2;T2; k − 1)
is also a YES instance.

(⇐) If S′ is a target solution of (G \ {v, a};T \ {v, a}; k− 1) then S′ ∪ {a} is a
solution of G− v of size at most k. Since vertex v is adjacent with only b in graph
G−(S′∪{a}), set S′∪{a} is a solution of G as well. This implies that (G;T ; k) is a
YES instance. By applying similar argument in case of (G\{v, b};T \{v, b}; k−1),
we complete the proof of the reverse direction.

To apply this reduction rule, algorithm needs to find simplicial vertex of
degree two if one exists. It is easy to check all vertices of degree two whether
or not their neighborhood is a clique. Hence one can find a simplicial clique to
branch on or conclude that no such clique exits in time O(n+m).

Now let Q be a clique in G of size at least five, and let v be its simplicial
vertex. By Corollary 6 Q contains a terminal, say t. We can thus—as argued at
the beginning of this section—safely branch in the following manner.

Branching Rule 3 Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL

GRAPHS, Q be a clique of size at least five in G, and t a terminal in Q. Let {a, b, c, d}
be four other vertices of Q. Let G1 = G − {t}, G2 = G − {a, b}, G3 = G − {c, d}
and T1 = T \ {t}, T3 = T \ {a, b}, T3 = T \ {c, d}. The new instances are:
(G1;T1; k − 1), (G2;T2; k − 2), (G3;T3; k − 2).

Lemma 28. Branching Rule 3 is exhaustive and it can be executed in timeO(n+m).

Proof. Consider an instance (G;T ; k) of SUBSET FVS IN CHORDAL GRAPHS and
let (G1;T1; k− 1), (G2;T2; k− 2), and (G2;T2; k− 2) be three instances produced
by Branching Rule 3 when applied on (G;T ; k). Let t be a terminal in maximal
clique of size at least five and vertices a, b, c, d be any of its four neighbors.

(⇒) Consider a target solution S for (G,T, k). We consider following cases:
S includes the terminal t; S excludes t but contains both a, b and third case is
when S excludes t and dose not contains both a, b. Since {t, a, b} is a T -triangle
in G, solution S can not exclude all of a, b, t. Hence in third case, S includes at
least one of a, b. If target solution S contains t then set S \ {t} is a solution of
(G− {t}, T1, k − 1). Similarly, if target solution S contains a, b then set S \ {a, b}
is a solution of (G − {a, b}, T2, k − 2). Consider third case mentioned above.
Without loss of generality, assume that S excludes b. This implies S excludes

32 Philip, Rajan, Saurabh and Tale

(a) Refer to Lemma 29 (b) Refer to Lemma 30

Fig. 2. In both figures, square around the vertex denotes that it is a terminal while circle
denotes that the vertex is included in solution S. In 2a, outer circle represents the maximal
clique Q. Not all the vertices and edges in Q are shown in the figure.

both t and b. Since both {t, b, c} and {t, b, d} are T -triangles, S must include both
c, d. By applying similar argument as in previous case, set S \ {c, d} is a solution
of (G − {c, d}, T2, k − 2). This implies if (G,T, k) is a YES instance then either
(G1;T1; k − 1) or (G2;T2; k − 2) or (G3;T3; k − 2) is also a YES instance.

(⇐) The proof of reverse direction follows from the fact that for any U ⊆ V (G)
if S′ is a target solution of (G−U ;T \U ; k− |U |) then S′ ∪U is a target solution
of (G;T ; k).

To apply the branching rule, we need to find a maximal clique of size at least
five which contains a terminal if one exists. One can enumerate all maximal
cliques in given chordal graph in time O(n+m) and hence can find desired clique
or conclude that no such clique exists.

Observation 8 Let (G;T ; k) be an instance which is reduced with respect to all the
reduction rules in this section, and to which neither of the above branching rules
applies. Then every simplicial clique in G is of size exactly four.

We now show that we can ensure, within the O?(2k) time bound, that every
simplicial vertex in G is a terminal as well.12 For this we need a structural result.

Lemma 29. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS,
and let S be a minimal solution of (G;T ; k). Let v be a non-terminal vertex in S for
which there exists a clique Q in G such that every T -triangle which contains v is
also contained in Q. Then there is a unique T -triangle 4v such that v is the only
vertex in S which is present in 4v.
12 The converse may not hold.

Subset Feedback Vertex Set in Chordal and Split Graphs 33

Proof. If every T -triangle in which v is present also contains another vertex from
S then S \ {v} is a solution as well, contradicting the minimality of S. So there is
at least one T -triangle 4v such that v is the only vertex in S which is present in
4v.

Now suppose there are two T -triangles 41 = {v, a, b},41 = {v, c, d} such
that v is the only vertex in S which is present in each of 41,42 (See 2a).
Now triangles 41,42 are distinct, each contains a terminal vertex, and v is not
a terminal vertex. So the collection (v, a, b, c, d) contains at least four distinct
vertices, say {v, a, b, c}, of which at least one vertex, say a, is a terminal vertex.
Since both these triangles are part of the clique Q, the four vertices {v, a, b, c}
form a clique. Deleting v from this clique leaves the triangle {a, b, c} which (i)
contains the terminal a, and (ii) contains no vertex from the set S. Thus the
purported solution S does not intersect the T -triangle {a, b, c}, a contradiction.

Since every neighbour of a simplicial vertex is contained in its simplicial
clique, we get

Corollary 7. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS,
and let S be a minimal solution of (G;T ; k). Let v be a non-terminal, simplicial
vertex in S. Then there is a unique T -triangle 4v such that v is the only vertex in S
which is present in 4v.

This implies that we can safely get rid of non-terminal, simplicial vertices.

Lemma 30. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS

which is reduced with respect to the reduction and branching rules described so
far. Let v be non-terminal vertex which is simplicial in G. If (G;T ; k) has a target
solution then it has a target solution which does not contain v.

Proof. By Observation 8, every simplicial clique in G has size exactly four. Let S
be a target solution of (G;T ; k) which contains v, and let Q = {v, t, x, y} be the
simplicial clique of v where t is a terminal vertex.

From Corollary 7 we get that there is a unique T -triangle 4v such that v
is the only vertex from S which is in 4v. Without loss of generality let 4v be
{v, t, x} (See 2b). Then neither t nor x is in S. Now {t, x, y} is a T -triangle as
well, so we get that vertex y is in S. If we delete the vertex set S \ {v} from G,
then every remaining T -triangle must intersect v. But the only such triangle is
4v = {v, t, x}, and so we get that (S \ {v}) ∪ {t} is a solution as well.

Let v be a non-terminal vertex which is simplicial, and let Q = {v, t, x, y}
be the simplicial clique of v where t is a terminal vertex. If (G;T ; k) is a YES
instance then we get from Lemma 30 that it has a target solution which (i) does
not contain v, and (ii) contains either t or both of x, y. This implies that we can
safely delete v and branch on t, {x, y}.

Branching Rule 4 Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL

GRAPHS, and let {v, t, x, y} be a simplicial clique whose simplicial vertex v is a
non-terminal, and t is a terminal. Let G1 = G − {t}, G2 = G − {v, x, y} and
T1 = T \{t}, T2 = T \{x, y}. The new instances are: (G1;T1; k−1), (G2;T2; k−2).

34 Philip, Rajan, Saurabh and Tale

Lemma 31. Branching Rule 4 is exhaustive and it can be executed in timeO(n+m).

Proof. Consider an instance (G;T ; k) of SUBSET FVS IN CHORDAL GRAPHS and
let (G1;T1; k − 1) and (G2;T2; k − 2) be two instances produced by Branch-
ing Rule 4 when applied on (G;T ; k). Let v be a non-terminal simplicial vertex
with neighbors t, x, y, where t is a terminal.

(⇒) Since {v, t, x, y} is a clique in G, any target solution of (G,T, k) contains
at least one vertex among them. By Lemma 30, there exists a target solution
which does not contain v and contains either t or both of x, y. If target solution
S contains t then set S \ {t} is a solution of (G − {t};T1; k − 1). If solution
S excludes t then it includes both x, y. In this case, S \ {x, y} is a solution of
(G− {x, y}, T2, k − 2). Notice that in graph G− {x, y}, vertex v is adjacent with
exactly one vertex. Reduction Rules 15 and 13 applied to G− {x, y} will delete
the edge incident on v and then vertex v. Hence (G−{v, x, y};T1; k− 1) is a YES
instance if and only if (G2;T2; k − 2) is a YES instance. This implies if (G,T, k) is
a YES instance then either (G1;T1; k− 1) or (G2;T2; k− 2) is also a YES instance.

(⇐) We use the fact that for all U ⊆ V (G) if S′ is a target solution of (G −
U ;T \U ; k−|U |) then S′∪U is a target solution of (G;T ; k). In case (G1;T1; k−1)
is a YES instance, reverse direction follows immediately. If (G2;T2; k − 2) is a
YES instance then we first note that adding a new vertex of degree one in G2

does not change its subset-FVS. This completes the proof of the reverse direction
of the lemma.

To apply this reduction rule, algorithm needs to find simplicial vertex of
degree four if one exists. It is easy to check all vertices of degree four whether
or not their neighborhood is a clique. Hence one can find a simplicial clique to
branch on or conclude that no such clique exits in time O(n+m).

At this point we have that every simplicial vertex is a terminal. We now ensure
that there is exactly one terminal in any simplicial clique. We show first that if
t is a simplicial terminal vertex with exactly three neighbours x, y, z, then we
can safely assume that a target solution which contains t does not contain any of
{x, y, z}, and vice versa.

Lemma 32. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS. Let
t be a terminal vertex which is simplicial, and let C = {t, x, y, z} be its simplicial
clique. If (G;T ; k) has a target solution which contains two vertices from the clique
C, then it has a target solution which does not contain t.

Proof. Let S be a target solution which contains two vertices from C. If S does
not contain t then there is nothing more to prove. So let t ∈ S. We assume,
without loss of generality, that x is another vertex from C which is in S, so that
{t, x} ⊆ S. Let H be the graph obtained from G by deleting all of S. Then H
contains no T -triangle.

Now consider the set S′ = (S \ {t}) ∪ {y}, which is not larger than S. Let H ′

be the graph obtained by deleting S′ from G. Thus H ′ is the graph obtained from
the graph H by (i) adding back t and all the edges {{t, s} ∈ E(G) ; s ∈ V (H)},

Subset Feedback Vertex Set in Chordal and Split Graphs 35

and (ii) deleting y from the resulting graph. Since t is the only vertex added to H
in this process, we get that every T -triangle in H ′ must contain vertex t.

Now since S′ contains both of {x, y}, we get that vertex t has degree at most
one in graph H ′. Thus t it is not part of any triangle in H ′, which implies that H ′

contains no T -triangle. Thus S′ is a target solution which does not contain t.

Corollary 8. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS.
Let t be a terminal vertex which is simplicial, and let C = {t, x, y, z} be its simplicial
clique. Then the following are all equivalent:

1. (G;T ; k) has a target solution.
2. (G;T ; k) has a target solution which

– does not contain t, OR
– contains t, and excludes all of {x, y, z}.

3. (G;T ; k) has a target solution which, for each w ∈ {x, y, z},
– does not contain w, OR
– contains w, and excludes t.

Proof. We show that (1) and (2) are equivalent, and that (1) and (3) are equiva-
lent. Observe that the directions (2) =⇒ (1) and (3) =⇒ (1) are trivially true;
we now argue that the forward directions hold in each case.

(1) =⇒ (2) . If (G;T ; k) has a target solution which does not contain t then
there is nothing more to prove. So let it be the case that every such solution
contains t. If there is such a solution which excludes all of {x, y, z} then
there is nothing more to prove. So let it be the case that every such solution
contains at least one of {x, y, z}, as well. Thus every target solution contains
two vertices from clique C. Now using (1) we get that (G;T ; k) has a target
solution which contains two vertices from clique C. Corollary 8 implies that
(G;T ; k) has a target solution which does not contain t, which contradicts
our assumption.

(1) =⇒ (3) . We present the case for w = x; the other two cases follow by
symmetric arguments. If (G;T ; k) has a target solution which does not contain
x then there is nothing more to prove. So let it be the case that every such
solution contains x. If there is such a solution which excludes t then there is
nothing more to prove. So let it be the case that every such solution contains
t. Thus every target solution of (G;T ; k) contains both of {t, x}. Now using
(1) we get that (G;T ; k) has a target solution which contains two vertices—t
and x—from clique C. Corollary 8 implies that (G;T ; k) has a target solution
which does not contain t, which contradicts our assumption.

From this we get

Corollary 9. If C = {t, x, y, z} is a simplicial clique of the given type then it is safe
to assume the following:

– if there is a target solution which contains t, then there is such a solution which
contains none of the vertices {x, y, z}.

36 Philip, Rajan, Saurabh and Tale

– if there is a target solution which contains at least one of {x, y, z}, then there is
such a solution which does not contain t.

Definition 1. Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL GRAPHS to
which none of the previous reduction or branching rules applies. Let C = {t, x, y, z}
be a simplicial clique in G with t being its unique terminal and simplicial vertex. A
subset S ⊆ V (G) of vertices of G is a selective solution of the pair ((G;T ; k), C) if
the following hold:

– G− S has no T -triangles,
– |S| ≤ k,
– If S contains t then S contains none of {x, y, z}, and,
– If S contains one of {x, y, z} then S does not contain t.

A selective solution is thus a target solution which satisfies the conditions of
Corollary 9. From Corollary 9 we get that there exists a target solution if and only
if there exists a selective solution. From now on our algorithm will search only
for selective solutions.

Now let {t, x, y, z} be a simplicial clique with two terminals, say t, x, where t
is a simplicial vertex. If vertex t is present in a selective solution S then S does not
contain any of {x, y, z}. But then {x, y, z} forms a T -triangle, which contradicts
the fact that S is a solution. Thus vertex t is not present in any selective solution.
Now since t is a terminal vertex, every selective solution S must pick at least
two vertices from {x, y, z}: if S does not contain y, z, for instance, then {t, y, z}
forms a T -triangle in the graph obtained after deleting S, a contradiction. These
considerations lead to the next branching rule.

Branching Rule 5 Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL

GRAPHS, and let {t, x, y, z} be a simplicial clique where t and x are terminal vertices,
and t is a simplicial vertex. Let G1 = G−{x, y}, G2 = G−{y, z}, G3 = G−{x, z}
and T1 = T \ {x, y}, T2 = T \ {y, z}, T3 = T \ {x, z}. The new instances are:
(G1;T1; k − 2), (G2;T2; k − 2), (G3;T3; k − 2).

Lemma 33. Branching Rule 5 is exhaustive and it can be executed in timeO(n+m).

Proof. Consider an instance (G;T ; k) of SUBSET FVS IN CHORDAL GRAPHS and
let (G1;T1; k− 2), (G2;T2; k− 2), and (G3;T3; k− 2) be three instances produced
by Branching Rule 5 when applied on (G;T ; k). Let t be a terminal simplicial
vertex with neighbors x, y, and z, where x is a terminal.

(⇒) From Corollary 9, there exists a selective solution, say S. By definition
of selective solution, if S contains t then S contains none of x, y, z. Since x
is a terminal, x, y, z forms a T triangle which is not intersected by S which is
a contradiction. Hence S must contain at least one of x, y, z which implies S
does not contain t. But t is a terminal vertex and hence S must contain at least
two vertices from x, y, z. If S contains {x, y} then set S \ {x, y} is a solution for
(G − {x, y};T \ {x, y}; k − 2). By applying similar argument when S contains
{x, z} and {y, z}, derive that if (G;T ; k) is a YES instance then at least one of
(G1;T1; k − 2), (G2;T2; k − 2) or (G3;T3; k − 2) is a YES instance.

Subset Feedback Vertex Set in Chordal and Split Graphs 37

(⇐) We use the fact that for any U ⊆ V (G) if S′ is a target solution of
(G− U ;T \ U ; k − |U |) then S′ ∪ U is a target solution of (G;T ; k) to prove the
reverse direction.

To apply this reduction rule, algorithm needs to find terminal simplicial vertex
of degree four which is adjacent with a terminal if one exists. It is easy to check all
vertices of degree four whether or not their neighborhood is a clique and contains
a terminal. Hence one can find a simplicial clique to branch on or conclude that
no such clique exits in time O(n+m).

Once Branching Rule 5 has been applied exhaustively, no simplicial clique in
the graph contains two or more terminal vertices. Let {t, x, y, z} be a simplicial
clique with t as its unique terminal (and simplicial) vertex, and let t′ 6= t be a
terminal which shares two common neighbours—say, x and y—with t. Then we
can branch on one of these common neighbours, say x, as follows. If x is in a
selective solution S then t is not in S. At least one of {y, z} must be in S, or else
the T -triangle {t, y, z} will remain after deleting S. If x is not picked in S then we
branch on the vertex t: if t is picked in S then x, y, z are not in S. This forces the
terminal t′ to be in S, since otherwise the T -triangle {t′, x, y} will remain after
deleting S. In the remaining case neither of x, t is picked in S, and this forces
both of y, z into S. Thus we get

Branching Rule 6 Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL

GRAPHS to which none of the previous reduction or branching rules applies, let
{t, x, y, z} be a simplicial clique of G with terminal t, and let t′ 6= t be a termi-
nal which has x, y as neighbours. Let G1 = G − {x, y}, G2 = G − {y, z}, G3 =
G − {x, z}, G4 = G − {t, t′} and T1 = T2 = T3 = T, T4 = T \ {t, t′}. The new
instances are: (G1;T1; k − 2), (G2;T2; k − 2), (G3;T3; k − 2), (G4;T4; k − 2).

Lemma 34. Branching Rule 6 is exhaustive and it can be executed in time O(n+m)
on instance which is not reducible by any of previously mentioned reduction or
branching rule.

Proof. Consider an instance (G;T ; k) of SUBSET FVS IN CHORDAL GRAPHS and let
(G1;T1; k−2), (G2;T2; k−2), (G3;T3; k−2), and (G4;T4; k−2) be four instances
produced by Branching Rule 6 when applied on (G;T ; k). Let t be a terminal
simplicial vertex with neighbors x, y, and z. Let t′ be another terminal which is
adjacent with both x and y.

(⇒) From Corollary 9, there exists a selective solution, say S. Since {t, x, y, z}
is a clique containing terminal, S contains at least one vertex of this clique. By
definition of selective solution, if S contains t then S contains none of x, y, z. Since
{t′, x, y} is a T -cycle, if S excludes both {x, y} then it must include t′ to hit this
cycle. This implies any selective solution which contains terminal t also contains
terminal t′. Consider the case when selective solution does not contain t. Since t is
a terminal, S must contain at least two vertices from {x, y, z}. If S contains {x, y}
then set S\{x, y} is a solution for (G−{x, y}, T \{x, y}, k−2). By applying similar
argument when S contains (x, z), (y, z), and (t, t′), we derive that if (G;T ; k) is

38 Philip, Rajan, Saurabh and Tale

a YES instance then at least one of (G1;T1; k − 2), (G2;T2; k − 2), (G3;T3; k − 2),
or (G4;T4; k − 2) is a YES instance.

(⇐) We use the fact that for any U ⊆ V (G) if S′ is a target solution of
(G− U ;T \ U ; k − |U |) then S′ ∪ U is a target solution of (G;T ; k) to prove the
reverse direction.

To apply this reduction rule, we run following pre-processing: For a given
graph G, construct an array of size m. Each entry in the array corresponds to an
edge and can store two terminals. Given a chordal graph G, compute set of all
maximal cliques in graph. For every maximal clique Q, if it contains terminal t′

then for every edge in Q which is not incident on t′, add terminal t′ to the entry in
an array corresponding to that edge. If there are already two terminals in an array
corresponding to some particular edge then we do not add new terminals. Since
the input instance (G;T ; k) is not reducible by Branching Rule 3, every maximal
clique which contains a terminal is of size at most four. Hence algorithm spend
constant amount of time at each maximal clique which contains a terminal. Since
there are at most n all maximal cliques all of which can be computed in O(n+m)
time, the overall time required for this pre-processing is O(n+m). Notice that if
terminal t′ is adjacent with x, y and xy is an edge then t′, x, y are contained in a
maximal clique containing terminal t′. Hence for every edge whose end-points
are adjacent with at least two terminals, two terminals will be stored in the array.
Once this pre-process is complete, algorithm check for every terminal of degree
four whether or not it is simplicial. Suppose terminal t is terminal and is adjacent
with x, y, z. For every edge in set {xy, yz, zx}, algorithm checks whether there
exists another terminal t′ which is adjacent with end-point of the edge using
the array constructed in the pre-processing step. This step can be completed in
constant time. At most one of terminals stored for xy can be t and hence at least
one another terminal, if exists, will be stored in the entry corresponding to edge
xy. Hence one can find a simplicial clique to branch on or conclude that no such
clique exits in time O(n+m).

At this point we have

Observation 9 Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rules 11, 12, 13, 14 and 15, and Branching Rules 1, 2, 3, 4, 5 and 6. Then G
has the following properties:

1. Every maximal clique is of size at least three.
2. Every non-terminal vertex has at least two terminals as neighbours.
3. Every simplicial vertex is a terminal.
4. Every simplicial clique C has size exactly four and contains exactly one simplicial

vertex, which is also the only terminal vertex in C.
5. Each pair of non-terminals in a simplicial clique C has exactly one common

neighbour (namely, the simplicial vertex in C) from among the terminal vertices.

5.3 Dealing With Simplicial Cliques of Size Four

We now derive some structural properties of a “reduced” instance (G;T ; k) of
SUBSET FVS IN CHORDAL GRAPHS as described in Observation 9, and use these

Subset Feedback Vertex Set in Chordal and Split Graphs 39

to handle simplicial cliques of size exactly four within the required time bound of
O?(2k). Let TG be a clique tree of graph G. Then from Fact 2 we get that every
leaf of TG is a simplicial clique of size exactly four. If TG contains at most two
nodes then both of them are leaves, and so they are simplicial cliques of size
four each. In this case graph G has at most eight vertices and we can solve this
instance in constant time. So we assume, without loss of generality, that TG has
at least three nodes. Then TG has at least one node which is not a leaf; let Cr be
such a node. We root the tree TG at node Cr.

From now on we assume that C` = {t, x, y, z} is a leaf node of TG which is at
the maximum distance from the root Cr with t being the unique terminal in C`,
and that Cp is the unique neighbour (“parent”) of C` in TG.

Claim 1 {x, y, z} ⊆ Cp, and Cp does not contain a terminal vertex.

Proof. From Observation 9 we know that t is the only simplicial vertex in C`. For
the sake of contradiction, assume that x is not in Cp. Then from the intersection
property of clique trees we get that x is not present in any maximal clique apart
from C`. Thus (Fact 1) x is a simplicial vertex, a contradiction. Repeating this
argument, we get {x, y, z} ⊆ Cp.

If Cp contains a terminal vertex t′ then t′ has all of {x, y, z} as neighbours, and
since t is simplicial we get that t′ 6= t. This contradicts part 5 of Observation 9.

Parts 2 and 5 of Observation 9 together imply that each of x, y, z must have
at least one terminal other than t as a neighbour, and that these terminals must
be pairwise distinct: each such terminal is adjacent to exactly one of x, y, z. Let
tx, ty, tz be three such terminal vertices which are adjacent to x, y, z, respectively.
From Claim 1 we know that none of tx, ty, tz is in Cp, and it is trivially the case
that none of these vertices is in C` either.

LetC ′x, C
′
y, C

′
z be three maximal cliques that contain the edges {x, tx}, {y, ty}, {z, tz},

respectively. Then we have that clique C ′x does not contain vertex y, and similarly
for the other pairs. Thus the maximal cliques C ′x, C

′
y, C

′
z intersect with C` exactly

at {x}, {y}, {z}, respectively. Now let Cx, Cy, Cz be maximal cliques closest to Cp
in the clique tree TG such that ti ∈ Ci and Ci ∩ C` = {i} for i ∈ {x, y, z}.

Claim 2 At least two among the cliques {Cx, Cy, Cz} are leaf nodes of the clique
tree TG.

Proof. From item 3 of Fact 2 and from our assumption about distances, we get
that all of Cx, Cy, Cz must be adjacent to Cp in the clique tree TG. Since Cp can
have at most one parent node in TG, we get that at least two among Cx, Cy, Cz,
say Cx and Cy, are child nodes of Cp. The child node C` of Cp is, by assumption,
a leaf which is farthest from the root node Cr. It follows that neither Cx nor Cy
can be internal nodes in TG, or else there would be a leaf which is farther from
Cr than is C`. Thus both Cx and Cy are leaf nodes of TG.

From now on we assume that Cx and Cy are leaf nodes of TG. By Observation 1
we have that Cx and Cy are simplicial, and by part 4 of Observation 9 we

40 Philip, Rajan, Saurabh and Tale

(a) (b)

Fig. 3. Left side figure shows vertices and edges in the input graph. Right side shows the
clique tree of given graph. Every circle is a maximal clique in input graph. (?) denotes that
all vertices in maximal clique are not shown in the figure.

get that these two cliques contain exactly four vertices each, and that tx, ty
are the only terminals in Cx, Cy, respectively. Recall that C` = {t, x, y, z}. Let
Cx = {tx, x, x1, x2} and Cy = {ty, y, y1, y2}.

We now branch on vertex t (See Figure 4 and Table 1). If t is in the solution
then none of {x, y, z} is in the solution. Since x is not in the solution, we have
that either tx is in the solution, or both of {x1, x2} are in the solution. Similarly
we get that either ty is in the solution, or both of {y1, y2} are in the solution. If
t is not in the solution then either (i) x is in the solution or (ii) x is not in the
solution and both of {y, z} are in the solution. In the second case, since x is not
in the solution, we get that either tx is in the solution, or both of {x1, x2} are in
the solution. We summarize these seven branches in Table 1. Note that Cx and
Cy could share—at most—one vertex, in which case the set {x1, x2, y1, y2} will
contain three vertices, not four. Rule B4(i) applies when |Cx ∩ Cy| = 0 and rule
B4(ii) applies when |Cx ∩ Cy| = 1. In stating rule B4(ii) we have assumed that
vertex x1 is common to both cliques; Cx = {tx, x, x1, x2} and Cy = {ty, y, x1, y1}.
On every instance we apply one of the two variants B4(i) and B4(ii) of rule B4,
as appropriate.

Branching Rule 7 Let (G;T ; k) be an instance of SUBSET FVS IN CHORDAL

GRAPHS and let C` = {t, x, y, z}, Cx = {x, tx, x1, x2}, Cy = {y, ty, y1, y2} be leaf
nodes of the clique tree TG of G. For each i ; 1 ≤ i ≤ 7, let graph Gi, terminal set Ti,
and parameter ki be as described in Table 1, with the proviso that rule B4(i) applies
if and only if |Cx ∩ Cy| = 0 and rule B4(ii) applies if and only if |Cx ∩ Cy| = 1.
The new instances are: {(Gi;Ti; ki)} ; 1 ≤ i ≤ 7.

Subset Feedback Vertex Set in Chordal and Split Graphs 41

Branch Vertices picked New graph Gi New terminal set Ti New parameter ki

B1 {t, tx, ty} G− {t, tx, ty} T \ {t, tx, ty} k − 3
B2 {t, tx, y1, y2} G− {t, tx, y1, y2} T \ {t, tx} k − 4
B3 {t, x1, x2, ty} G− {t, , x1, x2, ty} T \ {t, ty} k − 4
B4(i) {t, x1, x2, y1, y2} G− {t, x1, x2, y1, y2} T \ {t} (k − 5)
B4(ii) {t, x1, x2, y1} G− {t, x1, x2, y1} T \ {t} (k − 4)
B5 {x} G− {x} T k − 1
B6 {y, z, tx} G− {y, z, tx} T \ {tx} k − 3
B7 {y, z, x1, x2} G− {y, z, x1, x2} T k − 4

Table 1. Overview of Branching Rule 7 showing the vertices picked in the solution and
the resulting graph, terminal set, and parameter in each branch. Exactly one of the two
versions of rule B4 are applicable to any one instance, depending on whether the sets Cx

and Cy share a vertex. See also the branching tree in Figure 4.

Fig. 4. The seven branches of Branching Rule 7. An edge label denotes the choice we
make of picking (e.g: “t”) or excluding (e.g: “¬t”) a vertex in/from the solution. The set
of vertices that the rule has picked in the solution thus far appears above the double line
“==” in each node, and the set excluded from the solution appears below ==. The seven
leaf nodes correspond to the seven branches B1, · · · , B7 of the branching rule. The branch
B4 takes one of two forms depending on the instance. If Cx ∩ Cy = Ø then option B4(i)
applies, and if Cx ∩ Cy 6= Ø then option B4(ii) applies.

42 Philip, Rajan, Saurabh and Tale

Lemma 35. Branching Rule 7 is exhaustive and it can be executed in time O(n+m)
on instance which is not reducible by any of previously mentioned reduction or
branching rule.

Proof. Consider an instance (G;T ; k) of SUBSET FVS IN CHORDAL GRAPHS and
cliques C`, Cx, Cy as described in the statement of branching rule. Let (Gi;Ti; ki)
for each i ; 1 ≤ i ≤ 7, be seven instances produced by Branching Rule 7 when
applied on (G;T ; k) as described in Table 1.

(⇒) From Corollary 9, there exists a selective solution, say S. Since {t, x, y, z}
is a clique containing terminal, S contains at least one vertex of this clique. By
definition of selective solution, if S contains t then S contains none of {x, y, z}. We
first see the implication of the fact that S does not contain x in cliqueCx. Since x is
not a part of solution, S∩Cx either contains tx or both x1, x2. Hence if S contains t
then it either contains tx or both x1, x2. We apply similar argument with respect to
y. This implies S either contains ty or both y1, y2. Hence we can conclude that if S
contains t then at least one of sets {tx, ty}, {tx, y1, y2}, {x1, x2, ty}, {x1, x2, y1, y2}
is contained in S. Note that set {x1, x2, y1, y2} may not contain four distinct
elements.

Consider the case when selective solution does not contain t. Since t is a
terminal, S must contain at least two vertices from x, y, z. Instead of analyzing
three cases, viz whether {x, y}, {y, z} or {z, x}, we analyze two cases depending
on whether or not x is contained in S. We do this to minimize the complexity
in stating this branching rule. If x is not contained in S then it contains {y, z}.
Moreover, S either contains tx or both x1, x2. This implies if S does not contain t
then S contains at least one of sets {x}, {y, z, tx}, {y, z, tx}. We have established
that if G is a YES instance then by Corollary 9, there exits a selective solution.
This selective solution contains at least one of the seven sets mentioned above.
Hence if (G;T ; k) is a YES instance then at least one of the seven instances
specified in Table 1 is a YES instance.

(⇐) We use the fact that for every U ⊆ if S′ is a target solution of (G−U ;T \
U ; k − |U |) then S′ ∪ U is a target solution of (G;T ; k) to prove reverse direction.

To execute branching rule, we need an algorithm which finds cliquesC`, Cx, Cy
which satisfies the mentioned property or conclude that no such cliques exists. We
assume graph G is a connected graph. If G is not connected, we can process each
of its connected component separately. We first compute clique tree for of graph
G in time O(n+m) (Fact 2). Once clique tree is computed, we can arbitrary root
it at any internal node. If clique tree does not have an internal node than it has
at most two maximal clique each of which contains at most four vertices. In this
case, problem can be solved in constant time. Fix any node which is at farthest
distance from the root as C`. Let C` = {t, x, y, z}. We now argue that there exists
cliques Cx, Cy as desired by branching rule assuming the input instance is not
reducible by any reduction and branching rules mentioned before this branching
rule.

Let Cp be the parent of C` in this rooted tree. By Claim 1, {x, y, z} is present
in Cp. Parts 2 and 5 of Observation 9 together imply that each of x, y, z must
have at least one terminal other than t as a neighbour, and that these terminals

Subset Feedback Vertex Set in Chordal and Split Graphs 43

must be pairwise distinct. This implies that Cp has at least three neighbors apart
from C` in the clique tree. Let Cx, Cy be any two neighbors of Cp which are not
in the path from Cp to the root. This implies that distance between root and C`
is same as distance between the root and Cx or Cy. Since C` is the leaf which
is farthest from the root, Cx, Cy both are leaves in the clique tree. By part 4
of Observation 9 we get that all simplicial cliques contain exactly four vertices
including one terminal each. This proves that any leaf which is farthest from the
root can be used as simplicial clique C` in branching process and concludes the
proof of lemma.

We have mentioned all branching rules and now are in a position to conclude
main result of this section.

Theorem 4. There exists an algorithm which given an instance (G,T, k) of SUBSET

FVS IN CHORDAL GRAPHS runs in time O(2k(n+m)) and decides whether input is
YES of NO instance. Here n,m are number of vertices and edges in input graph G.

Proof. The algorithm applies Reduction Rules 13, 14 and 15 exhaustively (i) to
the input graph, and (ii) after every application of a branching rule. By Lemma 25,
this can be done in time O(n +m). We assume that graph G is reduced with
respect to these rules at the start of any branching rule.

The algorithm applies least indexed applicable Branching Rule mentioned
in this section. The correctness of branching steps and running time to execute
branching rule follows from the arguments given for each case. We now claim that
we have taken care of all possible cases. Application of reduction rules implies
that every maximal clique is of size at least tree and every non-terminal vertex
is adjacent with some terminal. If there exists a non-terminal vertex which is
adjacent with exactly one terminal vertex then Branching Rule 1 is applicable. If
there exists a maximal clique of size of five or more which contains a terminal
then Branching Rule 3 is applicable. Hence we can safely consider chordal graphs
in which every maximal clique which contains a terminal is of size at most
four. Every chordal graph has a simplicial vertex and hence simplicial clique. If
simplicial clique is of size three then Branching Rule 2 is applicable. We are now
in case that every simplicial clique which contains a terminal is of size four. Notice
that since Reduction Rule 14 is not applicable, every simplicial clique contains
a terminal. If this terminal is not a simplicial vertex then Branching Rule 4 is
applicable. We are left with the case when every simplicial vertex is terminal.
If there exists another terminal in simplicial clique then Branching Rule 5 is
applicable. If not then every simplicial clique contains exactly one terminal which
is also a simplicial vertex. In a simplicial clique if there exists a pair of non-
terminals which has more than one terminals as neighbors then Branching Rule 6
is applicable. Now consider a graph which is not reducible by any of the branching
rule. This graph satisfies all the properties mentioned in Observation 9. Hence
Branching Rule 7 is applicable on this instance. This completes all the possible
cases.

We analyze the branching factor for each branching rule. Branching vectors
for Branching Rules 1, 2, 3, 4, 5 and 6 are (1, 1); (1, 1); (1, 2, 2); (1, 2); (2, 2, 2); and

44 Philip, Rajan, Saurabh and Tale

(2, 2, 2, 2), respectively. Branching vector for Branching Rule 7 is (3, 4, 4, 5, 4, 1, 3, 4)
or (3, 4, 4, 4, 4, 1, 3, 4) depending on whether branch B4(i) or B4(ii) is being used.
For all these branching vectors, the branching factor is at most 2. Hence the entire
branching algorithm can be executed in time O(2k(n+m)).

6 Conclusion

In this article we studied SUBSET FVS IN SPLIT GRAPHS and presented a kernel of
size O(k2) with O(k) and O(k2) vertices on the clique and independent set sides
respectively. Though this bound on the total size of the kernel is optimal under
standard complexity-theoretic assumptions, it is an interesting open question if
we can bound the number of vertices on the independent side by O(k2−ε) for
some positive constant ε. Another natural question is to obtain a quadratic-size
kernel for the more general SUBSET FVS IN CHORDAL GRAPHS problem. We
presented an FPT algorithm running in time O∗(2k) which solves SUBSET FVS
when input graph is chordal. Under ETH, sub-exponential FPT algorithms for
this problem are ruled out. Is it possible to obtain an algorithm with a smaller
base in the running time? It would also be interesting to take up other implicit
hitting set problems from graph theory and obtain better kernel and FPT results
than the ones guranteed by HITTING SET.

References

1. Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci.,
76(7):524–531, 2010.

2. Jean RS Blair and Barry Peyton. An introduction to chordal graphs and clique trees.
In Graph theory and sparse matrix computation, pages 1–29. Springer, 1993.

3. Rajesh Chitnis, Fedor V Fomin, Daniel Lokshtanov, Pranabendu Misra, MS Ramanujan,
and Saket Saurabh. Faster exact algorithms for some terminal set problems. In
International Symposium on Parameterized and Exact Computation, pages 150–162.
Springer, 2013.

4. Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel
Marx. Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans.
Algorithms, 11(4):28:1–28:28, 2015.

5. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

6. Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk.
Subset feedback vertex set is fixed-parameter tractable. SIAM Journal on Discrete
Mathematics, 27(1):290–309, 2013.

7. Holger Dell and Dieter Van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, July 2014.

8. Reinhard Diestel. Graph Theory, 5th Edition. Springer, 2016.
9. Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the

subset feedback vertex set problem. SIAM Journal on Computing, 30(4):1231–1252,
2000.

Subset Feedback Vertex Set in Chordal and Split Graphs 45

10. Fedor V Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yngve
Villanger. Enumerating minimal subset feedback vertex sets. Algorithmica, 69(1):216–
231, 2014.

11. Fedor V Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket
Saurabh. Hitting forbidden minors: Approximation and kernelization. SIAM Journal
on Discrete Mathematics, 30(1):383–410, 2016.

12. F.V. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts in Theoretical Computer
Science. An EATCS Series. Springer Berlin Heidelberg, 2010.

13. Philippe Galinier, Michel Habib, and Christophe Paul. Chordal graphs and their clique
graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 358–371. Springer, 1995.

14. Petr A Golovach, Pinar Heggernes, Dieter Kratsch, and Reza Saei. Subset feedback
vertex sets in chordal graphs. Journal of Discrete Algorithms, 26:7–15, 2014.

15. Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57.
Elsevier, 2004.

16. Peter L Hammer and Stéphane Földes. Split graphs. Congressus Numerantium, 19:311–
315, 1977.

17. Peter L Hammer and Bruno Simeone. The splittance of a graph. Combinatorica,
1(3):275–284, 1981.

18. Eva-Maria C Hols and Stefan Kratsch. A randomized polynomial kernel for subset
feedback vertex set. Theory of Computing Systems, 62(1):63–92, 2018.

19. Ken-ichi Kawarabayashi and Yusuke Kobayashi. Fixed-parameter tractability for the
subset feedback set problem and the s-cycle packing problem. Journal of Combinatorial
Theory, Series B, 102(4):1020–1034, 2012.

20. Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav
Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 331–342. SIAM, 2018.

21. Daniel Lokshtanov, MS Ramanujan, and Saket Saurabh. Linear time parameterized
algorithms for subset feedback vertex set. ACM Transactions on Algorithms (TALG),
14(1):7, 2018.

22. Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms,
6(2):32:1–32:8, 2010.

23. Magnus Wahlström. Algorithms, measures and upper bounds for satisfiability and
related problems. PhD thesis, Department of Computer and Information Science,
Linköpings universitet, 2007.

24. Magnus Wahlström. Half-integrality, LP-branching and FPT algorithms. In Proceedings
of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 1762–
1781. SIAM, 2014.

	Subset Feedback Vertex Set in Chordal and Split Graphs
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Chordal Graphs and Clique Trees
	2.3 Split Graphs
	2.4 Parameterized Algorithms and Kernelization
	2.5 Expansion Lemmas

	3 Kernel Bounds for Subset FVS in Split Graphs
	4 Kernel Lower Bound
	5 An FPT Algorithm For Subset FVS in Chordal Graphs
	5.1 Reduction Rules
	5.2 Simple Branching Rules
	5.3 Dealing With Simplicial Cliques of Size Four

	6 Conclusion

