Skip to main content

Mathematical Modeling and Docking of Medicinal Plants and Synthetic Drugs to Determine Their Effects on Abnormal Expression of Cholinesterase and Acetyl Cholinesterase Proteins in Alzheimer

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11466))

  • 1156 Accesses

Abstract

Alzheimer’s is a neurodegenerative disease, typically begins slowly and after the passage of time gets worse. Around 70% of the cause of the disease is accepted to be hereditary with numerous genes generally involved. Objective: There are no proper medications for the disease. At present, the most acknowledged Alzheimer’s treatment is cholinesterase inhibitor that inactivates the acetyl cholinesterase chemical to expand acetylcholine level in the brain. Medicinal plants are also used for Alzheimer’s. Here, an In-silico attempt is made to compare the Medicinal plants with synthetic drugs to determine the efficacy of medicinal plants in the treatment of Alzheimer’s, data is collected for both medicinal plants and commercial drugs. Interactions of compounds with proteins are determined and side effects are calculated and compared to find out the best among them. The mathematical modeling of all the drugs is done to determine their effects on proteins expression. It is observed that none of the synthetic drugs interacts with acetyl cholinesterase, while the chemical constituents of medicinal plants represent greater interactions with both cholinesterase and acetyl cholinesterase, as compared to the synthetic drugs. The mathematical modeling of compounds also confirmed the inhibitory effects of medicinal plants compounds on proteins, whereas the synthetic drugs showed an in increase in the expression level of proteins. On the basis of the results, it is suggested that these chemical constituents are better used as the remedy against Alzheimer’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns, A., Iliffe, S.: Alzheimer’s disease. BMJ 338, b158 (2009). https://doi.org/10.1136/bmj.b158

    Article  Google Scholar 

  2. Dementia Fact sheet No. 362: World Health Organization (2015)

    Google Scholar 

  3. About Alzheimer’s Disease: Symptoms. National Institute on Aging (2011)

    Google Scholar 

  4. Querfurth, H.W., LaFerla, F.M.: Alzheimer’s disease. N. Engl. J. Med. 362(4), 329–344 (2010). https://doi.org/10.1056/NEJMra0909142

    Article  Google Scholar 

  5. Todd, S., Barr, S., Roberts, M., Passmore, A.P.: Survival in dementia and predictors of mortality: a review. Int. J. Geriatr. Psychiatry 28(11), 1109–24 (2013). https://doi.org/10.1002/gps.3946

    Article  Google Scholar 

  6. Ballard, C., Gauthier, S., Corbett, A., et al.: Alzheimer’s disease. Lancet 377(9770), 1019–1031 (2011). https://doi.org/10.1016/S0140-6736(10)61349-9. PMID 21371747

    Article  Google Scholar 

  7. Dementia diagnosis and assessment. National Institute for Health and Care Excellence (NICE) (2014)

    Google Scholar 

  8. More research needed on ways to prevent Alzheimer’s, panel finds: National Institute on Aging (2006)

    Google Scholar 

  9. Thompson, C.A., Spilsbury, K., Hall, J., Birks, Y., Barnes, C., Adamson, J.: Systematic review of information and support interventions for caregivers of people with dementia. BMC Geriatr. 7, 18 (2007). https://doi.org/10.1186/1471-2318-7-18

    Article  Google Scholar 

  10. Forbes, D., Forbes, S.C., Blake, C.M., Thiessen, E.J., Forbes, S.: Exercise programs for people with dementia. Cochrane Database of Syst. Rev. 4 (2015)

    Google Scholar 

  11. National Institute for Health and Clinical Excellence. Low-dose antipsychotics in people with dementia. National Institute for Health and Care Excellence (NICE) (2014)

    Google Scholar 

  12. Information for Healthcare Professionals: Conventional Antipsychotics. US Food and Drug Administration (2008)

    Google Scholar 

  13. Norton, S., Matthews, F.E., Barnes, D.E., Yaffe, K., Brayne, C.: Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. (2014). http://www.thelancet.com/journals/laneur/article/PIIS1474-4422(14)70136-X/fulltext. Accessed 2 Feb 2017

  14. Waring, S.C., Rosenberg, R.N.: Genome-wide association studies in Alzheimer disease. Arch. Neurol. 65(3), 329–34 (2008). https://doi.org/10.1001/archneur.65.3.329

    Article  Google Scholar 

  15. Selkoe, D.J.: Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399(6738 Suppl), A23–A31 (1999). https://doi.org/10.1038/19866. PMID 10392577

    Article  Google Scholar 

  16. Borchelt, D.R., Thinakaran, G., Eckman, C.B., Lee, M.K., Davenport, F., et al.: Familial Alzheimer’s disease-linked presenilin 1 variants elevate A1-42/1-40 ratio in vitro and in vivo. Neuron 17(5), 1005–13 (1996). https://doi.org/10.1016/S0896-6273(00)80230-5

    Article  Google Scholar 

  17. Shioi, J., et al.: FAD mutants unable to increase neurotoxic Abeta 42 suggest that mutation effects on neurodegeneration may be independent of effects on Abeta. (2007). PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/17254019

  18. Strittmatter, W.J., et al.: Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences 90(5), 1977–1981 (1993). https://doi.org/10.1073/pnas.90.5.1977

    Article  Google Scholar 

  19. Mahley, R.W., Weisgraber, K.H., Huang, Y.: Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Nat. Acad. Sci. U.S.A. 103(15), 5644–5651 (2006). https://doi.org/10.1073/pnas.0600549103

    Article  Google Scholar 

  20. Lambert, J.C.: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45(12), 1452–1458 (2013). https://doi.org/10.1038/ng.2802. PMC 3896259

    Article  Google Scholar 

  21. Jonsson, T., et al.: Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368(2), 107–116 (2013). https://doi.org/10.1056/NEJMoa1211103

    Article  Google Scholar 

  22. Guerreiro, R., et al.: TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368(2), 117–127 (2013). https://doi.org/10.1056/NEJMoa1211851

    Article  Google Scholar 

  23. Mahley, R.W.: Apolipoprotein E: remarkable protein sheds light on cardiovascular and neurological diseases. Clin. Chem. 63(1), 14–20 (2017). https://doi.org/10.1373/clinchem.2016.255695

    Article  Google Scholar 

  24. Jivad, N., Rabiei, Z.: A review study on medicinal plants used in the treatment of learning and memory impairments. Asian Pac. J. Trop. Biomed. 4(10), 780–789 (2014). https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0412

    Article  Google Scholar 

  25. Orhan, I., Aslan, M.: Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. J. Ethnopharmacol. 122(2), 327–332 (2009)

    Article  Google Scholar 

  26. Kim, H.G., Oh, M.S.: Herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr. Pharm. Des. 18(1), 57–7 (2012)

    Article  Google Scholar 

  27. Singhal, A., Bangar, O., Naithani, V.: Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int. J. Nutr. Pharmacol. Neurol. Dis. 2(2), 84 (2012). https://doi.org/10.4103/2231-0738.95927

    Article  Google Scholar 

  28. Cobanoglu, M.C., Oltvai, Z.N., Taylor, D.L., Bahar, I.: BalestraWeb: efficient online evaluation of drug-target interactions. Bioinformatics 31(1), 131–133 (2015). https://doi.org/10.1093/bioinformatics/btu599

    Article  Google Scholar 

  29. Munir, A., Azam, S., Khan, Z., Mehmood, A., Mehmood, A., et al.: Structure-based pharmacophore modeling, virtual screening and molecular docking for the treatment of ESR1 mutations in breast cancer. Drug Des. 5, 137 (2016). https://doi.org/10.4172/2169-0138.1000137

    Article  Google Scholar 

  30. PLIP: Fully automated protein-ligand interaction profiler — Nucleic Acids Research — Oxford Academic (n.d.). Accessed 26 Jan 2017

    Google Scholar 

  31. Tapsell, L.C., Hemphill, I., Cobiac, L., et al.: Health benefits of herbs and spices: the past, the present, the future. Med. J. Aust. 185(4 Suppl), S4–24 (2006)

    Google Scholar 

  32. Lai, P.K., Roy, J.: Antimicrobial and chemopreventive properties of herbs and spices. Curr. Med. Chem. 11(11), 1451–1460 (2004). https://doi.org/10.2174/0929867043365107. PMID 15180577

    Article  Google Scholar 

  33. Whitehouse, P.J.: The end of Alzheimer’s disease - from biochemical pharmacology to ecopsychosociology: a personal perspective. Biochem. Pharmacol. 88(4), 677–681 (2014). https://doi.org/10.1016/j.bcp.2013.11.017

    Article  Google Scholar 

  34. Birks, J., Harvey, R.J.: Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 1, CD001190 (2006). https://doi.org/10.1002/14651858.CD001190.pub2

    Article  Google Scholar 

  35. Birks, J.S., Evans, J.G.: Rivastigmine for Alzheimer’s disease. Cochrane Database Syst. Rev. 4, CD001191 (2015). https://doi.org/10.1002/14651858.CD001191.pub3. ISSN 1469-493X

    Article  Google Scholar 

  36. He, Z., et al.: Predicting drug-target interaction networks based on functional groups and biological features. PLoS ONE 5(3), e9603 (2010). https://doi.org/10.1371/journal.pone.0009603

    Article  Google Scholar 

  37. Cheng, A.C., Coleman, R.G., Smyth, K.T., Cao, Q., Soulard, P., et al.: Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol. 25, 71–75 (2007)

    Article  Google Scholar 

  38. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996)

    Article  Google Scholar 

  39. Choc, K.C.: Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem. 11, 2105–2134 (2004)

    Article  Google Scholar 

  40. Chou, K.C., Wei, D.Q., Zhong, W.Z.: Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem, Biophys. Res. Commun. 308, 148–151 (2003). (Erratum: ibid 2003, vol. 310, 675)

    Article  Google Scholar 

  41. Zhu, S., Okuno, Y., Tsujimoto, G., Mamitsuka, H.: A probabilistic model for mining implicit ‘chemical compound-gene’ relations from literature. Bioinformatics 21(Suppl 2), ii245–ii251 (2005)

    Article  Google Scholar 

  42. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232–i240 (2008)

    Article  Google Scholar 

  43. Lengauer, T., Rarey, M.: Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 6(3), 402–406 (1996). https://doi.org/10.1016/S0959-440X(96)80061-3

    Article  Google Scholar 

  44. Interactive European Network for Industrial Crops and their Applications. Summary Report for the European Union. QLK5-CT-2000-00111. Archived from the original on 22-12-2013 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukat Iqbal Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malik, S.I., Munir, A., Shah, G.M., Mehmood, A. (2019). Mathematical Modeling and Docking of Medicinal Plants and Synthetic Drugs to Determine Their Effects on Abnormal Expression of Cholinesterase and Acetyl Cholinesterase Proteins in Alzheimer. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics