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Abstract

We consider the problem of designing scalable, robust protocols for computing statistics about
sensitive data. Specifically, we look at how best to design differentially private protocols in a distributed
setting, where each user holds a private datum. The literature has mostly considered two models: the
“central” model, in which a trusted server collects users’ data in the clear, which allows greater accuracy;
and the “local” model, in which users individually randomize their data, and need not trust the server,
but accuracy is limited. Attempts to achieve the accuracy of the central model without a trusted server
have so far focused on variants of cryptographic secure function evaluation, which limits scalability.

In this paper, we initiate the analytic study of a shuffled model for distributed differentially private
algorithms, which lies between the local and central models. This simple-to-implement model, a special
case of the ESA framework of Bittau et al. [5], augments the local model with an anonymous channel that
randomly permutes a set of user-supplied messages. For sum queries, we show that this model provides
the power of the central model while avoiding the need to trust a central server and the complexity
of cryptographic secure function evaluation. More generally, we give evidence that the power of the
shuffled model lies strictly between those of the central and local models: for a natural restriction of the
model, we show that shuffled protocols for a widely studied selection problem require exponentially
higher sample complexity than do central-model protocols.
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1 Introduction

The past few years has seen a wave of commercially deployed systems [16, 28] for analysis of users’
sensitive data in the local model of differential privacy (LDP). LDP systems have several features that make
them attractive in practice, and limit the barriers to adoption. Each user only sends private data to the
data collector, so users do not need to fully trust the collector, and the collector is not saddled with legal
or ethical obligations. Moreover, these protocols are relatively simple and scalable, typically requiring
each party to asynchronously send just a single short message.

However, the local model imposes strong constraints on the utility of the algorithm. These constraints
preclude the most useful differentially private algorithms, which require a central model where the
users’ data is sent in the clear, and the data collector is trusted to perform only differentially private
computations. Compared to the central model, the local model requires enormous amounts of data, both
in theory and in practice (see e.g. [20] and the discussion in [5]). Unsurprisingly, the local model has so
far only been used by large corporations like Apple and Google with billions of users.

In principle, there is no dilemma between the central and local models, as any algorithm can be
implemented without a trusted data collector using cryptographic multiparty computation (MPC). However,
despite dramatic recent progress in the area of practical MPC, existing techniques still require large costs
in terms of computation, communication, and number of rounds of interaction between the users and
data collector, and are considerably more difficult for companies to extend and maintain.

In this work, we initiate the analytic study of an intermediate model for distributed differential
privacy called the shuffled model. This model, a special case of the ESA framework of [5], augments the
standard model of local differential privacy with an anonymous channel (also called a shuffler) that
collects messages from the users, randomly permutes them, and then forwards them to the data collector
for analysis. For certain applications, this model overcomes the limitations on accuracy of local algorithms
while preserving many of their desirable features. However, under natural constraints, this model is
dramatically weaker than the central model. In more detail, we make two primary contributions:

• We give a simple, non-interactive algorithm in the shuffled model for estimating a single Boolean-
valued statistical query (also known as a counting query) that essentially matches the error achiev-
able by centralized algorithms. We also show how to extend this algorithm to estimate a bounded
real-valued statistical query, albeit at an additional cost in communication. These protocols are
sufficient to implement any algorithm in the statistical queries model [21], which includes methods
such as gradient descent.

• We consider the ubiquitous variable-selection problem—a simple but canonical optimization problem.
Given a set of counting queries, the variable-selection problem is to identify the query with nearly
largest value (i.e. an “approximate argmax”). We prove that the sample complexity of variable
selection in a natural restriction of the shuffled model is exponentially larger than in the central
model. The restriction is that each user send only a single message into the shuffle, as opposed to a
set of messages, which we call this the one-message shuffled model. Our positive results show that
the sample complexity in the shuffled model is polynomially smaller than in the local model. Taken
together, our results give evidence that the central, shuffled, and local models are strictly ordered
in the accuracy they can achieve for selection. Our lower bounds follow from a structural result
showing that any algorithm that is private in the one-message shuffled model is also private in the
local model with weak, but non-trivial, parameters.

In concurrent and independent work, Erlingsson et al. [17] give conceptually similar positive results
for local protocols aided by a shuffler. We give a more detailed comparison between our work and theirs
after giving a thorough description of the model and our results (Section 2.3)
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1.1 Background and Related Work

Models for Differentially Private Algorithms. Differential privacy [14] is a restriction on the algorithm
that processes a dataset to provide statistical summaries or other output. It ensures that, no matter what
an attacker learns by interacting with the algorithm, it would have learned nearly the same thing whether
or not the dataset contained any particular individual’s data [19]. Differential privacy is now widely
studied, and algorithms satisfying the criterion are increasingly deployed [1, 23, 16].

There are two well-studied models for implementing differentially-private algorithms. In the central
model, raw data are collected at a central server where they are processed by a differentially private
algorithm. In the local model [33, 18, 14], each individual applies a differentially private algorithm locally
to their data and shares only the output of the algorithm—called a report or response—with a server
that aggregates users’ reports. The local model allows individuals to retain control of their data since
privacy guarantees are enforced directly by their devices. It avoids the need for a single, widely-trusted
entity and the resulting single point of security failure. The local model has witnessed an explosion of
research in recent years, ranging from theoretical work to deployed implementations. A complete survey
is beyond the scope of this paper.

Unfortunately, for most tasks there is a large, unavoidable gap between the accuracy that is achievable
in the two models. Beimel et al. [4] and Chan et al. [8] show that estimating the sum of bits, one held
by each player, requires error Ω(

√
n/ε) in the local model, while an error of just O(1/ε) is possible the

central model. [12] extended this lower bound to a wide range of natural problems, showing that the
error must blowup by at least Ω(

√
n), and often by an additional factor growing with the data dimension.

More abstractly, Kasiviswanathan et al. [20] showed that the power of the local model is equivalent to
the statistical query model [21] from learning theory. They used this to show an exponential separation
between the accuracy and sample complexity of local and central algorithms. Subsequently, an even more
natural separation arose for the variable-selection problem [12, 30], which we also consider in this work.

Implementing Central-Model Algorithms in Distributed Models. In principle, one could also use the
powerful, general tools of modern cryptography, such as multiparty computation (MPC), or secure
function evaluation, to simulate central model algorithms in a setting without a trusted server [13], but
such algorithms currently impose bandwidth and liveness constraints that make them impractical for
large deployments. In contrast, Google [16] now uses local differentially private protocols to collect
certain usage statistics from hundreds of millions of users’ devices.

A number of specific, efficient MPC algorithms have been proposed for differentially private function-
alities. They generally either (1) focus on simple summations and require a single “semi-honest”/“honest-
but-curious” server that aggregates user answers, as in Shi et al. [25], Chan et al. [9], Bonawitz et al. [6] ;
or (2) allow general computations, but require a network of servers, a majority of whom are assumed to
behave honestly, as in Corrigan-Gibbs and Boneh [11]. As they currently stand, these approaches have a
number of drawbacks: they either require users to trust that a server maintained by a service provided is
behaving (semi-)honestly, or they require that a coalition of service providers collaborate to run protocols
that reveal to each other who their users are and what computations they are performing on their users’ data.
It is possible to avoid these issues by combining anonymous communication layers and MPC protocols
for universal circuits but, with current techniques, such modifications destroy the efficiency gains relative
to generic MPC.

Thus, a natural question—relevant no matter how the state of the art in MPC evolves—is to identify
simple (and even minimal) primitives that can be implemented via MPC in a distributed model and are
expressive enough to allow for sophisticated private data analysis. In this paper, we show that shuffling
is a powerful primitive for differentially private algorithms.

Mixnets. One way to realize the shuffling functionality is via a mixnet. A mix network, or mixnet, is a
protocol involving several computers that takes as input a sequence of encrypted messages, and outputs
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Prototypical (one-message) protocols in the local model (left) and the shuffled model (right).

a uniformly random permutation of those messages’ plaintexts. Introduced by [10], the basic idea now
exists in many variations. In its simplest instantiation, the network consists of a sequence of servers,
whose identities and ordering are public information.1 Messages, each one encrypted with all the servers’
keys, are submitted by users to the first server. Once enough messages have been submitted, each server
in turn performs a shuffle in which the server removes one layer of encryption and sends a permutation
of the messages to the next server. In a verifiable shuffle, the server also produces a cryptographic proof
that the shuffle preserved the multi-set of messages. The final server sends the messages to their final
recipients, which might be different for each message. A variety of efficient implementations of mixnets
with verifiable shuffles exist (see, e.g., [22, 5] and citations therein).

Another line of work [32, 29] shows how to use differential privacy in addition to mixnets to make
communication patterns differentially private for the purposes of anonymous computation. Despite the
superficial similarly, this line of work is orthogonal to ours, which is about how to use mixnets themselves
to achieve (more accurate) differentially private data analysis.

Shufflers as a Primitive for Private Data Analysis. This paper studies how to use a shuffler (e.g. a
mixnet) as a cryptographic primitive to implement differentially-private algorithms. Bittau et al. [5]
propose a general framework, dubbed encode-shuffle-analyze (or ESA), which generalizes the local and
central models by allowing a local randomized encoding step E performed on user devices, a permutation
step S in which encrypted encodings are shuffled, and a final randomized process A that analyzes the
permuted encodings. We ask what privacy guarantee can be provided if we rely only on the local
encoding E and the shuffle S—the analyst A is untrusted. In particular, we are interested in protocols
that are substantially more accurate than is possible in the local model (in which the privacy guarantee
relies entirely on the encoding E). This general question was left open by Bittau et al. [5].

One may think of the shuffled model as specifying a highly restricted MPC primitive on which
we hope to base privacy. Relative to general MPC, the use of mixnets for shuffling provides several
advantages: First, there already exist a number of highly efficient implementations. Second, their trust
model is simple and robust—as long as a single one of the servers performs its shuffle honestly, the
entire process is a uniformly random permutation, and our protocols’ privacy guarantees will hold. The
architecture and trust guarantees are also easy to explain to nonexperts (say, with metaphors of shuffled
cards or shell games). Finally, mixnets automatically provide a number of additional features that are
desirable for data collection: they can maintain secrecy of a company’s user base, since each company’s
users could use that company’s server as their first hop; and they can maintain secrecy of the company’s
computations, since the specific computation is done by the analyst. Note that we think of a mixnet
here as operating on large batches of messages, whose size is denoted by n. (In implementation, this
requires a fair amount of latency, as the collection point must receive sufficiently many messages before

1Variations on this idea based on onion routing allow the user to specify a secret path through a network of mixes.
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proceeding—see Bittau et al. [5]).
Understanding the possibilities and limitations of shuffled protocols for private data analysis is

interesting from both theoretical and practical perspectives. It provides an intermediate abstraction,
and we give evidence that it lies strictly between the central and local models. Thus, it sheds light on
the minimal cryptographic primitives needed to get the central model’s accuracy. It also provides an
attractive platform for near-term deployment [5], for the reasons listed above.

For the remainder of this paper, we treat the shuffler as an abstract service that randomly permutes a
set of messages. We leave a discussion of the many engineering, social, and cryptographic implementation
considerations to future work.

2 Overview of Results

The Shuffled Model. In our model, there are n users, each with data xi ∈ X . Each user applies some
encoder R : X →Ym to their data and sends the messages (yi,1, . . . , yi,m) = R(xi). In the one-message shuffled
model, each user sends m = 1 message. The n ·m messages yi,j are sent to a shuffler S : Y ∗→Y ∗ that takes
these messages and outputs them in a uniformly random order. The shuffled set of messages is then
passed through some analyzer A : Y ∗→Z to estimate some function f (x1, . . . ,xn). Thus, the protocol P
consists of the tuple (R,S,A). We say that the algorithm is (ε,δ)-differentially private in the shuffled model
if the algorithm MR(x1, . . . ,xn) = S(∪ni=1R(xi)) satisfies (ε,δ)-differential privacy. For more detail, see the
discussion leading to Definition 3.4.

In contrast to the local model, differential privacy is now a property of all n users’ messages, and the
(ε,δ) may be functions of n. However, if an adversary were to inject additional messages, then it would
not degrade privacy, provided that those messages are independent of the honest users’ data. Thus, we
may replace n, in our results, as a lower bound on the number of honest users in the system. For example,
if we have a protocol that is private for n users, but instead we have n

p users of which we assume at least
a p fraction are honest, the protocol will continue to satisfy differential privacy.

2.1 Algorithmic Results

Our main result shows how to estimate any bounded, real-valued linear statistic (a statistical query) in
the shuffled model with error that nearly matches the best possible utility achievable in the central model.

Theorem 2.1. For every ε ∈ (0,1), and every δ & εn2−εn and every function f : X → [0,1], there is a protocol P
in the shuffled model that is (ε,δ)-differentially private, and for every n and every X = (x1, . . . ,xn) ∈ X n,

E


∣∣∣∣∣∣∣P (X)−

n∑
i=1

f (xi)

∣∣∣∣∣∣∣
 =O (1

ε
log

n
δ

)
.

Each user sends m =Θ(ε
√
n) one-bit messages.

For comparison, in the central model, the Laplace mechanism achieves (ε,0)-differential privacy and
error O(1ε ). In contrast, error Ω(1ε

√
n) is necessary in the local model. Thus, for answering statistical

queries, this protocol essentially has the best properties of the local and central models (up to logarithmic
factors).

In the special case of estimating a sum of bits (or a Boolean-valued linear statistic), our protocol has a
slightly nicer guarantee and form.

6



Theorem 2.2. For every ε ∈ (0,1), and every δ & 2−εn and every function f : X → {0,1}, there is a protocol P in
the shuffled model that is (ε,δ)-differentially private, and for every n and every X = (x1, . . . ,xn) ∈ X n,

E


∣∣∣∣∣∣∣P (X)−

n∑
i=1

f (xi)

∣∣∣∣∣∣∣
 =O

1ε
√
log

1
δ

 .
Each user sends a single one-bit message.

The protocol corresponding to Theorem 2.2 is extremely simple:

1. For some appropriate choice of p ∈ (0,1), each user i with input xi outputs yi = xi with probability
1− p and a uniformly random bit yi with probability p. When ε is not too small, p ≈ log(1/δ)

ε2n
.

2. The analyzer collects the shuffled messages y1, . . . , yn and outputs

1
1− p

 n∑
i=1

yi −
p
2

 .
Intuition. In the local model, an adversary can map the set of observations {y1, . . . , yn} to users. Thus, to
achieve ε-differential privacy, the parameter p should be set close to 1

2 . In our model, the attacker sees
only the anonymized set of observations {y1, . . . , yn}, whose distribution can be simulated using only

∑
i yi .

Hence, to ensure that the protocol is differentially private, it suffices to ensure that
∑
i yi is private, which

we show holds for p ≈ log(1/δ)
ε2n

� 1
2 .

Communication Complexity. Our protocol for real-valued queries requires Θ(ε
√
n) bits per user. In con-

trast, the local model requires just a single bit, but incurs error Ω(1ε
√
n). A generalization of Theorem 2.1

gives error O(
√
n
r + 1

ε log
r
δ ) and sends r bits per user, but we do not know if this tradeoff is necessary.

Closing this gap is an interesting open question.

2.2 Negative Results

We also prove negative results for algorithms in the one-message shuffled model. These results hinge
on a structural characterization of private protocols in the one-message shuffled model.

Theorem 2.3. If a protocol P = (R,S,A) satisfies (ε,δ)-differential privacy in the one-message shuffled model, then
R satisfies (ε+ lnn,δ)-differential privacy. Therefore, P is (ε+ lnn,δ)-differentially private in the local model.

Using Theorem 2.3 (and a transformation of [7] from (ε,δ)-DP to (O(ε),0)-DP in the local model),
we can leverage existing lower bounds for algorithms in the local model to obtain lower bounds on
algorithms in the shuffled model.

Variable Selection. In particular, consider the following variable selection problem: given a dataset x ∈
{0,1}n×d , output Ĵ such that

n∑
i=1

xi,̂J ≥

max
j∈[d]

n∑
i=1

xi,j

− n
10
.

(The n
10 approximation term is somewhat arbitrary—any sufficiently small constant fraction of n will lead

to the same lower bounds and separations.)
Any local algorithm (with ε = 1) for selection requires n =Ω(d logd), whereas in the central model the

exponential mechanism [24] solves this problem for n =O(logd). The following lower bound shows that
for this ubiquitous problem, the one-message shuffled model cannot match the central model.

7



Theorem 2.4. If P is a (1, 1
n10

)-differentially private protocol in the one-message shuffled model that solves the
selection problem (with high probability) then n =Ω(d1/17). Moreover this lower bound holds even if x is drawn
iid from a product distribution over {0,1}d .

In Section 6, we also prove lower bounds for the well studied histogram problem, showing that any
one-message shuffled-model protocol for this problem must have error growing (polylogarithmically)
with the size of the data domain. In contrast, in the central model it is possible to release histograms with
no dependence on the domain size, even for infinite domains.

We remark that our lower bound proofs do not apply if the algorithm sends multiple messages through
the shuffler. However, we do not know whether beating the bounds is actually possible. Applying our
bit-sum protocol d times (together with differential privacy’s composition property) shows that n = Õ(

√
d)

samples suffice in the general shuffled model. We also do not know if this bound can be improved. We
leave it as an interesting direction for future work to fully characterize the power of the shuffled model.

2.3 Comparison to [17]

In concurrent and independent work, Erlingsson et al. [17] give conceptually similar positive results
for local protocols aided by a shuffler. Specifically, they prove a general amplification result: adding
a shuffler to any protocol satisfying local differential privacy improve the privacy parameters, often
quite significantly. This amplification result can be seen as a partial converse to our transformation from
shuffled protocols to local protocols (Theorem 2.3).

Their result applies to any local protocol, whereas our protocol for bit-sums (Theorem 2.2) applies
specifically to the one-bit randomized response protocol. However, when specialized to randomized
response, their result is quantitatively weaker than ours. As stated, their results only apply to local
protocols that satisfy ε-differential privacy for ε < 1. In contrast, the proof of Theorem 2.2 shows that,
for randomized response, local differential privacy ε ≈ ln(n) can be amplified to ε′ = 1. Our best attempt
at generalizing their proof to the case of ε� 1 does not give any amplification for local protocols with
ε ≈ ln(n). Specifically, our best attempt at applying their method to the case of randomized response
yields a shuffled protocol that is 1-differentially private and has error Θ(n5/12), which is just slightly
better than the error O(

√
n) that can be achieved without a shuffler.

3 Model and Preliminaries

In this section, we define terms and notation used throughout the paper. We use Ber(p) to denote the
Bernoulli distribution over {0,1}, which has value 1 with probability p and 0 with probability 1− p. We
will use Bin(n,p) to denote the binomial distribution (i.e. the sum of n independent samples from Ber(p).

3.1 Differential Privacy

Let X ∈ X n be a dataset consisting of elements from some universe X . We say two datasets X,X ′ are
neighboring if they differ on at most one user’s data, and denote this X ∼ X ′ .

Definition 3.1 (Differential Privacy [14]). An algorithm M : X ∗→Z is (ε,δ)-differentially private if for
every X ∼ X ′ ∈ X ∗ and every T ⊆ Z

P [M(X) ∈ T ] ≤ eεP
[
M(X ′) ∈ T

]
+ δ.

where the probability is taken over the randomness of M.

Differential privacy satisfies two extremely useful properties:

8



Lemma 3.2 (Post-Processing [14]). If M is (ε,δ)-differentially private, then for every A, A ◦M is (ε,δ)-
differentially private.

Lemma 3.3 (Composition [14, 15]). If M1, . . . ,MT are (ε,δ)-differentially private, then the composed algorithm

M̃(X) = (M1(X), . . . ,MT (X))

is (ε′ ,δ′ + T δ)-differentially private for every δ′ > 0 and ε′ = ε(eε − 1)T + ε
√
2T log(1/δ′).

3.2 Differential Privacy in the Shuffled Model

In our model, there are n users, each of whom holds data xi ∈ X . We will use X = (x1, . . . ,xn) ∈ X n to
denote the dataset of all n users’ data. We say two datasets X,X ′ are neighboring if they differ on at most
one user’s data, and denote this X ∼ X ′ .

The protocols we consider consist of three algorithms:

• R : X →Ym is a randomized encoder that takes as input a single users’ data xi and outputs a set of
m messages yi,1, . . . , yi,m ∈ Y . If m = 1, then P is in the one-message shuffled model.

• S : Y ∗ → Y ∗ is a shuffler that takes a set of messages and outputs these messages in a uniformly
random order. Specifically, on input y1, . . . , yN , S chooses a uniformly random permutation π :
[N ]→ [N ] and outputs yπ(1), . . . , yπ(N ).

• A : Y ∗→Z is some analysis function or analyzer that takes a set of messages y1, . . . , yN and attempts
to estimate some function f (x1, . . . ,xn) from these messages.

We denote the overall protocol P = (R,S,A). The mechanism by which we achieve privacy is

ΠR(x1, . . . ,xn) = S(∪ni=1R(xi)) = S(y1,1, . . . , yn,m),

where both R and S are randomized. We will use P (X) = A ◦ΠR(X) to denote the output of the protocol.
However, by the post-processing property of differential privacy (Lemma 3.2), it will suffice to consider
the privacy of ΠR(X), which will imply the privacy of P (X). We are now ready to define differential
privacy for protocols in the shuffled model.

Definition 3.4 (Differential Privacy in the Shuffled Model). A protocol P = (R,S,A) is (ε,δ)-differentially
private if the algorithm ΠR(x1, . . . ,xn) = S(R(x1), . . . ,R(xn)) is (ε,δ)-differentially private (Definition 3.1).

In this model, privacy is a property of the entire set of users’ messages and of the shuffler, and thus
ε,δ may depend on the number of users n. When we wish to refer to P or Π with a specific number of
users n, we will denote this by Pn or Πn.

We remark that if an adversary were to inject additional messages, then it would not degrade privacy,
provided that those messages are independent of the honest users’ data. Thus, we may replace n, in our
results, with an assumed lower bound on the number of honest users in the system.

In some of our results it will be useful to have a generic notion of accuracy for a protocol P .

Definition 3.5 (Accuracy of Distributed Protocols). Protocol P = (R,S,A) is (α,β)-accurate for the function
f : X ∗ → Z if, for every X ∈ X ∗, we have P [d(P (X), f (X)) ≤ α] ≥ 1 − β where d : Z × Z → R is some
application-dependent distance measure.

As with the privacy guarantees, the accuracy of the protocol may depend on the number of users n,
and we will use Pn when we want to refer to the protocol with a specific number of users.

Composition of Differential Privacy We will use the following useful composition property for protocols
in the shuffled model, which is an immediate consequence of Lemma 3.3 and the post-processing
Lemma 3.2. This lemma allows us to directly compose protocols in the shuffled model while only using
the shuffler once, rather than using the shuffler independently for each protocol being composed.

9



Lemma 3.6 (Composition of Protocols in the Shuffled Model). If Π1 = (R1,S), . . . ,ΠT = (RT ,S) for Rt :
X →Ym are each (ε,δ)-differentially private in the shuffled model, and R̃ : X →YmT is defined as

R̃(xi) = (R1(xi), . . . ,RT (xi))

then, for every δ′ > 0, the composed protocol Π̃ = (R̃,S) is (ε′ ,δ′ + T δ)-differentially private in the shuffled model
for ε′ = ε(eε − 1)T + ε

√
2T log(1/δ′).

3.2.1 Local Differential Privacy

If the shuffler S were replaced with the identity function (i.e. if it did not randomly permute the
messages) then we would be left with exactly the local model of differential privacy. That is, a locally
differentially private protocol is a pair of algorithms P = (R,A), and the output of the protocol is P (X) =
A(R(x1), . . . ,R(xn)). A protocol P is differentially private in the local model if and only if the algorithm R
is differentially private. In Section 6 we will see that if P = (R,S,A) is a differentially private protocol in
the one-message shuffled model, then R itself must satisfy local differential privacy for non-trivial (ε,δ),
and thus (R,A ◦ S) is a differentially private local protocol for the same problem.

4 A Protocol for Boolean Sums

In this section we describe and analyze a protocol for computing a sum of {0,1} bits, establishing
Theorem 2.2 in the introduction.

4.1 The Protocol

In our model, the data domain is X = {0,1} and the function being computed is f (x1, . . . ,xn) =
∑n
i=1 xi .

Our protocol, Pλ, is specified by a parameter λ ∈ [0,n] that allows us to trade off the level of privacy and
accuracy. Note that λ may be a function of the number of users n. We will discuss in Section 4.3 how
to set this parameter to achieve a desired level of privacy. For intuition, one may wish to think of the
parameter λ ≈ 1

ε2
when ε is not too small.

The basic outline of Pλ is as follows. Roughly, a random set of λ users will choose yi randomly, and
the remaining n−λ will choose yi to be their input bit xi . The output of each user is the single message yi .
The outputs are then shuffled and the output of the protocol is the sum

∑n
i=1 yi , shifted and scaled so that

it is an unbiased estimator of
∑n
i=1 xi .

The protocol is described in Algorithm 1. The full name of this protocol is P 0/1
λ , where the superscript

serves to distinguish it with the real sum protocol P R

λ,r (Section 5). Because of the clear context of this
section, we drop the superscript. Since the analysis of both the accuracy and utility of the algorithm will
depend on the number of users n, we will use Pn,λ,Rn,λ,An,λ to denote the protocol and its components in
the case where the number of users is n.

4.2 Privacy Analysis

In this section we will prove that Pλ satisfies (ε,δ)-differential privacy. Note that if λ = n then the each
user’s output is independent of their input, so the protocol trivially satisfies (0,0)-differential privacy,
and thus our goal is to prove an upper bound on the parameter λ that suffices to achieve a given (ε,δ).

Theorem 4.1 (Privacy of Pλ). There are absolute constants κ1, . . . ,κ5 such that the following holds for Pλ. For
every n ∈N, δ ∈ (0,1) and κ2 log(1/δ)

n ≤ ε ≤ 1, there exists a λ = λ(n,ε,δ) such that Pn,λ is (ε,δ) differentially

10



Algorithm 1: A shuffled protocol P 0/1
n,λ = (R0/1

n,λ ,S,A
0/1
n,λ) for computing the sum of bits

// Local Randomizer

R0/1
n,λ(x):

Input: x ∈ {0,1}, parameters n ∈N,λ ∈ (0,n).
Output: y ∈ {0,1}

Let b← Ber(λn )
If b = 0 : Return y← x ;
ElseIf b = 1 : Return y← Ber

(
1
2

)
;

// Analyzer

A0/1
n,λ(y1, . . . , yn):

Input: (y1, . . . , yn) ∈ {0,1}n, parameters n ∈N,λ ∈ (0,n).
Output: z ∈ [0,n]

Return z← n
n−λ ·

(∑n
i=1 yi −

λ
2

)

private and,

λ ≤


κ4 log(1/δ)

ε2
if ε ≥

√
κ3 log(1/δ)

n

n− κ5εn
3/2

√
log(1/δ)

otherwise

In the remainder of this section we will prove Theorem 4.1.
The first step in the proof is the observation that the output of the shuffler depends only on

∑
i yi . It

will be more convenient to analyze the algorithm Cλ (Algorithm 2) that simulates S(Rλ(x1), . . . ,Rλ(xn)).
Claim 4.2 shows that the output distribution ofCλ is indeed the same as that of the output

∑
i yi . Therefore,

privacy of Cλ carries over to Pλ.

Algorithm 2: Cλ(x1 . . .xn)

Input: (x1 . . .xn) ∈ {0,1}n, parameter λ ∈ (0,n).
Output: y ∈ {0,1,2, . . . ,n}

Sample s← Bin
(
n, λn

)
DefineHs = {H ⊆ [n] : |H | = s} and choose H←Hs uniformly at random
Return y←

∑
i<H xi +Bin

(
s, 12

)

Claim 4.2. For every n ∈N, x ∈ {0,1}n, and every r ∈ {0,1,2, . . . ,n},

P [Cλ(X) = r] = P

 n∑
i=1

Rn,λ(xi) = r



11



Proof. Fix any r ∈ {0,1,2, . . . ,n}.

P [Cλ(X) = r] =
∑
H⊆[n]

P [Cλ(X) = r ∩H =H]

=
∑
H⊆[n]

P

∑
i<H

xi +Bin
(
|H |, 1

2

)
= r

 · (λn )|H | (
1− λ

n

)n−|H |
=

∑
H⊆[n]

P

∑
i<H

xi +
∑
i∈H

Ber
(1
2

)
= r

 · (λn )|H | (
1− λ

n

)n−|H |
(1)

Let G denote the (random) set of people for whom bi = 1 in Pλ. Notice that

P

 n∑
i=1

Rn,λ(xi) = r

 = ∑
G⊆[n]

P

∑
i

Rn,λ(xi) = r ∩G = G


=

∑
G⊆[n]

P

∑
i<G

xi +
∑
i∈G

Ber
(1
2

)
= r


·
(λ
n

)|G| (
1− λ

n

)n−|G|
which is the same as (1). This concludes the proof.

Now we establish that in order to demonstrate privacy of Pn,λ, it suffices to analyze Cλ.

Claim 4.3. If Cλ is (ε,δ) differentially private, then Pn,λ is (ε,δ) differentially private.

Proof. Fix any number of users n. Consider the randomized algorithm T : {0,1,2, . . . ,n} → {0,1}n that
takes a number r and outputs a uniformly random string z that has r ones. If Cλ is differentially private,
then the output of T ◦Cλ is (ε,δ) differentially private by the post-processing lemma.

To complete the proof, we show that for any X ∈ X n the output of (T ◦Cλ)(X) has the same distribution
as S(Rλ(x1), . . .Rλ(xn)). Fix some vector Z ∈ {0,1}n with sum r

P

T ,Cλ
[T (Cλ(X)) = Z] = P [T (r) = Z] ·P [Cλ(X) = r]

=
(n
r

)−1 ·P [Cλ(X) = r]

=
(n
r

)−1 ·P[
f (Rn,λ(X)) = r

]
(Claim 4.2)

=
(n
r

)−1 · ∑
Y∈{0,1}n:|Y |=r

P

[
Rn,λ(X) = Y

]
=

∑
Y∈{0,1}n:|Y |=r

P

[
Rn,λ(X) = Y

]
·P [S(Y ) = Z]

= P

Rn,λ,S

[
S(Rn,λ(X)) = Z

]
This completes the proof of Claim 4.3.

We will analyze the privacy of Cλ in three steps. First we show that for any sufficiently large H , the
final step (encapsulated by Algorithm 3) will ensure differential privacy for some parameters. When then
show that for any sufficiently large value s and H chosen randomly with |H | = s, the privacy parameters
actually improve significantly in the regime where s is close to n; this sampling of H is performed by
Algorithm 4. Finally, we show that when s is chosen randomly then s is sufficiently large with high
probability.
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Algorithm 3: CH (x1 . . .xn)

Input: (x1 . . .xn) ∈ {0,1}n, parameter H ⊆ [n].
Output: yH ∈ {0,1,2, . . . ,n}

Let B← Bin
(
|H |, 12

)
Return yH ←

∑
i<H xi +B

Claim 4.4. For any δ > 0 and any H ⊆ [n] such that |H | > 8log 4
δ , CH is (ε, δ2 )-differentially private for

ε = ln

1+
√

32log 4
δ

|H |

 <
√

32log 4
δ

|H |

Proof. Fix neighboring datasets X ∼ X ′ ∈ {0,1}n, any H ⊆ [n] such that |H | > 8log 4
δ , and any δ > 0. If

the point at which X,X ′ differ lies within H , the two distributions CH (X),CH (X ′) are identical. Hence,
without loss of generality we assume that xj = 0 and x′j = 1 for some j <H .

Define u :=
√

1
2 |H | log

4
δ and Iu :=

(
1
2 |H | −u,

1
2 |H |+u

)
so that by Hoeffding’s inequality(Theorem E.2),

P [B ∈ Iu] < 1
2δ. For any W ⊆ {0,1,2, . . . ,n}we have,

P [CH (X) ∈W ] = P [CH (X) ∈W ∩B ∈ Iu] +P [CH (X) ∈W ∩B < Iu]

≤ P [CH (X) ∈W ∩B ∈ Iu] +
1
2
δ

=
∑

r∈W∩Iu

P

B+
∑
i<H

xi = r

+ 1
2
δ

Thus to complete the proof, it suffices to show that for any H and r ∈W ∩ Iu

P [B+
∑
i<H xi = r]

P

[
B+

∑
i<H x

′
i = r

] ≤ 1+

√
32log 4

δ

|H |
(2)

Because xj = 0,x′j = 1 and j <H , we have
∑
i<H xi =

∑
i<H x

′
i − 1. Thus,

P [B+
∑
i<H xi = r]

P

[
B+

∑
i<H x

′
i = r

] = P

[
B+

∑
i<H x

′
i − 1 = r

]
P

[
B+

∑
i<H x

′
i = r

]
=
P

[
B =

(
r −

∑
i<H x

′
i

)
+1

]
P

[
B =

(
r −

∑
i<H x

′
i

)]
Now we define k = r −

∑
i<H x

′
i so that

P

[
B =

(
r −

∑
i<H x

′
i

)
+1

]
P

[
B =

(
r −

∑
i<H x

′
i

)] =
P [B = k +1]
P [B = k]

.
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Then we can calculate

P [B = k +1]
P [B = k]

=
|H | − k
k +1

(B is binomial)

≤
|H | − (12 |H | −u)

1
2 |H | −u +1

(r ∈ Iu so k ≥ 1
2 |H | −u)

<
1
2 |H |+u
1
2 |H | −u

=
u2/(log 4

δ ) +u

u2/(log 4
δ )−u

(u =
√

1
2 |H | log

4
δ )

=
u + log 4

δ

u − log 4
δ

= 1+
2log 4

δ

u − log 4
δ

= 1+
2log 4

δ√
1
2 |H | log

4
δ − log

4
δ

≤ 1+
4log 4

δ√
1
2 |H | log

4
δ

= 1+

√
32log 4

δ

|H |
(|H | > 8log 4

δ )

which completes the proof.

Next, we consider the case where H is a random subset of [n] with a fixed size s. In this case we will
use an amplification via sampling argument [20, 26] to argue that the randomness of H improves the privacy
parameters by a factor of roughly (1− s

n ), which will be crucial when s ≈ n.

Algorithm 4: Cs(x1, . . . ,xn)

Input: (x1, . . . ,xn) ∈ {0,1}n, parameter s ∈ {0,1,2, . . . ,n}.
Output: ys ∈ {0,1,2, . . . ,n}

DefineHs = {H ⊆ [n] : |H | = s} and choose H←Hs uniformly at random
Return ys← CH(x)

Claim 4.5. For any δ > 0 and any s > 8log 4
δ , Cs is (ε, 12δ) differentially private for

ε =

√
32log 4

δ

s
·
(
1− s

n

)
Proof. As in the previous section, fix X ∼ X ′ ∈ {0,1}n where xj = 0,x′j = 1. Cs(X) selects H uniformly from
Hs and runs CH (X); let H denote the realization of H. To enhance readability, we will use the shorthand

ε0(s) :=
√

32log 4
δ

s . For any W ⊂ {0,1,2, . . . ,n}, we aim to show that

P

H,CH
[CH(X) ∈W ]− 1

2δ

P

H,CH
[CH(X ′) ∈W ]

≤ exp
(
ε0(s) ·

(
1− s

n

))
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First, we have

P

H,CH
[CH(X) ∈W ]− 1

2δ

P

H,CH
[CH(X ′) ∈W ]

=
P

H,CH
[CH(X) ∈W ∩ j ∈H] + P

H,CH
[CH(X) ∈W ∩ j <H]− 1

2δ

P

H,CH
[CH(X ′) ∈W ∩ j ∈H] + P

H,CH
[CH(X ′) ∈W ∩ j <H]

=
(1− p)γ(X) + pζ(X)− 1

2δ

(1− p)γ(X ′) + pζ(X ′)
(3)

where p := P [j <H] = (1− s/n),

γ(X) := P

CH
[CH(X) ∈W | j ∈H] and ζ(X) := P

CH
[CH(X) ∈W | j <H] .

When user j outputs a uniformly random bit, their private value has no impact on the distribution. Hence,
γ(X) = γ(X ′), and

(3) =
(1− p)γ(X) + pζ(X)− 1

2δ

(1− p)γ(X) + pζ(X ′)
(4)

Since s = |H | is sufficiently large, by Claim 4.4 we have ζ(X) ≤ (1 + ε0(s)) ·min{ζ(X ′),γ(X)}+ 1
2δ.

(4) ≤
(1− p)γ(X) + p · (1 + ε0(s)) ·min{ζ(X ′),γ(X)}+ δ)− 1

2δ

(1− p)γ(X) + pζ(X ′)

≤
(1− p)γ(X) + p · (1 + ε0(s)) ·min{ζ(X ′),γ(X)}

(1− p)γ(X) + pζ(X ′)

=
(1− p)γ(X) + p ·min(ζ(X ′),γ(X)) + p · ε0(s) ·min{ζ(X ′),γ(X)}

(1− p)γ(X) + pζ(X ′)

≤
(1− p)γ(X) + pζ(X ′) + p · ε0(s) ·min{ζ(X ′),γ(X)}

(1− p)γ(X) + pζ(X ′)

= 1+
p · ε0(s) ·min{ζ(X ′),γ(X)}

(1− p)γ(X) + pζ(X ′)
(5)

Observe that min{ζ(X ′),γ(X)} ≤ (1− p)γ(X) + pζ(X ′), so

(5) ≤ 1+ p · ε0(s) = 1+ ε0(s) ·
(
1− s

n

)
≤ exp

(
ε0(s) ·

(
1− s

n

))
= exp


√

32log(4/δ)
s

·
(
1− s

n

)
which completes the proof.

We now come to the actual algorithm Cλ, where s is not fixed but is random. The analysis of Cs yields
a bound on the privacy parameter that increases with s, so we will complete the analysis of Cλ by using
the fact that, with high probability, s is almost as large as λ.

Claim 4.6. For any δ > 0 and n ≥ λ ≥ 14log 4
δ , Cλ is (ε,δ) differentially private where

ε =

√√√√ 32log 4
δ

λ−
√
2λ log 2

δ

·

1− λ−
√
2λ log 2

δ

n


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The proof is in Appendix A.

From Claim 4.3, Cλ and Pn,λ share the same privacy guarantees. Hence, Claim 4.6 implies the
following:

Corollary 4.7. For any δ ∈ (0,1), n ∈N, and λ ∈
[
14log 4

δ ,n
]
, Pn,λ is (ε,δ) differentially private, where

ε =

√√√√ 32log 4
δ

λ−
√
2λ log 2

δ

·

1− λ−
√
2λ log 2

δ

n


4.3 Setting the Randomization Parameter

Corollary 4.7 gives a bound on the privacy of Pn,λ in terms of the number of users n and the random-
ization parameter λ. While this may be enough on its own, in order to understand the tradeoff between ε
and the accuracy of the protocol, we want to identify a suitable choice of λ to achieve a desired privacy
guarantee (ε,δ). To complete the proof of Theorem 4.1, we prove such a bound.

For the remainder of this section, fix some δ ∈ (0,1). Corollary 4.7 states that for any n and λ ∈[
14log 4

δ ,n
]
, Pn,λ satisfies (ε∗(λ),δ)-differential privacy, where

ε∗(λ) =

√√√√ 32log 4
δ

λ−
√
2λ log 2

δ

·

1− λ−
√
2λ log 2

δ

n


Let λ∗(ε) be the inverse of ε∗, i.e. the minimum λ ∈ [0,n] such that ε∗(λ) ≤ ε. Note that ε∗(λ) is decreasing
as λ→ nwhile λ∗(ε) increases as ε→ 0. By definition, Pn,λ satisfies (ε,δ) privacy if λ ≥ λ∗(ε); the following
Lemma gives such an upper bound:

Lemma 4.8. For all δ ∈ (0,1), n ≥ 14log 4
δ , ε ∈

(√
3456
n log 4

δ ,1
)
, Pn,λ is (ε,δ) differentially private if

λ =


64
ε2

log 4
δ if ε ≥

√
192
n log 4

δ

n− εn3/2√
432log(4/δ)

otherwise
(6)

We’ll prove the lemma in two claims, each of which corresponds to one of the two cases of our bound
on λ∗(ε). The first bound applies when ε is relatively large.

Claim 4.9. For all δ ∈ (0,1), n ≥ 14log 4
δ , ε ∈

(√
192
n log 4

δ ,1
)
, if λ = 64

ε2
log 4

δ then Pn,λ is (ε,δ) private.

Proof. Let λ = 64
ε2

log 4
δ as in the statement. Corollary 4.7 states that Pn,λ satisfies (ε∗(λ),δ) privacy for

ε∗(λ) =

√√√√ 32log 4
δ

λ−
√
2λ log 2

δ

·

1− λ−
√
2λ log 2

δ

n


≤

√√√√ 32log 4
δ

λ−
√
2λ log 2

δ

(λ ≤ n)

≤

√
64log 4

δ

λ
(λ ≥ 8log 2

δ )

= ε

This completes the proof of the claim.
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The value of λ in the previous claim can be as large as n when ε approaches 1/
√
n. We now give a

meaningful bound for smaller values of ε.

Claim 4.10. For all δ ∈ (0,1), n ≥ 14log 4
δ , ε ∈

(√
3456
n log 4

δ ,
√

192
n log 4

δ

)
, if

λ = n− εn3/2√
432log(4/δ)

then Pn,λ is (ε,δ) private.

Proof. Let λ = n−εn3/2/
√
432log(4/δ) as in the statement. Note that for this ε regime, we have n/3 < λ < n.

Corollary 4.7 states that Pn,λ satisfies (ε∗(λ),δ) privacy for

ε∗(λ) =

√√√√ 32log 4
δ

λ−
√
2λ log 2

δ

·

1− λ−
√
2λ log 2

δ

n


≤

√
64log 4

δ

λ
·

1− λ−
√
2λ log 2

δ

n

 (λ ≥ 8log 2
δ )

=

√
64log 4

δ

λ
·

 ε
√
n√

432log(4/δ)
+

√
2λ log 2

δ

n


≤

√
64log 4

δ

λ
·

 ε
√
n√

432log(4/δ)
+

√
2log 2

δ

n

 (λ ≤ n)

≤

√
192log 4

δ

n
·

 ε
√
n√

432log(4/δ)
+

√
2log 2

δ

n

 (λ ≥ n/3)

=
2
3
ε+

√
384log 4

δ log
2
δ

n
<
2
3
ε+

√
384
n

log
4
δ

<
2
3
ε+

1
3
ε = ε (ε >

√
3456
n log 4

δ )

which completes the proof.

4.4 Accuracy Analysis

In this section, we will bound the error of Pλ(X) with respect to
∑
i xi . Recall that, to clean up notational

clutter, we will often write f (X) =
∑
i xi . As with the previous section, our statements will at first be in

terms of λ but the section will end with a statement in terms of ε,δ.

Theorem 4.11. For every n ∈N, β > 0, n > λ ≥ 2log 2
β , and x ∈ {0,1}n,

P


∣∣∣∣∣∣∣Pn,λ(x)−∑i xi

∣∣∣∣∣∣∣ >√
2λ log(2/β) ·

( n
n−λ

) ≤ β
Observe that, using the choice of λ specified in Theorem 4.1, we conclude that for every 1

n . ε . 1 and
every δ the protocol Pλ satisfies

P


∣∣∣∣∣∣∣Pn,λ(x)−∑i xi

∣∣∣∣∣∣∣ > O
√log(1/δ) log(1/β)

ε


 ≤ β
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To see how this follows from Theorem 4.11, consider two parameter regimes:

1. When ε � 1/
√
n then λ ≈

√
log(1/δ)
ε2

� n, so the bound in Theorem 4.11 is O(
√
λ log(1/β)), which

yields the desired bound.

2. When ε� 1/
√
n then n−λ ≈ εn3/2/

√
log(1/δ)� n, so the bound in Theorem 4.11 is O

(
n3/2
√
log(1/β)
n−λ

)
,

which yields the desired bound.

We formalize this intuition in Corollary B.4 to obtain Theorem 2.2 in the introduction.

The remainder of the analysis can be found in Appendix B.

5 A Protocol for Sums of Real Numbers

In this section, we show how to extend our protocol to compute sums of bounded real numbers. In
this case the data domain is X = [0,1], but the function we wish to compute is still f (x) =

∑
i xi . The main

idea of the protocol is to randomly round each number xi to a Boolean value bi ∈ {0,1} with expected
value xi . However, since the randomized rounding introduces additional error, we may need to round
multiple times and estimate several sums. As a consequence, this protocol is not one-message.

5.1 The Protocol

Our algorithm is described in two parts, an encoder Er that performs the randomized rounding
(Algorithm 5) and a shuffled protocol P R

λ,r (Algorithm 6) that is the composition of many copies of our
protocol for the binary case, P 0/1

λ . The encoder takes a number x ∈ [0,1] and a parameter r ∈ N and
outputs a vector (b1, . . . , br ) ∈ {0,1}r such that E

[
1
r

∑
j bj

]
= xj and Var

[
1
r

∑
j bj

]
= O(1/r2). To clarify, we

give two examples of the encoding procedure:

• If r = 1 then the encoder simply sets b = Ber(x). The mean and variance of b are x and x(1− x) ≤ 1
4 ,

respectively.

• If x = .4 and r = 4 then the encoder sets b = (1,Ber(.6),0,0). The mean and variance of 1
4 (b1 + b2 +

b3 + b4) are .4 and .015, respectively.

After doing the rounding, we then run the bit-sum protocol P 0/1
λ on the bits b1,j , . . . , bn,j for each j ∈ [r]

and average the results to obtain an estimate of the quantity∑
i

1
r

∑
j

bi,j ≈
∑
i

xi

To analyze privacy we use the fact that the protocol is a composition of bit-sum protocols, which are each
private, and thus we can analyze privacy via the composition properties of differential privacy.

Much like in the bit-sum protocol, we use P R

n,λ,r ,R
R

n,λ,r ,A
R

n,λ,r to denote the real-sum protocol and its
components when n users participate.

Theorem 5.1. For every δ = δ(n) such that e−Ω(n1/4) < δ(n) < 1
n and poly(logn)

n < ε < 1 and every sufficiently large
n, there exists parameters λ ∈ [0,n], r ∈N such that P R

n,λ,r is both (ε,δ) differentially private and for every β > 0,
and every X = (x1, . . . ,xn) ∈ [0,1]n,

P


∣∣∣∣∣∣∣P R

n,λ,r (X)−
n∑
i=1

xi

∣∣∣∣∣∣∣ > O
(
1
ε
log

1
δ

√
log

1
β

) ≤ β
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Algorithm 5: An encoder Er (x)

Input: x ∈ [0,1], a parameter r ∈N.
Output: (b1, . . . ,br ) ∈ {0,1}r

Let µ← dx · re and p← x · r −µ+1
For j = 1, . . . , r

bj =


1 j < µ

Ber(p) j = µ

0 j > µ

Return (b1, . . . ,br )

Algorithm 6: The protocol P R

λ,r = (RR

λ,r ,S,A
R

λ,r )

// Local randomizer

RR

n,λ,r (x):
Input: x ∈ [0,1], parameters n,r ∈N,λ ∈ (0,n).
Output: (y1, . . .yr ) ∈ {0,1}r

(b1, . . .br )← Er (x)
Return (y1, . . .yr )←

(
R0/1
n,λ(b1), . . . ,R

0/1
n,λ(br )

)
// Analyzer

AR

n,λ,r (y1,1, . . . , yn,r ):
Input: (y1,1, . . . , yn,r ) ∈ {0,1}n·r , parameters n,r ∈N,λ ∈ (0,n).
Output: z ∈ [0,n]

Return z← 1
r ·

n
n−λ

((∑
j
∑
i yi,j

)
− λ·r2

)

5.2 Warmup: One Message

To simplify the discussion, we will handle the case where ε < 1/
√
n is quite small, in which it suffices

to consider r = 1. In this case the protocol is exactly the bit-sum protocol run on the bits r1, . . . , rn. In this
case we have two sources of error, the rounding, and the bit-sum protocol itself, and we can simply
analyze the combination.

The error of the rounding is bounded by Hoeffding’s inequality.

Claim 5.2. For every n ∈N, x1, . . . ,xn ∈ [0,1], and β > 0, P
[∣∣∣∑n

i=1 xi −
∑n
i=1E1(xi)

∣∣∣ >√
1
2n log(2/β)

]
≤ β.

Using this claim, combined with Corollary B.4, we immediately obtain the following

Theorem 5.3. For every n ∈N, δ ∈ (0,1), and ε ∈
[√

3456
n log 4

δ ,
√

1
n

]
, and every β > 0, there is a λ such that the

protocol Pn,λ,1 is (ε,δ)-differentially private and for every x1, . . . ,xn ∈N,

P


∣∣∣∣∣∣∣Pn,λ,1(x)−

n∑
i=1

xi

∣∣∣∣∣∣∣ > α
 ≤ β

for

α =O
((√

n+ 1
ε

√
log 1

δ

)√
log 1

β

)
=O

(
1
ε

√
log 1

δ log
1
β

)
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Summing up, when ε < 1/
√
n, the error term coming from rounding is smaller than the error already

in the bit-sum protocol. Thus, we have established Theorem 5.1 for the regime where ε < 1/
√
n. However,

when ε is larger, the bit-sum protocol has much less than
√
n error, so we will need to perform the more

elaborate rounding with r > 1.

5.3 Privacy Analysis

Privacy will follow immediately from the composition properties of shuffled protocols (Lemma 3.6)
and the privacy of the bit-sum protocol Pn,λ. One technical nuisance is that the composition properties
are naturally stated in terms of ε, whereas the protocol is described in terms of the parameter λ, and the
relationship between ε,λ, and n is somewhat complex. Thus, we will state our guarantees in terms of
the level of privacy that each individual bit-sum protocol achieves with parameter λ. To this end, define
the function λ∗(n,ε,δ) to be the minimum value of λ such that the bit-sum protocol with n users satisfies
(ε,δ)-differential privacy. We will state the privacy guarantee in terms of this function.

Theorem 5.4. For every ε,δ ∈ (0,1),n, r ∈N, define

ε0 =
ε√

8r log(2/δ)
δ0 =

δ
2r

λ∗ = λ∗(n,ε0,δ0)

For every λ ≥ λ∗, P R

n,λ,r is (ε,δ)-differentially private.

5.4 Accuracy Analysis

In this section, we bound the error of P R

λ,r (X) with respect to
∑
i xi . Recall that f (X) =

∑
i xi .

Observe that there are two sources of randomness: the encoding of the input X = (x1, . . .xn) as bits
and the execution of R0/1

n,λ on that encoding. We first show that the bit encoding lends itself to an unbiased
and concentrated estimator of f (X). Then we show that the output of Pn,λ,r is concentrated around any
value that estimator takes.

Theorem 5.5. For every β > 0, n ≥ λ ≥ 16
9 log 2

β , r ∈N, and X ∈ [0,1]n,

P

[∣∣∣P R

n,λ,r (X)− f (X)
∣∣∣ ≥ √2r √

n log 2
β +

n
n−λ ·

√
2λr log

2
β

]
< 2β

The analysis can be found in Appendix C. Later in that section, we argue that setting r← ε ·
√
n suffices

to achieve the bound in Theorem 5.1.

6 Lower Bounds for the Shuffled Model

In this section, we prove separations between central model algorithms and shuffled model protocols
where each user’s local randomizer is identical and sends one indivisible message to the shuffler (the
one-message model).

Theorem 6.1 (Shuffled-to-Local Transformation). Let PS be a protocol in the one-message shuffled model that is

• (εS ,δS )-differentially private in the shuffled model for some εS ≤ 1 and δS = δS (n) < n−8, and

• (α,β)-accurate with respect to f for some β =Ω(1).

Then there exists a protocol PL in the local model that is

• (εL,0)-differentially private in the local model for εL = 8(εS + lnn), and
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• (α,4β)-accurate with respect to f (when n is larger than some absolute constant)

This means that an impossibility result for approximating f in the local model implies a related
impossibility result for approximating f in the shuffled model. In Section 6.2 we combine this result
with existing lower bounds for local differential privacy to obtain several strong separations between the
central model and the one-message shuffled model.

The key to Theorem 6.1 is to show that if PS = (RS ,S,AS ) is a protocol in the one-message shuffled
model satisfying (εS ,δS )-differential privacy, then the algorithm RS itself satisfies (εL,δS )-differential
privacy without use of the shuffler S. Therefore, the local protocol PL = (RS ,AS ◦ S) is (εL,δS )-private in
the local model and has the exact same output distribution, and thus the exact same accuracy, as PS . To
complete the proof, we use (a slight generalization of) a transformation of Bun, Nelson, and Stemmer [7]
to turn R into a related algorithm R′ satisfying (8(εS + lnn),0)-differential privacy with only a slight loss
of accuracy. We prove the latter result in Appendix D .

6.1 One-message Randomizers Satisfy Local Differential Privacy

The following lemma is the key step in the proof of Theorem 6.1, and states that for any symmetric
shuffled protocol, the local randomizer R must satisfy local differential privacy with weak, but still
non-trivial, privacy parameters.

Theorem 6.2. Let P = (R,S,A) be a protocol in the one-message shuffled model. If n ∈N is such that Pn satisfies
(εS ,δS )-differential privacy, then the algorithm R satisfies (εL,δL)-differential privacy for εL = εS + lnn. Therefore,
the symmetric local protocol PL = (R,A ◦ S) satisfies (εL,δL)-differential privacy.

Proof. By assumption, Pn is (εS ,δS )-private. Let ε be the supremum such that R : X → Y is not (ε,δS )-
private. We will attempt to find a bound on ε. If R is not (ε,δS )-differentially private, there exist Y ⊂ Y
and x,x′ ∈ X such that

P

[
R(x′) ∈ Y

]
> exp(ε) ·P [R(x) ∈ Y ] + δS

For brevity, define p := P(R(x) ∈ Y ) and p′ := P(R(x′) ∈ Y ) so that we have

p′ > exp(ε)p+ δS (7)

We will show that if ε is too large, then (7) will imply that Pn is not (εS ,δS )-differentially private, which
contradicts our assumption. To this end, define the setW := {W ∈ Yn | ∃i wi ∈ Y }. Define two datasets
X ∼ X ′ as

X := (x, . . . ,x︸ ︷︷ ︸
n times

) and X ′ := (x′ , x, . . . ,x︸ ︷︷ ︸
n−1 times

)

Because Pn is (εS ,δS )-differentially private

P

[
Pn(X

′) ∈W
]
≤ exp(εS ) ·P [Pn(X) ∈W ] + δS (8)
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Now we have

P [Pn(X) ∈W ]

= P

S(R(x), . . . ,R(x)︸          ︷︷          ︸
n times

) ∈W


= P

(R(x), . . . ,R(x)︸          ︷︷          ︸
n times

) ∈W

 (W is symmetric)

= P [∃i R(x) ∈ Y ] ≤ n ·P [R(x) ∈ Y ] (Union bound)

= np

where the second equality is because the set W is closed under permutation, so we can remove the
random permutation S without changing the probability. Similarly, we have

P

[
Pn(X

′) ∈W
]
= P

(R(x′),R(x) . . . ,R(x)︸         ︷︷         ︸
n−1 times

) ∈W


≥ P

[
R(x′) ∈ Y

]
= p′

> exp(ε)p+ δS (By (7))

Now, plugging the previous two inequalities into (8), we have

exp(ε)p+ δS < P

[
Pn(X

′) ∈W
]

≤ exp(εS ) ·P [Pn(X) ∈W ]

≤ exp(εS )np+ δS

By rearranging and canceling terms in the above we obtain the conclusion

ε ≤ εS + lnn

Therefore R must satisfy (εS + lnn,δS )-differential privacy.

Claim 6.3. If the shuffled protocol PS = (R,S,A) is (α,β)-accurate for some function f , then the local protocol
PL = (R,A ◦ S) is (α,β)-accurate for f , where

(A ◦ S)(y1, . . . , yN ) = A(S(y1, . . . , yN ))

We do not present a proof of Claim 6.3, as it is immediate that the distribution of PS (x) and PL(x) are
identical, since A ◦ S incorporates the shuffler.

We conclude this section with a slight extension of a result of Bun, Nelson, and Stemmer [7] showing
how to transform any local algorithm satisfying (ε,δ)-differential privacy into one satisfying (O(ε),0)-
differential privacy with only a small decrease in accuracy. Our extension covers the case where ε > 2/3,
whereas their result as stated requires ε ≤ 1/4.

Theorem 6.4 (Extension of [7]). Suppose local protocol PL = (R,A) is (ε,δ) differentially private and (α,β)
accurate with respect to f . If ε > 2/3 and

δ <
β

8n ln(n/β)
· 1
exp(6ε)

then there exists another local protocol P ′L = (R′ ,A) that is (8ε,0) differentially private and (α,4β) accurate with
respect to f .
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Table 1: Comparisons Between Models. When a parameter is unspecified, the reader may substitute
ε = 1,δ = 0,α = β = .01. All results are presented as the minimum dataset size n for which we can hope
to achieve the desired privacy and accuracy as a function of the relevant parameter for the problem.

Function

(Parameters)

Differential Privacy Model

Central
Shuffled (this paper)

Local
One-Message General

Mean, X = {0,1}
(Accuracy α) Θ( 1

αε )
O
(√log(1/δ)

αε

)
Θ( 1

α2ε2
)

Mean, X = [0,1]

(Accuracy α)
O
(
1
α2 +

√
log(1/δ)
αε

)
O
( log(1/δ)

αε

)
Selection

(Dimension d)
Θ(logd) Ω(d

1
17 ) Õ(

√
d log dδ ) Θ(d logd)

Histograms

(Domain Size D)
Θ
(
min

{
log 1

δ , logD
})

Ω(log
1
17 D) O(

√
logD) Θ(logD)

The proof can be found in Appendix D . Theorem 6.1 now follows by combining Theorem 6.2 and
Claim 6.3 with Theorem 6.4.

6.2 Applications of Theorem 6.1

In this section, we define two problems and present known lower bounds in the central and local
models. By applying Theorem 6.1, we derive lower bounds in the one-message shuffled model. These
bounds imply large separations between the central and one-message shuffled models.

6.2.1 The Selection Problem

We define the selection problem as follows. The data universe is X = {0,1}d where d is the dimension
of the problem and the main parameter of interest. Given a dataset x = (x1, . . . ,xn) ∈ X n, the goal is to
identify a coordinate j such that the sum of the users’ j-th bits is approximately as large as possible. That
is, a coordinate j ∈ [d] such that

n∑
i=1

xi,j ≥max
j ′∈[d]

n∑
i=1

xi,j ′ −
n
10

(9)

We say that an algorithm solves the selection problem with probability 1 − β if for every dataset x, with
probability at least 1− β, it outputs j satisfying (9).

We would like to understand the minimum n (as a function of d) such that there is a differentially
private algorithm that can solve the selection problem with constant probability of failure. We remark
that this is a very weak notion of accuracy, but since we are proving a negative result, using a weak
notion of accuracy only strengthens our results.

The following lower bound for locally differentially private protocols for selection is from [30], and is
implicit in the work of [12].2

2These works assume that the dataset x consists of independent samples from some distribution D, and define accuracy for
selection with respect to mean of that distribution. By standard arguments, a lower bound for the distributional version implies a
lower bound for the version we have defined.
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Theorem 6.5. If PL = (RL,AL) is a local protocol that satisfies (ε,0)-differential privacy and PL solves the selection

problem with probability 9
10 for datasets x ∈ ({0,1}d)n, then n =Ω

(
d logd
(eε−1)2

)
.

By applying Theorem 6.1 we immediately obtain the following corollary.

Corollary 6.6. If PS = (RS ,S,AS ) is a (1,δ)-differentially private protocol in the one-message shuffled model, for
δ = δ(n) < n−8, and PS solves the selection problem with probability 99

100 , then n =Ω((d logd)1/17).

Using a multi-message shuffled protocol3, we can solve selection with Õ(1ε
√
d) samples. By contrast,

in the local model n = Θ( 1
ε2
d logd) samples are necessary and sufficient. In the central model, this

problem is solved by the exponential mechanism [24] with a dataset of size just n =O(1ε logd), and this is
optimal [2, 27]. These results are summarized in Table 1.

6.2.2 Histograms

We define the histogram problem as follows. The data universe is X = [D] where D is the domain size of
the problem and the main parameter of interest. Given a dataset x = (x1, . . . ,xn) ∈ X n, the goal is to build
a vector of size D such that for all j ∈ [D] the j-th element is as close to the frequency of j in x. That is, a
vector v ∈ [0,n]D such that

max
j∈[D]

∣∣∣∣∣∣∣vj −
n∑
i=1

1(xi = j)

∣∣∣∣∣∣∣ ≤ n
10

(10)

where 1(conditional) is defined to be 1 if conditional evaluates to true and 0 otherwise.
Similar to the selection problem, an algorithm solves the histogram problem with probability 1− β if for

every dataset x, with probability at least 1 − β it outputs v satisfying (10). We would like to find the
minimum n such that a differentially private algorithm can solve the histogram problem; the following
lower bound for locally differentially private protocols for histograms is from [3].

Theorem 6.7. If PL = (RL,AL) is a local protocol that satisfies (ε,0) differential privacy and PL solves the histogram

problem with probability 9
10 for any x ∈ [D]n then n =Ω

(
logD
(eε−1)2

)
By applying Theorem 6.1, we immediately obtain the following corollary.

Corollary 6.8. If PS = (RS ,S,AS ) is a (1,δ)-differentially private protocol in the one-message shuffled model, for
δ = δ(n) < n−8, and PS solves the histogram problem with probability 99

100 , then n =Ω
(
log1/17D

)
In the shuffled model, we can solve this problem using our protocol for bit-sums by having each user

encode their data as a “histogram” of just their value xi ∈ [D] and then running the bit-sum protocol D

times, once for each value j ∈ [D], which incurs error O(1ε

√
log 1

δ logD).4 But in the central model, this

problem can be solved to error O(min{log 1
δ , logD}), which is optimal (see, e.g. [31]). Thus, the central

and one-message shuffled models are qualitatively different with respect to computing histograms: D
may be infinite in the former whereas D must be bounded in the latter.
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A Privacy of Bit Sum Protocol

Here, we prove Claim 4.6, which expresses the privacy of Cλ in terms of λ:

Claim (Restatement of Claim 4.6). For any δ > 0 and n ≥ λ ≥ 14log 4
δ , Cλ is (ε,δ) differentially private

where

ε =

√√√√ 32log 4
δ

λ−
√
2λ log 2

δ

·

1− λ−
√
2λ log 2

δ

n


Proof. Fix any X ∼ X ′ ∈ {0,1}n and any W ⊆ [n].

P [Cλ(X) ∈W ] = P

[
Cλ(X) ∈W ∩ s ≥ λ−

√
2λ log 2

δ

]
+P

[
Cλ(X) ∈W ∩ s < λ−

√
2λ log 2

δ

]
≤ P

[
Cλ(X) ∈W ∩ s ≥ λ−

√
2λ log 2

δ

]
+
1
2
δ (Chernoff bound)

=
∑

s≥λ−
√
2λ log 2

δ

P [Cs(X) ∈W ] ·P [s = s] +
1
2
δ (11)

Because λ is sufficiently large, λ−
√
2λ log 2

δ > 8log 4
δ . Claim 4.5 thus applies to each term in the sum.

P [Cs(X) ∈W ] ≤ exp


√

32log 4
δ

s
·
(
1− s

n

) ·P[
Cs(X

′) ∈W
]
+
1
2
δ

For notational convenience, we will use the shorthand ε1(s) :=
√

32log 4
δ

s ·
(
1− s

n

)
. Therefore,

(11) ≤


∑

s≥λ−
√
2λ log 2

δ

[
eε1(s) ·P

[
Cs(X

′) ∈W
]
+
1
2
δ
]
·P [s = s]

+
1
2
δ

≤


∑

s≥λ−
√
2λ log 2

δ

eε1(s) ·P
[
Cs(X

′) ∈W
]
·P [s = s]

+ δ
≤ max
s≥λ−

√
2λ log 2

δ

eε1(s) ·P
[
Cλ(X

′) ∈W
]
+ δ

Because ε1(s) decreases with s, the above is maximized at the lower bound on s:

P [Cλ(X) ∈W ] ≤exp


√√√√ 32log 4

δ

λ−
√
2λ log 2

δ

·

1− λ−
√
2λ log 2

δ

n


 ·

P

[
Cλ(X

′) ∈W
]
+ δ

which completes the proof.
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B Accuracy of Bit Sum Protocol

In this section, we will show there exists a value of λ for any (sufficiently large) target value of ε
such that the error of bit sum protocol Pn,λ is Õ((1/ε)

√
log(1/δ)). But first, we shall bound the error of the

protocol in terms of λ:

Theorem (Restatement of Theorem 4.11). For every n ∈N, β > 0, n > λ ≥ 2log 2
β , and x ∈ {0,1}n,

P


∣∣∣∣∣∣∣Pn,λ(x)−∑i xi

∣∣∣∣∣∣∣ >√
2λ log(2/β) ·

( n
n−λ

) ≤ β
Recall that each user i sends a message yi which is a randomization of bit xi . We begin the analysis by

determining the mean and variance of each yi :

Claim B.1. For any n ∈N, 0 < λ ≤ n, and x ∈ {0,1},

E

[
Rn,λ(x)

]
=
λ
2n

+
(
1− λ

n

)
· x

Var
[
Rn,λ(x)

]
=
λ
2n
·
(
1− λ

2n

)
Proof. For shorthand, y = Rn,λ(x). The calculation of the expectation is not long:

E [y] =
λ
n
·E

[
Ber

(1
2

)]
+
(
1− λ

n

)
· x

=
λ
2n

+
(
1− λ

n

)
· x

If x = 0, then y is a Bernoulli random variable with probability 1
2 ·

λ
n of being 1. The variance of Ber(p) is

p(1− p), which is here λ
2n

(
1− λ

2n

)
. A symmetric argument applies to the case where x = 1. This concludes

the proof.

Using the above, one can compute the mean and variance of the protocol’s estimate using linearity of
expectation and the fact that the output of the protocol is a (rescaled) sum of independent messages:

Claim B.2. For any n ∈N, 0 < λ ≤ n, and X ∈ {0,1}n,

E

[
Pn,λ(X)

]
=

n∑
i=1

xi

Var
[
Pn,λ(X)

]
=

( n
n−λ

)2
· λ
2
·
(
1− λ

2n

)
We omit the proof for space. From the previous claim, and the fact that the protocol is output a sum

of independent bits, we can obtain a high-probability bound on the error.

Corollary B.3. For any n ∈N, 0 < β < 1, and 16
9 log 2

β < λ < n, the protocol Pn,λ is (α,β)-accurate for

α =
n

n−λ

√
2λ log

2
β

Proof. Fix any X ∈ {0,1}n. Let di denote the random variable Rn,λ(xi)− λ
2n −

(
1− λn

)
· xi . It has maximum

1− λ
2n < 1 and minimum −1+ λ

2n > −1. From Claim B.1, E [di] = 0 and Var[di] =
λ
2n

(
1− λ

2n

)
. Because λ is
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sufficiently large, the variance is larger than 4
9n log

2
β . By assumption, there are n honest users. These facts

imply that Bernstein’s inequality (Theorem E.3) is compatible:

P


∣∣∣∣∣∣∣
n∑
i=1

di

∣∣∣∣∣∣∣ >
√
2λ

(
1− λ

2n

)
log

2
β

 < β (12)

Define yi := Rλ(xi) for shorthand. Observe that∑
i

di =
∑
i

(
yi −

λ
2n
−
(
1− λ

n

)
· xi

)
=

∑
i

yi

− λ2 − (1− λn )
· f (x)

n
n−λ

∑
i

di =
n

n−λ


∑
i

yi

− λ2
− f (x)

= (Aλ ◦ S)(y1, . . . ,yn)− f (x) (S only permutes)

= Pn,λ(x)− f (x) (13)

Substitution of (13) in (12) yields

P

∣∣∣Pn,λ(x)− f (x)∣∣∣ > n
n−λ

√
2λ

(
1− λ

2n

)
log

2
β

 < β
The Claim follows from the fact that λ > 0. This concludes the proof.

When λ is set to the piecewise function in Lemma 4.8, the error of Pλ with respect to the bit-sum is of
the same order as the Gaussian mechanism:

Corollary B.4. For any n ∈N, 0 < δ < 1,
√
3456
n log 4

δ < ε < 1, and δ < β < 1, there exists a λ ∈ [0,n] such that
Pn,λ is (ε,δ)-differentially private and for every X ∈ {0,1}n, with probability at least 1− β,∣∣∣∣∣∣∣Pn,λ(X)−

n∑
i=1

xi

∣∣∣∣∣∣∣ ≤ 30
ε

√
log

2
β
log

4
δ

Proof. Fix any X ∈ {0,1}n. Let

λ =


64
ε2

log 4
δ if ε ≥

√
192
n log 4

δ

n− εn3/2√
432log(4/δ)

otherwise

By Lemma 4.8, Pλ is (ε,δ) private. By Theorem 4.11, Pn,λ is (α,β) accurate for

α =

√
2λ log

2
β
· n
n−λ
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We have to consider both ranges of ε. If ε <
√

192
n log 4

δ , then

α =

√
2λ · log 2

β
· n

n−
(
n− εn3/2√

432log(4/δ)

)
=

√
2λ · log 2

β
·
√
432log(4/δ)

ε
√
n

<
30
ε

√
λ
n
· log

(
2
β

)
log

4
δ

≤ 30
ε

√
log

(
2
β

)
log

4
δ

(λ ≤ n)

If ε ≥
√

192
n log 4

δ , then

α =

√
2 · 64
ε2

log
(4
δ

)
· log 2

β
· n
n−λ

≤ 1
ε

√
128log

(4
δ

)
· log 2

β
· 3
2

(λ < n/3)

<
17
ε

√
log

(4
δ

)
log

2
β

Combining the two bounds completes the proof.

C Accuracy of Real Sum Protocol

As in the previous section, we will show that there exists values of parameters λ,r where the error
of the real sum protocol P R

n,λ,r is Õ((1/ε) log(1/δ)). But we begin by bounding the error of the protocol in
terms of λ,r:

Theorem (Restatement of Theorem 5.5). For every β > 0, n ≥ λ ≥ 16
9 log 2

β , r ∈N, and X ∈ [0,1]n,

P

[∣∣∣P R

n,λ,r (X)− f (X)
∣∣∣ ≥ √2r √

n log 2
β +

n
n−λ ·

√
2λr log

2
β

]
< 2β

It will help to establish notation. Throughout this section, we fix some X = (x1, . . . ,xn) ∈ {0,1}n. For
any i ∈ [n], the vector of bits (bi,1, . . .bi,r ) denotes randomized encoding from Er (xi). The set of all such
bits b1,1, . . .bn,r is denoted B ∈ {0,1}n·r .

Claim C.1. For every n,r ∈N , X ∈ (0,1)n, and 0 < β < 1,

P

B


∣∣∣∣∣∣∣∣f (X)− 1

r

n∑
i=1

r∑
j=1

bi,j

∣∣∣∣∣∣∣∣ >
√
2
r

√
n log

2
β

 ≤ β (14)

Proof. Fix some i ∈ [n]. Only one bit among bi,1, . . . , bi,r is random, at index µ. The remainder have sum
bxi · rc. Hence, ∣∣∣∣∣∣∣∣xi − 1

r

r∑
j=1

bi,j

∣∣∣∣∣∣∣∣ ≤ 1
r

(15)
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We show that the average of 1
r (bi,1 + · · ·+bi,r ) has expected value xi :

E

bi,1,...bi,r

1r
r∑
j=1

bi,j

 = E

1r
bi,µi +∑

j,µ

bi,j




=
1
r

(
E

[
bi,µ

]
+µi − 1

)
=
1
r
(pi +µ− 1)

=
1
r
(xi · r −µ+1+µ− 1)

=
1
r
· xi · r

= xi (16)

From (15), (16), and Hoeffding’s inequality (Theorem E.2),the sum over all xi − 1
r

∑r
j=1bi,j is concen-

trated:

P

B


∣∣∣∣∣∣∣∣
n∑
i=1

xi −
1
r

n∑
i=1

r∑
j=1

bi,j

∣∣∣∣∣∣∣∣ > 2
r

√
1
2
n log

2
β

 ≤ β
which is equivalent to (14). This concludes the proof.

Condition on an encoding b1,1, . . . , bn,r of the n real-valued inputs. When we treat the output of the
protocol as an estimator of 1

r

∑
j
∑
i bi,j , we find that it is unbiased and concentrated:

Claim C.2. For every β > 0, n ≥ λ ≥ 16
9 log 2

β , X ∈ (0,1)n, r ∈N and every fixed set of bits B = (b1,1, . . . , bn,r ) ∈
{0,1}n·r ,

P


∣∣∣∣∣∣∣∣P R

n,λ,r (X)−
1
r

∑
j

∑
i

bi,j

∣∣∣∣∣∣∣∣ > n
n−λ

√
2
λ
r
log

2
β

∣∣∣∣∣ B = B

 < β (17)

Proof. As in the statement, fix any B = (b1,1, . . . ,bn,r ) ∈ {0,1}n·r . Let di,j denote Rn,λ(bi,j )− λ
2n −

(
1− λn

)
· bi,j .

Its value is in [−1,1]. Applying Claim B.1 here, we have E

[
di,j

]
= 0 and Var

[
di,j

]
= λ

2n

(
1− λ

2n

)
. From

Bernstein’s inequality(Theorem E.3),

P


∣∣∣∣∣∣∣∣
∑
j

∑
i

di,j

∣∣∣∣∣∣∣∣ >
√
2λr

(
1− λ

2n

)
log

2
β

 < β (18)

Let yi,j denote the random variable output by Rλ(bi,j ). Observe that∑
j

∑
i

di,j =

∑
j

∑
i

yi,j

− λ · r2 − (1− λn )∑
j

∑
i

bi,j

1
r
· n
n−λ

∑
j

∑
i

di,j =
1
r
· n
n−λ


∑
j

∑
i

yi,j

− λ · r2
− 1

r

∑
j

∑
i

bi,j

= AR

n,λ,r (y1,1, . . . ,yn,r )−
1
r

∑
j

∑
i

bi,j (Defn. of AR

n,λ,r )

= (AR

n,λ,r ◦ S)(y1,1, . . . ,yn,r )−
1
r

∑
j

∑
i

bi,j (S only permutes)

= (AR

n,λ,r ◦ S ◦R
0/1
n,λ)(b1,1, . . . , bn,r )−

1
r

∑
j

∑
i

bi,j (19)

31



When executing P R

n,λ,r , condition on B = B. By substituting (19) into (18), we have that

P


∣∣∣∣∣∣∣∣P R

n,λ,r (x)−
1
r

∑
j

∑
i

bi,j

∣∣∣∣∣∣∣∣ > n
n−λ

√
2
λ
r

(2n−λ
2n

)
log

2
β

∣∣∣∣∣ B = B

 < β
Now, (17) follows from the fact that λ > 0. This concludes the proof.

Theorem 5.5 now follows from a union bound over (14) and (17).
We have bounded the error of Pn,λ,r in terms of λ,r. When λ,r are chosen such that Pn,λ,r satisfies (ε,δ)

differential privacy, we can bound the error in terms of ε,δ. Theorem 5.1 follows from the following
statement:

Corollary C.3. For any n > 104, δ ∈
(
8e−0.03n

1/4
,1/n

)
, β ∈ (δ,1), ε ∈

[
122
n log 8

δ

√
log 2

β ,1
]
, there exist parameters

λ ∈ [0,n], r ∈N such that Pn,λ,r is (ε,δ) private and for any X ∈ (0,1)n

P

[∣∣∣P R

n,λ,r (X)− f (X)
∣∣∣ > 122

ε
log

8
δ

√
log

2
β

]
< 2β

Proof. Let r = dε
√
ne. Define

ε0 =
ε√

8r log(2/δ)
δ0 =

δ
2r

In an identical fashion to Lemma 4.8, assign λ such that P 0/1
n,λ satisfies (ε0,δ0) privacy. From Corollary 5.4,

this in turn implies Pn,λ,r is (ε,δ) differentially private.
For these values of r,λ, Theorem 5.5 bounds the error as

P

∣∣∣P R

n,λ,r (X)− f (X)
∣∣∣ ≥ √2

r

√
n log

2
β
+ · n
n−λ

·

√
2
λ
r
log

2
β

 ≤ 2β (20)

It is immediate from substitution of r that
√
2
r

√
n log

2
β
=

√
2
ε

√
log

2
β

(21)

Following the same steps as the proof of Corollary B.4, it can be shown that

n
n−λ

·

√
2
λ
r
log

2
β
≤ 30
ε0

√
1
r
log

(
4
δ0

)
log

2
β

= 30 ·

√
8r log 2

δ

ε

√
1
r
log

(
4
δ0

)
log

2
β

(Defn. of ε0)

=
30
ε

√
8log

(2
δ

)
log

(
4
δ0

)
log

2
β

=
30
ε

√
8log

(2
δ

)
log

(
8r
δ0

)
log

2
β

(Defn. of δ0)

=
30
ε

√
8log

(2
δ

)
log

(
8ε
√
n

δ

)
log

2
β

(Defn. of r)

<
30
ε

√
16log

(2
δ

)
log

(8
δ

)
log

2
β

(ε < 1,δ < 8/
√
n)

=
120
ε

log
8
δ

√
log

2
β

(22)
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Observe Eq(22)
Eq(21) = 60

√
2log 8

δ < 85log 8
δ . Hence,

Eq(21)+Eq(22) < Eq(21) · (1 + 85log
8
δ
)

< Eq(21) · 86log 8
δ

(δ < 1)

=
86
√
2

ε
log

8
δ

√
log

2
β

<
122
ε

log
8
δ

√
log

2
β

The above can be substituted into (20) and we arrive at

P

[∣∣∣Pn,λ,r (X)− f (X)∣∣∣ ≥ 122
ε

log
8
δ

√
log

2
β

]
≤ 2β

which is precisely the target claim.

D From Approximate DP to Pure DP for Local Protocols

In this section, we show that for any (ε,δ) private local protocol, there exists an (8ε,0) private
counterpart with roughly the same accuracy guarantees. [7] proved this theorem when ε ≤ 1/4, but we
need the theorem when ε� 1. Our proof follows their approach almost exactly, but we include it for
completeness to verify that their result can be modified to hold for larger ε.

Theorem D.1 (Extension of [7]). Let Pn = (Rn,An) be a local protocol for n ≥ 3 users that is (ε,δ) differentially
private and (α,β) accurate with respect to f . If ε > 2/3 and

δ <
β

8n ln(n/β)e6ε

then there exists another local protocol that is (8ε,0) differentially private and (α,4β) accurate with respect to f .

The conditions ε > 2/3 and n > 3 are not essential, but are used to simplify the statement. We will
prove Theorem D.1 by construction: given local randomizer R, Algorithm 7 transforms it into another
randomizer Rk,T . The parameters will be set later to achieve the desired privacy and accuracy.

D.1 Privacy Analysis

First, we establish that the transformed local randomizer is indeed (8ε,0)-differentially private.

Claim D.2. For any ε > 0, any (ε,δ)-differentially private algorithm R, any k ∈ (0,2e−2ε), and any T ∈N, the
algorithm Rk,T is (8ε,0) differentially private.

Proof. Define L := 1
2 exp(−2ε) · k and U := 1

2 exp(2ε) · k. Note that [L,U ] ⊂ [0,1] and P

[
bi,j = 1

]
∈ [L,U ].

Fix x ∼ x′ ∈ X , j ∈ [T ], and y ∈ Y . Let Vy = {V ∈ YT | ∃j vj = y}.

P

[
Rk,T (x) = y

]
= P

[
Rk,T (x) = y ∩V ∈ Vy

]
=

∑
V ∈Vy

P [V = V ] ·P
[
Rk,T (x) = y |V = V

]
=

∑
V ∈Vy

P [V = V ] ·

 ∑
{j |vj=y}

P [j = j |V = V ]

 (23)
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Algorithm 7: A local randomizer Rk,T
Input: x ∈ X ; parameters k ∈ (0,2e−2ε) and T ∈N; black-box access to R : X →Y
Output: yk,T ∈ Y

Let c be some (publicly known) fixed element of X .
Define GoodInt :=

[
1
2 exp(−2ε),

1
2 exp(2ε)

]
For t ∈ [T ]

vt← R(c)
pt← 1

2
P[R(x)=vt]
P[R(c)=vt]

If pt < GoodInt : pt← 1
2

bt← Ber(pt · k)
If ∃t bt = 1 : Sample j uniformly over {t ∈ [T ] | bt = 1}
Else Sample j uniformly over [T ]
Return yk,T ← vj

Recall that bj takes a random binary value and the distribution of j is dependent on these bits. In the
analysis below, we omit the condition that V = V for brevity.

P [j = j] = P

[
j = j ∩bj = 0

]
+P

[
j = j ∩bj = 1

]
(24)

We’ll upper bound each summand separately. If bj is set to zero, then the only way to for the user to
choose j is for all other bits bt to be zero as well. And in that case, the choice is uniform over [T ]:

P

[
j = j ∩bj = 0

]
=

1
T
·P [∀t bt = 0]

=
1
T
·
T∏
t=1

P [bt = 0] (Independence)

≤ 1
T
·
T∏
t=1

(1−L) (P [bt = 1] ≥ L)

=
1
T
· (1−L)T (25)

If bj is set to one, j is uniform over the bits set to one, itself a random variable:

P

[
j = j ∩bj = 1

]
= P

[
bj = 1

]
·P

[
j = j | bj = 1

]
= P

[
bj = 1

]
·
T∑
s=1

1
s
·P

∑
t,j

bt = s − 1


= P

[
bj = 1

]
·
T−1∑
s=0

1
s+1

·P

∑
t,j

bt = s


= P

[
bj = 1

]
·E

[
1

1+
∑
t,j bt

]
(26)

Observe that the term
∑
t,j bt is a sum of Bernoulli random variables, with different expectations but

all residing in [L,U ]. As a corollary of Claim 6.3 in [7], we have the following:

34



Claim D.3. If random variables b1, . . . ,bT are each drawn independently from Ber(p1), . . . ,Ber(pT ) where L ≤
pt ≤U for every t ∈ [T ], then

E

[
1

1+Bin(T ,U )

]
≤ E

[
1

1+
∑
bt

]
≤ E

[
1

1+Bin(T ,L)

]
.

Hence,

(26) ≤ P

[
bj = 1

]
·E

[
1

1+Bin(T − 1,L)

]
= P

[
bj = 1

]
·
T−1∑
s=0

· 1
s+1

(
T − 1
s

)
·Ls · (1−L)T−s−1

= P

[
bj = 1

]
· 1
T L

(
1− (1−L)T

)
≤ U
TL

(
1− (1−L)T

)
(27)

From (25), (27), and (24),

P [j = j] ≤ U
TL

(
1− (1−L)T

)
+

1
T
(1−L)T

≤ U
TL

(
1− (1−L)T

)
+
U
TL

(1−L)T (U > L)

=
U
TL

(28)

Recall (23):

P

[
Rk,T (x) = y

]
=

∑
V ∈Vy

P [V = V ] ·

 ∑
{j |vj=y}

P [j = j |V = V ]


<
U
T L
·
∑
V ∈Vy

P [V = V ] · {#vj = y} (From (28))

=
U
TL
· E

V←R(c)T

[
#vj = y

]
(29)

where we use #vj = y to indicate the number of elements of V that have value y.
We remark that the distribution of V is wholly independent of private value x. Hence, by a completely

symmetric series of steps,

P

[
Rk,T (x

′) = y
]
>

L
TU
· E

V←R(c)T

[
#vj = y

]
(30)

From (29) and (30),

P

[
Rk,T (x) = y

]
P

[
Rk,T (x′) = y

] < U2

L2

=
(1/4) · exp(4ε) · k2

(1/4) · exp(−4ε) · k2

= exp(8ε)

which completes the proof.
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D.2 Accuracy Analysis

Next we show that, for suitable parameters, the protocol Pn,k,T = (Rn,k,T ,An) remains essentially as
accurate as Pn = (Rn,An).

Claim D.4. If Pn = (Rn,An) is (α,β)-accurate for f , and Rn is (ε,δ)-differentially private for ε > 2/3 and

δ <
β

8n ln(n/β)
· 1
exp(6ε)

then there exists T ∈N, k ∈ (0,2e−2ε) such that the local protocol Pn,k,T = (Rn,k,T ,An) is (α,4β) accurate for f .

Claim D.2 and Claim D.4 together imply Theorem 6.4.

For the purposes of this section, fix any X ∈ X n where X = (x1, . . . ,xn). Let yk,T[i] denote5 the random
output of Rn,k,T (xi) and let Yk,T denote the ordered set yk,T[1], . . . ,yk,T[n]. Let y[i] denote the random
output of Rn(xi) and let Y denote the ordered set y[1], . . . ,y[n].

As described in Algorithm 7, Rk,T defines variables bt ,vt for every t ∈ [T ]. In the context of Pn, there
are 2n · T such variables, 2T for each user i: we use bi,t ,vi,t to disambiguate between users.

As a first step to proving Claim D.4, we show that the distribution of Yk,T is similar to that of Y
(Claim D.5). Then we show that running the same analysis function An on both Y and Yk,T yields similar
accuracy guarantees (Claim D.8). The notion of “similar” is statistical distance in terms of parameters
n,ε,δ,k,T : if the parameters are constrained, then the distance simplifies to 3β. Because β +3β = 4β, we
have (α,4β) accuracy (Claim D.9). We close the section by a particular setting of k,T to achieve such a
bound.

As we have stated, we start by relating Yk,T to Y:

Claim D.5. If ε > 0,0 < δ < 1−exp(−ε)
4exp(ε)n ,T ∈N, k ∈ (0,2e

−2ε), then for anyW ⊆ Yn,

P

[
Yk,T ∈W

]
< P [Y ∈W ] +n ·

(
1− 1

2
exp(−2ε) · k

)T
+

2nδexp(ε)
1− exp(−ε)

(T +2) (31)

Proof. Consider an execution of the protocol Pn,k,T (X). Let E1 denote the event that for some user i, all
bits bi,j are set to 0:

P [E1] = P

[
∃i ∀t bi,t = 0

]
≤ n ·max

i∈[n]
P

[
∀t bi,t = 0

]
(Union bound)

≤ n ·
(
1− 1

2
exp(−2ε) · k

)T
(32)

Recall that GoodInt = [12e
−2ε, 12e

2ε]. For any x,x′ ∈ X , let Good(x,x′) ⊂ Y denote the set consisting of all

τ satisfying 1
2
P(Rn(x′)=τ)
P(Rn(x)=τ)

∈ GoodInt. The following is a property of private algorithms:

Lemma D.6. Fix a value of c ∈ X . If R : X →Y is (ε,δ) differentially private, then for any x ∈ X ,

P [R(c) < Good(c,x)] ≤ 2δexp(ε)
1− exp(−ε)

5Brackets are used for indices in order to avoid collision with parameters k,T in the subscript
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A proof can be found in [3, Claim 5.4]. Let E2 denote the event that for some i and some t, vi,t <
Good(c,xi).

P [E2] =
n∑
i=1

T∑
t=1

P

[
vi,t < Good(c,xi)

]
(Independence)

≤ nT ·max
i∈[n]

(P [R(c) < Good(c,xi)]) (vi,t← R(c))

≤ 2nT δexp(ε)
1− exp(−ε)

(33)

The second inequality is an application of Lemma D.6 to (ε,δ) private Rn.
Fix anyW ⊂ Yn.

P

[
Yk,T ∈W

]
= P

[
Yk,T ∈W ∩E1

]
+P

[
Yk,T ∈W ∩E2

]
+P

[
Yk,T ∈W ∩ (¬E1 ∩¬E2)

]
≤ P [E1] +P [E2] +P

[
Yk,T ∈W ∩ (¬E1 ∩¬E2)

]
≤ n ·

(
1− 1

2
exp(−2ε) · k

)T
+
2nT δexp(ε)
1− exp(−ε)

+P

[
Yk,T ∈W ∩ (¬E1 ∩¬E2)

]
(34)

The second inequality is simply substitution of (32) and (33)
Fix some i ∈ [n]. Notice that if ¬E2 occurs, then it must be the case that for every t ∈ [T ], vi,t ∈

Good(c,xi). Because yk,T[i] is selected from vi,t, it must be the case that yk,T[i] has to lie in Good(c,xi).
Let Good ⊂ Yn denote Good(c,x1) × · · · ×Good(c,xn). If ¬E2 occurs, then Yk,T ∈ Good. We use this to

analyze the third summand in (34):

P

[
Yk,T ∈W ∩ (¬E1 ∩¬E2)

]
=

∑
W∈W

P

[
Yk,T =W ∩ (¬E1 ∩¬E2)

]
=

∑
W∈W∩Good

P

[
Yk,T =W ∩ (¬E1 ∩¬E2)

]
=

∑
W∈W∩Good

n∏
i=1

P

[
yk,T[i] = w[i]∩ (¬E1 ∩¬E2)

]
(Independence)

≤
∑

W∈W∩Good

n∏
i=1

P

[
yk,T[i] = w[i] | (¬E1 ∩¬E2)

]
(35)

We will later prove the following equivalence:

Claim D.7. For any ε > 0, k ∈ (0,2exp(−2ε)),T ∈N and c,x ∈ X ,

P

yk,T←Rn,k,T (x)

[
yk,T = g | (¬E1 ∩¬E2)

]
= P

y←Rn(x)
[y = g | y ∈ Good(c,x)]

for any g ∈ Good(c,x)
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By substitution,

(35) =
∑

W∈W∩Good

n∏
i=1

P [y[i] = w[i] | y[i] ∈ Good(c,xi)]

=
∑

W∈W∩Good
P [Y =W | Y ∈ Good] (Independence)

= P [Y ∈W | Y ∈ Good]

≤ 1
P [Y ∈ Good]

·P [Y ∈W ]

=
1

1−P [Y < Good]
·P [Y ∈W ] (36)

Notice that Y < Good when, for some i, 1
2
P(Rn(xi )=y[i])
P(Rn(c)=y[i])

< GoodInt. We obtain P [Y < Good] ≤ 2nδexp(ε)
1−exp(−ε) by

an argument similar6 to that of (33). Therefore,

(36) ≤ 1

1− 2nδexp(ε)
1−exp(−ε)

·P [Y ∈W ]

≤
(
1+

4nδexp(ε)
1− exp(−ε)

)
·P [Y ∈W ] (2nδexp(ε)1−exp(−ε) <

1
2 )

≤ P [Y ∈W ] +
4nδexp(ε)
1− exp(−ε)

When we return to (34), we have

P

[
Yk,T ∈W

]
≤P [Y ∈W ] +n ·

(
1− 1

2
exp(−2ε) · k

)T
+
2nT δexp(ε)
1− exp(−ε)

+
4nδexp(ε)
1− exp(−ε)

which is equivalent to (31). This concludes the proof, modulo Claim D.7.

Here, we prove Claim D.7.

Proof of Claim D.7. Fix any ε > 0, k ∈ (0,2exp(−2ε)),T ∈N, (c,x) ∈ X 2 and g ∈ Good(c,x). Sample y from
Rn(x) and yk,T from Rn,k,T (x).

By a corresponding argument advanced by [7],

P

[
yk,T = g | (¬E1 ∩¬E2)

]
=

P [b1 = 1∩ v1 = g]
P [b1 = 1∩ v1 ∈ Good(c,x)]

(37)

We first expand the numerator:

P [b1 = 1∩ v1 = g] = P [v1 = g] ·P [b1 = 1 | v1 = g]

= P [v1 = g] ·
1
2

P [y = g]
P [v1 = g]

· k (Defn. of Rk,T )

=
1
2
P [y = g] · k (38)

6Notice the absence of T : to arrive at (33), we union bound over |V| = nT random variables but here |Y| = n
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We now analyze the denominator:

P [b1 = 1∩ v1 ∈ Good(c,x)] =
∑

τ∈Good(c,x)
P [v1 = τ] ·P [b1 = 1 | v1 = τ]

=
∑

τ∈Good(c,x)
P [v1 = τ] ·

1
2

P [y = τ]
P [v1 = τ]

· k (Defn. of Rk,T )

=
1
2
·

∑
τ∈Good(c,x)

P [y = τ] · k

=
1
2
P [y ∈ Good(c,x)] · k (39)

Therefore,

Eq(37) =
Eq(38)
Eq(39)

=
1
2P [y = g] · k

1
2P [y ∈ Good(c,x)] · k

= P [y = g | y ∈ Good(c,x)]

which completes the proof.

The preceding bound on the statistical distance between Rn(X),Rn,k,T (X) implies a bound on the error
of the transformed protocol Pn,k,T :

Claim D.8. Suppose Pn = (Rn,An) is (ε,δ) differentially private and (α,β) accurate. If ε > 0,δ ∈ (0, 1−exp(−ε)4exp(ε)n ),T ∈
N, k ∈ (0,2e−2ε), then Pn,k,T = (Rn,k,T ,An) is (α,βk,T ) accurate where

βk,T = β +n ·
(
1− 1

2
exp(−2ε) · k

)T
+

2nδexp(ε)
1− exp(−ε)

(T +2) (40)

Proof. If An is deterministic, the claim is immediate from Claim D.5. Otherwise, the randomness of u is
sourced from both An and Rn.

For anyX = (x1, . . . ,xn) ∈ X n, we again use Y to denote the random variable output byRn(x1), . . . ,Rn(xn),
likewise Yk,T for the random variable output by Rn,k,T (x1), . . . ,Rn,k,T (xn). We will use u to denote the
random variable An(Y), which is the output of the original protocol, and uk,T to denote the random
variable An(Yk,T), which is the output of the transformed protocol.

For any Y ∈ Yn, let ∆Y := P

[
Yk,T = Y

]
−P [Y = Y ]. Let I denote the subset of Yn containing exactly

those Y such that P
[
Yk,T = Y

]
> P [Y = Y ]; equivalently, those Y where ∆Y > 0. We will use I to analyze

the probability of exceeding α error: assuming we are interested in approximating a real-valued f (X),

P

[
|uk,T − f (X)| > α

]
= P

[
|uk,T − f (X)| > α ∩Yk,T ∈ I

]
+P

[
|uk,T − f (X)| > α ∩Yk,T < I

]
(41)
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We bound each term in the sum separately.

P

[
|uk,T − f (X)| > α ∩Yk,T ∈ I

]
=

∑
Y∈I

P [|An(Y )− f (X)| > α] ·P
[
Yk,T = Y

]
=

∑
Y∈I

P [|An(Y )− f (X)| > α] · (∆Y +P [Y = Y ])

<
∑
Y∈I

P [|An(Y )− f (X)| > α] ·P [Y = Y ] +∆Y

=
∑
Y∈I

P [|An(Y )− f (X)| > α ∩Y = Y ] +∆Y

= P [|u− f (X)| > α ∩Y ∈ I] +

∑
Y∈I

∆Y

 (42)

where the inequality comes from the fact that ∆Y > 0.

P

[
|uk,T − f (X)| > α ∩Yk,T < I

]
=

∑
Y<I

P [|An(Y )− f (X)| > α] ·P
[
Yk,T = Y

]
≤

∑
Y<I

P [|An(Y )− f (X)| > α] ·P [Y = Y ]

= P [|u− f (X)| > α ∩Y < I] (43)

The inequality comes from the definition of ¬I .
From (41), (42), and (43) we have

P

[
|uk,T − f (X)| > α

]
< P [|u− f (X)| > α] +

∑
Y∈I

∆Y


≤ β +

∑
Y∈I

∆Y

 (Pn is (α,β)-accurate)

= β +
(
P

[
Yk,T ∈ I

]
−P [Y ∈ I]

)
< β +n ·

(
1− 1

2
exp(−2ε) · k

)T
+

2nδexp(ε)
1− exp(−ε)

(T +2) (Claim D.5)

This completes the proof.

Finally, we show that the preceding error probability simplifies to 4β provided that parameters n,ε,δ
obey some constraints.

Claim D.9. For all ε > 2/3, k ∈ (2exp(−3ε),2exp(−2ε)), n ≥ 3 and

0 < δ <
β

8n ln(n/β)
· 1
exp(6ε)

(44)

then there exists T ∈N such that

n ·
(
1− 1

2
exp(−2ε) · k

)T
+
2nT δexp(ε)
1− exp(−ε)

+
4nδexp(ε)
1− exp(−ε)

< 3β (45)

Proof. (45) holds when each term in the sum is ≤ β.
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We begin with the term n ·
(
1− 1

2 exp(−2ε) · k
)T

. Because k > 2exp(−3ε), it will suffice to have

β > n · (1− exp(−5ε))T

ln
n
β
< T ln

(
1

1− exp(−5ε)

)
= T ln

(
1+

1
exp(5ε)− 1

)
(46)

The following is fairly trivial to prove: if 0 < τ < 1, then 1 + τ > exp(τ/2). Here, τ := (exp(5ε)− 1)−1.
We are ensured that τ ∈ (0,1) because ε > ln(2)/5. Therefore, the following bound on ln(n/β) is tighter
than (46):

ln
n
β
< T ln

(
exp

(
1
2
· 1
exp(5ε)− 1

))
= T · 1

2
· 1
exp(5ε)− 1

T > ln
n
β
· 2(exp(5ε)− 1) (47)

We also want the second term of (45) to be bounded by β.

β >
2nT δexp(ε)
1− exp(−ε)

T < β
1− exp(−ε)
2nδexp(ε)

(48)

Both (47) and (48) need be true for the same value of T . Hence,

ln
n
β
· 2(exp(5ε)− 1) < β 1− exp(−ε)

2nδexp(ε)

δ < β
1− exp(−ε)
2nexp(ε)

· 1
ln n

β · 2(exp(5ε)− 1)

=
β

4n ln(n/β)
· exp(ε)− 1
exp(2ε)(exp(5ε)− 1)

(49)

Because ε > 2/3, one can show that

exp(ε)− 1
exp(2ε)(exp(5ε)− 1)

>
1
2
exp(−6ε)

which means that any δ satisfying (44) satisfies (49).
The final term in (45) is 4nδexp(ε)

1−exp(−ε) ; for this to be bounded by β, it will suffice for

δ < β · 0.1
nexp(ε)

(ε > 2/3)

This constraint on δ is not as tight as (44) whenever n > e.
Because we have shown all three terms in (45) are bounded by β, this concludes the proof.
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Setting parameters k,T We now provide parameter values to ensure our transformation is (α,4β)
accurate, thereby proving Claim D.4. Suppose the parameters k,T are assigned as follows

k← 2exp(−2.5ε)

T ←
⌈
ln
n
β
· 2(exp(5ε)− 1)

⌉
Because k ∈ (0,2exp(−2ε)) and T ∈ N , Claim D.8 implies that the protocol Pn,k,T = (Rn,k,T ,An) is

(α,βk,T ) accurate, where βk,T is defined in (40). Claim D.9 implies that there is an integer value of T where
βk,T ≤ 4β; from (47), T is assigned such a value. Hence, Pn,k,T is (α,4β) accurate.

E Concentration Inequalities

In this appendix, we formally state the three concentration inequalities used in this paper:

Theorem E.1 (Chernoff bound). If x1, . . . ,xn are independent {0,1}-valued random variables, each with mean µ,
then, for every β > 0,

P

[
µn−

∑
xi <

√
2µn log 1

β

]
≥ 1− β, and

P

[∑
xi −µn <

√
3µn log 1

β

]
≥ 1− β

Theorem E.2 (Hoeffding’s inequality). If x1, . . . ,xn are independent random variables, each with mean µ and
bounded in (a,b), then, for every β > 0,

P

[∣∣∣∣∑xi −µn
∣∣∣∣ < (b − a)

√
1
2n log

2
β

]
> 1− β

Theorem E.3 (Bernstein’s inequality). If x1, . . . ,xn are independent random variables, each with mean 0, variance
σ2 > 4

9n log
2
β , and bounded in [−1,1], then, for every β > 0,

P

[∣∣∣∣∑xi
∣∣∣∣ < 2σ

√
n log 2

β

]
> 1− β
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