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Abstract: 
Considering all the PDB annotated allosteric proteins (from ASD - AlloSteric 
Database) belonging to four different classes (kinases, nuclear receptors, peptidases 
and transcription factors), this work has attempted to decipher certain consistent 
patterns present in the residues constituting the allosteric communication sub-system 
(ACSS). The thermal fluctuations of hydrophobic residues in ACSSs were found to be 
significantly higher than those present in the non-ACSS part of the same proteins, 
while polar residues showed the opposite trend. 
 
The basic residues and hydroxyl residues were found to be slightly more predominant 
than the acidic residues and amide residues in ACSSs, hydrophobic residues were 
found extremely frequently in kinase ACSSs. Despite having different sequences and 
different lengths of ACSS, they were found to be structurally quite similar to each 
other – suggesting a preferred structural template for communication. ACSS 
structures recorded low RMSD and high Akaike Information Criterion(AIC) scores 
among themselves. While the ACSS networks for all the groups of allosteric proteins 
showed low degree centrality and closeness centrality, the betweenness centrality 
magnitudes revealed nonuniform behavior. Though cliques and communities could be 
identified within the ACSS, maximal-common-subgraph considering all the ACSS 
could not be generated, primarily due to the diversity in the dataset. Barring one 
particular case, the entire ACSS for any class of allosteric proteins did not 
demonstrate “small world” behavior, though the sub-graphs of the ACSSs, in certain 
cases, were found to form small-world networks. 
 
 
Keywords: 
allosteric communication sub-system; B-factor of allosteric residues; cliques and 
communities; closeness centrality; betweenness centrality; maximum-common-
subgraph; small-world network. 
  



1.	Introduction:	

Starting from Monod−Wyman−Changeux(1) and Koshland−Némethy−Filmer(2) 
models, investigations of allosteric regulation of protein function have over half-a-
century long, rich and multifaceted history. There are so many excellent reviews that 
have attempted to capture the essence of various aspects of research on this topic that 
even a cursory enlisting of them will run for pages. The most recent ones include(3-
8). To summarize these efforts, one can merely observe that while a lot has been 
unearthed about the physico-chemical nature of allosteric signal transduction, the 
various modes through which the long-distant communication is achieved, the 
structural details of cooperativity revealed during this process, there are still 
significant aspects of allosteric regulation, especially in the context of generalized 
characterization of the process, that need to be better understood. The present work 
reports a few generalized findings about the allosteric communication.  

Regardless of the approach adopted to study allostery, we know that large-scale 
conformational transitions in a protein triggered by a chemical event taking place at a 
distant part of that same protein, say, binding of a ligand, is one of the signatures of 
allostery demonstrated by many allosteric systems(9). While this view of studying 
allostery as a binding event involving conformational changes - all involving a single 
propagation pathway(10), is one of the major approaches to investigate allostery, 
many other schools exist. There are  four principal types of approaches (though, they 
are not entirely non-overlapping); viz., a: the evolution-based sequence alignment-
centric investigations to identify the probable allosteric communication paths(11-14); 
b: studying the coupling synchronizations between distant locations in protein space 
by investigating residue-residue contacts (15-17); c: the MD-simulation based 
approach to decipher the process of coupled conformational changes and directional 
perturbation(18-22); d: works based on 'elastic network models' and normal mode 
analyses that, building upon the observation that distant residues having highly 
correlated fluctuations may form the parts of allosteric communication, allow 
computations of correlations among instantaneous fluctuations of different residues in 
proteins (23-25). It is important to state that we neither claim that the above 
classification is complete or presents a picture of lineages of how the aforementioned 
approaches were derived from the past research (though, readers may benefit 
from(26) for a detailed exposition on both counts). What transpires from these largely 
case-specific studies, however, is simple; though a huge bulk of information about 
allostery has been compiled from various perspectives over many years, general 
methods are needed now to quantitatively describe various aspects of allosteric 
communication paths or to predict them. But then, before attempting such works, it 
will probably be beneficial if at least a (somewhat) generalized characterization of 
allosteric communication paths was available. Because the allosteric communication 
paths are constituted by a certain subset of residues, we attempted in the present work, 
to provide a quantifiable difference between the residues involved in allosteric 
communications and those which are not involved. Because of that, our study 
revolved principally around identifying the statistical and graph-theoretical 
differences between the two aforementioned set of residues. We started by noticing 
that the sheer diversity of cases demonstrating allosteric communications prevents an 
assumption-based construction of any mathematical framework, rather such a 
framework would have to emerge from available data. For example, while the oldest 
views of allostery(1) (2)were rooted on the multisubunit systems, an almost equally 
old report can be found that describes allosteric transition for monomeric 



enzymes(27). Similarly, while the necessary role of the symmetrical multimeric 
proteins have been discussed in one report(28), roles of monomeric proteins or that of 
multimeric  proteins apparently without symmetry in achieving allosteric 
communications have been reported also(29, 30). Taking notice of these differences, 
we chose to look beyond the symmetry aspects, be it crystallographic or self-
similar(31), but by resorting to a collection of related approaches to decipher some 
consistent patterns embedded latently in structural, biophysical and topological nature 
of allosteric communication sub-structures(ACSS). 

We focused on the analysis of mobilities of residues forming ACSS.  We compared 
protein fluctuations derived from crystallographic Debye-Waller B-factors of 
experimentally solved crystal structures with those obtained from the root mean 
square fluctuations (RMSF) profile from computational modelling.  

2.1. Materials : 

The curated database ASD(Allosteric Database)(32) was used to retrieve protein 
structures with information about the identified allosteric communication paths. In 
some cases we spotted differences in the description of protein structures provided by 
the ASD and the PDB. These cases were not considered for the study. Retaining the 
typification scheme provided by the ASD, the finally selected set of 30 proteins that 
were further divided in four groups:  the kinases, the nuclear receptors, the peptidases 
and the transcription factors. The PDB IDs of these 30 proteins are: 1CZA, 1DKU, 
1E0T, 1PFK, 1S9I, 1SQ5, 2BTZ, 2JJX, 2OI2, 2VTT, 2XRW, 3BQC, 3EQC, 3F9M, 
3MK6, 4AW0 (- as the kinase group of allosteric proteins); 1IE9, 1XNX, 2AX6 3S79 
(- group of nuclear receptors); 1SC3, 2QL9, 4AF8 (- the peptidases); and 1JYE, 
1Q5Y, 1R1U, 1XXA, 2HH7, 2HSG, 3GZ5 (- the transcription factors). 

2.2. Methodology: 

Resorting to a coarse-grained representation of residues, and a reduced amino acid 
alphabet is more likely to lead to generalized ideas from the investigation of the 
ACSS of 30 proteins. A mere two-letter hydrophobic-polar classification of the 
residues would have been too broad to reveal the complexity of the problem. Thus we 
resorted to a scheme(33, 34) which has been found to be extremely successful in 
protein structure prediction studies(35, 36). Here the 20 amino acids are expressed 
with a reduced 8-letter alphabet scheme; that is: GLU and ASP - as acidic, ARG, LYS 
and HIS - as basic, GLN and ASN - as amides, SER and THR - as hydroxyls, TRP, 
TYR, PHE, MET, LEU, ILE and VAL - as hydrophobic, and GLY and ALA - small 
residues. PRO and CYS are special among the 20 amino acids for obvious reasons; 
because of their special status, each one of them are placed as singleton groups. This 
coarse-grained description was used to study both population characteristics of the 
ACSS constituents and to undertake the network-based investigations of ACSS. 

Because the central theme of this study was to measure the extent by which the 
residues involved in allosteric communication differ from all remaining residues, 
various tests were conducted throughout the study to compare residues constituting 
ACSS with non-ACSS ones. Atoms of the residues not identified (viz., color-coded) 
by the ASD as part of allosteric communication paths, were considered to be non-
ACSS residues and atoms. 



We were interested to know whether the sub-structures of the allosteric 
communication paths have structural similarities among themselves, or not; so i.e. the 
kinase allosteric communication paths will be characterized by a certain set of 
canonical parameters, while the nuclear receptor's allosteric communication paths will 
be different by certain (structural) degrees, etc. However, we realized that a mere 
structural superposition of the ACSS, will fall short of our goal because the sub-
structures in question are characterized by different sequence compositions, different 
lengths, and additionally may contain various gaps and insertions. Because neglecting 
certain parts of these sub-structures would have caused loss of valuable information, 
we used THESEUS 2.0 software(37) that superposes multiple protein structures 
without throwing away the gaps in them. For network-based studies, Python’s 
NetworkX was used as the graphing library, while matplotlib was used for image 
generation.  

Because statistical tests are necessary to categorically establish the general traits in 
the allosteric proteins and yet, because the present study considers a limited set of 
allosteric proteins as belonging to different four classes two non-parametric tests 
(Wilcoxon signed-rank test and Friedman’s non-parametric test)(38-40) were 
employed to ascertain the traits of the obtained results. 

In investigating the "small world network" characteristics, methodologies elaborated 
in (41) were implemented by us; details about the theoretical basis of the 
methodology, thus, can be found there. To gather the answer to the question of 
whether or not the ACSSs are SWNs or not, at multiple resolutions, we studied the 
problem by generating the Erdös-Rényi (E–R) random graph at three probabilities: 
0.3, 0.5 and 0.7. 

The computational modelling is a key to solving many fundamental problems of 
molecular biology. Prediction of protein structures and interactions(42) as well as 
structural transformations taking places during unfolding, folding and aggregation 
processes have been studied by computer simulations at different levels of resolution 
and timescales (43-52). For more efficient simulations one uses coarse-grained (CG) 
models which reduce the complexity of each amino acid by representing it by a 
single node or group of pseudo atoms (42, 53-55). In our work, the CABS-flex 
method (56) is used for predicting protein fluctuations. CABS-flex employs a coarse 
grained CABS model (54) - efficient and versatile tool for modelling protein 
structure, dynamics and interactions(57-60). In CABS model one uses coarse-grained 
representation for a protein in which four atoms per residue are retained. The four 
atoms include Cα, Cβ, center of mass of the rest of side chain and the center of the 
virtual Cα- Cα bond. A high resolution lattice model with realistic interactions 
between atoms is implemented at which Cα atoms of the polypeptide chain are 
confined to the simple cubic lattice model with the lattice spacing of 0.61Å. Large 
number (800) of the possible virtual Cα-Cα bonds orientations keeps the protein 
conformation space flexible and ensures overcoming lattice anisotropy problems. 
Unlike the alpha Carbon atoms, which are restricted to the lattice, the remaining 
atoms in CABS model are off-lattice. Conformations obtained by CABS-flex 
simulations further can be reconstructed to physically sound atomistic systems using 
coarse-grained to atomistic mapping methods(57, 61).The interactions between atoms 
are described by a realistic knowledge-based potential, while protein-solvent 
interactions are approximated using implicit solvent model. More detailed description 
of the CABS force field can be found elsewhere (54, 62). 



Discrete conformation space, coarse-grained representation and solvent treated in 
implicit fashion involved in CABS model greatly reduce the tremendous number of 
degrees of freedom and free energy landscape roughness. Such simplifications seem 
to be a reasonable compromise compared to more computationally demanding (and in 
many cases prohibitive due to the huge system size involved) explicit-solvent all-atom 
modelling. It is worth noting that despite rather drastic above mentioned 
simplifications and approximations involved in CABS modelling, the results on 
structure prediction and dynamics from CABS model simulations reasonably agree 
with both more sophisticated all-atom MD simulations as well as experimental 
results(57, 60, 63-65). 

To address the question whether B-factors from protein data bank file are consistent 
with mean square fluctuations of atoms from simulations, we perform near-native 
simulations for three conceptually different proteins, 1Q5Y from transcription factors 
group, 1SC3 from the peptidases and 2JXX from the kinase group of allosteric 
proteins. 

3. Results and Discussions: 

3.1: The thermal fluctuation of residues in allosteric communication paths: 

Mass distribution in proteins is known to be inhomogeneous (66); thus, it is not 
realistic to expect that protein atoms populating diverse spatial zones of a protein will 
be restricted by equal degrees in their allowed structural thermal fluctuations. 
Alongside the dynamics needed to ensure the propagation of the structural signal 
through protein, the ACSS residues possess their inherent thermal fluctuational 
dynamic. The construction of the residual-interaction networks depends on the value 
of the cutoff distance, that may be different than the commonly used value of 6.5 Å 
(67). To quantify the extent of fluctuations of the ACSS residues, versus fluctuations 
of non-ACSS residues, we extracted B-factors from the coordinate files of the protein 
structures in protein data bank (PDB) (68) for all 30 proteins. Results found from this 
investigation, however, are far from simple. While the (naive) expectation was to 
observe that the residues in ACSS have more inherent fluctuations, obtained results 
demonstrated that the thermal fluctuations are not only residue-specific but also 
specific to the type of allosteric proteins considered; Table 1 contains the details of 
this investigation. The results shown in Table 1 reveal certain interesting findings. For 
example, the hydrophobic residues (barring PHE) in ACSS have been found to 
represent large thermal fluctuations, significantly larger than the non-ACSS 
hydrophobic residues. The global averages of B-factors for residues VAL, LEU, ILE 
and MET in ACSS's have shown a consistent difference (of ~+9.0) in comparison to 
the non-ACSS ones for the same set of proteins. On the other hand, the polar residues 
belonging to ACSS have smaller B-factors in comparison to the same non-ACSS 
residues, barring the case of GLU which has the same B-factors in both cases. 
However, the differences in B-factors of the polar residues in ACSS and non-ACSS 
regions are not found to be as high as that observed for the hydrophobic residues. 
Differences of B-factors in PRO, CYS and GLY were not considered because they 
occurred in very low number cases (≤ 3). 

To assess whether and by what extent the B-factors of different families of allosteric 
proteins differ from each other, we subjected the mean values to Friedman’s non-
parametric test (alternatively referred to as 'non-parametric randomized block analysis 



of variance')(38, 39). We chose to employ Friedman’s test because, ANOVA requires 
the assumptions of a normal distribution and equal variances (of the residuals) to 
hold, none of which is found to be existing in our case (viz., that in Table 1), while 
Friedman test is free from the aforementioned restrictions. The null hypothesis for the 
test was that the B-factors of the four types of ACSS are the same across repeated 
measures. Result obtained from the test categorically demonstrates that there indeed 
exists a substantial difference in the B-factors of these four classes of ACSSs. Results 
obtained from B-factors of four types of ACSS was Freidman X2 =  20.4 > 16.266 (P 
value at 0.001, with 3 degrees of freedom), whereby the null hypothesis was rejected 
comprehensively. 

To ascertain the degree to which the B-factors of ACSS residues in each of the four 
classes of allosteric proteins differ from the B-factors of the non-ACSS residues, each 
of the classes were subjected to Wilcoxon signed rank test (36), which is a non-
parametric analogue of paired t-test for correlated samples, without assuming that the 
population is normally distributed. The null hypothesis for each of the comparisons 
was that the median difference between pairs of observations is zero. Result obtained 
from the tests revealed that the B-factors of ACSS residues in each of the classes 
differed significantly than the B-factors of the non-ACSS residues. For the kinase 
class of allosteric proteins we found, Wkinase=87 >> 23 ([W(α=0.01,17)=23); for the 
peptidase class Wpeptidase=8 > 2 ([W(α=0.05,7)=2] (we note that W is not defined in 
0.01 at degrees of freedom 7 (though W(0.01,8)=0), whereby, the critical value 
comparison is being reported at the weaker 0.05 level); for the Nuclear Receptors, 
WNR=15 > 5 ( [W(α=0.01,11)=5]); and for the transcription factors, WTF= 6 > 5 
([W(α=0.01,11)=5]). Thus, the null hypothesis was rejected in each of the four cases 
with extremely high confidence. 

3.2. Composition of the ACSS population: 

Allosteric signalling achieved at the structural level show certain differences for 
various proteins(69-71). Thus, we expect to observe differences in composition of 
ACSS residues for four different classes of proteins. We found that basic residues are 
more frequent in ACSS than the acidic ones. To demonstrate this prevalence let us 
take a closer look at the composition of ACSSs for kinases: the acidic residues were 
found in 12/133 cases, while the basic residues occurred in 32/133 cases. For the class 
of transcription factors the basic residues in ACSSs occurred in 13/35 cases, whereas 
the acidic residues occurred in 5/35 cases. The hydrophobic residues were found to 
occur in ACSSs of kinases with significant frequency (59/133 cases), but were be 
notably small in ACSS of transcription factors (2/35) and in peptidases (1/11).  

Hydroxyl residues were found to be more common in ACSSs than the amide residues, 
for kinase ACSS: amide residues 6/133, and hydroxyl residues 14/133 cases.  PRO 
and CYS populations although are extremely small in ACSS, show that CYS occurs 
slightly more frequently than PRO. The small amino acids (GLY and ALA) were 
found in very small frequency in ACSSs, while TRP was not found as part of any of 
the ACSSs. 

3.3: Structural Superimposition of Multiple Allosteric Communication Paths: 

Results obtained from the structural superimposition of multiple ACSSs demonstrated 
clearly that the allosteric communication paths, for any type of allosteric protein, 
match closely each other in their structures. Upon superimposing the PDB-



coordinates of ACSSs of all proteins for each of the four classes using 'Theseus' 
software we obtained results shown in detail in Supplementary Material:1. Here we 
report the two most prominent results, a: RMSD for the superposition, and b: the 
Akaike Information Criterion (AIC). AIC proposed by Akaike(72) has become 
commonly used tool for statistical comparison of multiple theoretical models 
characterized by different numbers of parameters. Because the RMSD of two 
superposed structures indicates their divergence from one another a small value is 
interpreted as a good superposition.  In contrast, the higher magnitude of AIC 
indicates better superposition.  

We found that the ACSS paths, despite belonging to different proteins and 
corresponding to sequences of varying lengths, consistently demonstrated lower 
RMSD values and significantly higher AIC values in comparison to non-ACSSs parts 
of the structures (see the details in the Supplementary Material:1).  

3.4. Network analyses of allosteric communication paths: 

3.4.1: Centrality of ACSS: 

The process of allosteric signal communication is directional, but the richness of the 
constructs available to study networks becomes apparent by using non-directional 
graph-theoretical framework.  Thus, instead of asking 'what is the route of allosteric 
signal propagation for a specific protein?', which is already provided by ADB, we 
asked questions like: ‘how robust the ACSSs are, compared to non-ACSS parts of the 
proteins?', or , 'how does the fluctuation of one arbitrarily-chosen residue influence 
the spread of allosteric signal through ACSS?', or , 'how probable is it that allosteric 
communication occurs through a randomly chosen shortest path between two residues 
belonging to ACSS?', etc. 

To answer these and similar questions of general nature, we started our investigation 
by studying the centrality aspects of the ACSS network. The centrality metrics 
quantify the relative importance of a protein residue (viz. the vertex) or a residue-to-
residue communication path (viz., an edge) in the network description of ACSS. 
There are many centrality measures, we chose to concentrate upon three fundamental 
measures outlined in Freeman's classic works(73, 74), namely:  degree centrality, 
betweenness centrality and closeness centrality. Because our ACSS networks are 
unweighted, we did not calculate the Katz centrality. Also, though eigenvector 
centrality (75, 76) and Gould index present refined knowledge of network centrality, 
they don’t basically differ from degree centrality, and were neglected in the present 
work. Degree centrality reveals the local characteristics of the ACSS graph while the 
other two measures, (betweenness and closeness centralities), tend to reflect upon the 
global network structure, because they rely on counting shortest paths. 

3.4.2. Degree Centrality: 

Degree centrality for any protein residue in an ACSS network is calculated in a 
straightforward way, by counting the number of residue-residue communication links 
connecting that residue (implementing the classical definition (73) to the context of 
ACSS). Degree centrality of any ACSS residue provides an idea about the local 
structure around that residue, by measuring the number of other residues connected to 
it. We note that degree centrality is a local measure that does not provide any 
information about the network's global structure. We have found that the average 



degree centrality of ACSS residues, irrespective of the type of allosteric proteins, is 
lower than the average degree centrality of the non-ACSS residues. This result, 
alongside that obtained from the other centrality measures are presented in Table-2. 
Maintaining equality in the size (i.e. the number of residues considered) in every 
quartet of networks (one ACSS network and three non-ACSS networks from the same 
protein), the average degree centrality was calculated for every group of ACSS and 
non-ACSS residues; which in turn, was calculated after calculating the degree 
centrality of each residue belonging to ACSS and non-ACSS fragments. These 
residue-specific details of degree centrality for every protein considered, for ACSS 
and similar size non-ACSS fragments, are provided in Supplementary Material-2. 

We note that the average degree centrality of ACSS fragments consistently show 
lower values than similar non-ACSS fragments. The kinase and the transcription 
factor ACSSs have similarly low average values of degree centrality. The nuclear 
receptors have them significantly higher, while the peptidases ACSSs have the 
highest average values of degree centrality. We note also that the typical differences 
between average degree centrality of ACSS and non-ACSS fragments are: ~0.10 for 
kinases, ~0.8 for nuclear receptors, ~0.9 for peptidases, and ~0.13 for transcription 
factors. 

More importantly, the consistent observation of lower average degree centrality of 
ACSS fragments irrespective of the type of allosteric proteins suggests that it is a 
general feature. In terms of the network theory the degree centrality is the diagonal 
element of adjacency matrix that corresponds to the sum of all off-diagonal elements 
in a given row/column. In an alternative way, one may as well describe the degree 
centrality as the number of paths of unit length coming out from a given vertex. 
Degree centrality shows the ability of a given vertex to influence or to be influenced 
by the local structure around it.  It can be considered as a marker (or even predictor) 
of immediate effects of propagating through a network. Thus, the consistently lower 
values of average degree centrality observed in ACSS fragments suggests that nature 
attempts to shield them from perturbations which may destabilize allosteric 
communication. In terms of attempts to shield the ACSS from perturbations 
influencing residual interaction network, degree centrality demonstrates similarity 
with the concept of eigenvector centrality, the caveat being that the later provides a 
metric to assess direct and indirect influences taking place over a long time-interval 
while the former measures immediate effects of a perturbation solely. 

3.4.3. The global centrality measures:  

While the degree centrality provides a measure to assess the possibility of immediate 
involvement of a residue in influencing the signal communication in residue 
interaction network of a protein, the concepts of closeness centrality and betweenness 
centrality provide ideas of how the global topology of the network influences the 
signal propagation. Closeness centrality of any connected graph measures how 
"close" a vertex is to other vertices in a network; this is computed by summing up the 
lengths of the shortest paths between that vertex and other vertices in the network. 
Closeness of a vertex, thus, can be interpreted as a predictor of how long it may take 
for that vertex to communicate with all other vertices. In the framework of protein 
residue connectivity network, the residues with low closeness score can be identified 
as ones that are separated by short distances from other residues. It can be expected 
that they receive the structural signal (i.e. instantaneous fluctuation or perturbation) 



faster, being well-positioned to receive this information early. We indeed found that 
the average closeness centrality of the ACSS network is lower in comparison to the 
non-ACSS fragments, for all the types of allosteric proteins. However, the difference 
between the extent of average closeness centrality between ACSS and non-ACSS 
fragments was found to vary over a larger scale than what was observed for average 
degree centrality. For graphs of equal sizes, the difference between the average 
closeness centrality of ACSS and non-ACSS fragments was found to be: ~0.04 for 
peptidases, ~0.05 for nuclear receptors, ~0.11 for kinases, and ~0.22, for transcription 
factors (see Table-2). We also found that while ACSSs of transcription factors and 
kinases have small values of average closeness centrality, suggesting fast propagation 
of allosteric signals, nuclear receptors, and peptidases are significantly less capable of 
rapid transmission of the signal in the allosteric communication. Based on values of 
closeness centrality of ACCS fragments, peptidases are expected to be twice slower in 
propagating allosteric signals in comparison to transcription factors and kinases. 

To assess the extent to which the centrality measures differ for four different classes 
of proteins, we subjected them to Friedman non-parametric test. The null hypothesis 
was that the centrality measures across the four different classes are the same under 
repeated measures. Since the value of the test statistic Q=13.67 > 12.838 (p-value), 
the null hypothesis was rejected comprehensively.  

The betweenness centrality provides more idea about the global network structure; for 
every vertex of the network the betweenness centrality specifies the fraction of the 
shortest paths (geodesics) that pass through that vertex. In this sense, such measure 
assesses the influence that a given vertex (residue) has over the transmission of a 
structural signal. A residue with large betweenness centrality score can be expected to 
have a large influence on the allosteric signal propagating through the ACSS network. 
Results obtained by us shown inTable-2, are found to be less clear to interpretation. 
While the average betweenness centrality of ACSS networks in peptidases is found to 
be higher in comparison to non-ACSS fragments, the similar data for kinases, nuclear 
receptors, and transcription factors show opposite behaviour. These results imply that 
for three out of four considered classes of allosteric proteins the residues constituting 
the ACSS net do not fall in the geodesics which communicate the allosteric signal. - 
Though it seems unexpected at the first, a close scrutiny at the definition of 
betweenness centrality reveals that this is not only possible but can probably be 
expected. The implicit assumptions in linking the signal transmission with 
betweenness centrality are, first, that the information propagation through the network 
takes place along the geodesics, and second, that the information is an undivided 
chunk. 

While such characterizations can be useful in many cases of network science, the 
determinism of a biological network may include certain provisions for error handling 
and fault tolerance mechanisms developed through evolution. Thus, propagation of 
information (the structural signal in the case of allostery) across ACSS although 
deterministic may not follow the simplistic geodesic-based route. A geodesic, i.e. the 
shortest path, is identified as the path through which the two given vertices are 
connected by the smallest number of intermediate vertices. The mean of the shortest 
path lengths reflects the expected distance between two connected vertices. While it 
has been reported that residues constituting the ligand binding sites of proteins have 
low average of their shortest path lengths(77), the ACSS networks studied in the 
present work tends to suggest that the allosteric signal communication may not take 



place along the shortest path. Second, as the various recent works of allostery tend to 
suggest, the structural fluctuation-based signal propagating across protein, may not 
always be treated as an undivided entity(78-80). Thus, the average betweenness 
centrality studies for ACSSs need further investigations based on availability of larger 
datasets in the future. 

3.5. Cliques and Communities in ACSS: 

Cliques are the complete subgraphs, where every vertex is connected to every other 
vertex. A clique is considered maximal only if it is not found to be a subgraph of 
some other clique. Communities are identified through partitioning the set of vertices, 
whereby each vertex is made a member of one and only one community. Because of 
their higher order connectivity, the cliques detected in protein structures are 
considered to indicate regions of higher cohesion (in some cases, rigid modules). Do 
the ACSSs embody certain common characteristics in their connectivities which can 
be revealed through the cliques and communities? To answer this question, we 
subjected the ACSSs of each of the four classes of proteins to investigation, which 
implemented (81) and (82) algorithms. We found that indeed the ACSS modules can 
be partitioned into cliques and communities(83, 84). These results are presented in 
Fig.-1 

3.6. Maximum common subgraphs to describe the ACSS: 

A maximal common subgraph of a set of graphs is the common subgraph having the 
maximum number of edges. Many attempts have been made for the last two decades 
to apply this methodology in protein science(85-87). Finding the maximal common 
subgraph is a NP-complete problem (88). To solve this difficult problem a backtrack 
search algorithm proposed by McGregor(89) and a clique detection algorithm of Koch 
(88), are traditionally used. However, for our ACSSs, some of which are quite large in 
size, neither McGregor's nor Koch's algorithm was found to be applicable; primarily 
because of the huge computational costs incurred by the exponential growth of 
intermediary graphs of varying sizes. Thus, upon generating the subgraphs for each of 
ACSSs (using Python’s NetworkX), we had to resort to the brute-force method to 
identify the maximum common subgraph for each of the ACSS classes. In some 
cases, the number of cliques was found to be large; e.g. for 2BTZ (see Supplementary 
Mat.-3), while in some other cases only one clique was found (e.g. for 2VTT 
(Res78:hydrophobic—Res76:basic—Res71:basic); or for 2XRW 
(Res198:hydrophobic—Res230:basic—Res231:hydrophobic)).  

Fig-2 presents five maximum common subgraphs composed of 3 vertices and 3 edges, 
obtained from five subsets (each comprised of 5 to 7 proteins) of kinase ACSSs. The 
fact that different combination of subsets of kinase ACSSs were found to represent 
different maximum common subgraphs, point out, why, finding a general maximum 
common subgraph (composed of more than two nodes and one connecting edge) for 
the entire set of kinase ACSSs was found to be impossible for this dataset. 

3.7: How frequently do the allosteric communication paths form small world 
network? 

Investigating whether in general the ACSS residues belonging to the four different 
classes of allosteric proteins constitute 'small world' networks (SWN) or not is 
important; because SWNs are more robust to perturbations, and  may reflect an 



evolutionary advantage of such an architecture(90, 91). There are numerous previous 
works which talk about SWN(92) and the relevance of SWN in investigating the 
protein structural networks (93-95) and protein-protein interaction networks(96). The 
SWN (92), constitute a compromise between the regular and the random networks, 
because on one hand they are characterized by large extent of local clustering of 
nodes, like in regular networks, and on the other hand they embody smaller path 
lengths between nodes, something that is distinctive for random networks. Because of 
the ability to combine these two disparate properties, not surprisingly, it has been 
shown that networks demonstrating the ‘small-world’ characteristics tend to describe 
systems that are characterized by dynamic properties different from those 
demonstrated by equivalent random or regular networks (92, 96-100). Greene and  
Higman (95) have shown that protein structure networks which demonstrate both the 
long-range and short-range interactions exhibit a SWN character; however, the ones 
demonstrating only the long-range interactions cease to remain SWNs. Additionally, a 
study of  a benchmarked set of 15 pairs of ACSSs with effector and substrate both 
present in at least one of the two structures  demonstrated that the clusters possessing 
at least one substrate or an effector molecule exhibited SWN characteristics(101). 
This inspired us to perform a thorough investigation of the entire set of ACSSs for 
each of the four classes of allosteric communication paths. 

We have found that whether ACSSs exhibit SWN nature or not - is a complex 
problem; while the complete ACSS of a protein may not always demonstrate SWN 
characteristics, many sub-graphs of non-trivial lengths of the same ACSS reveal SWN 
character. To elucidate, the ACSSs of all kinases, all peptidases, all transcription 
factors, and three nuclear receptors (1IE9, 2AX6, 3S79), were found to not 
demonstrate SWN characteristics. In fact, because residues constituting the ACSS 
tend typically to not cluster in a particular region of protein structure but are 
distributed over entire structure, (except of 1XNX), all the ACSSs (mentioned above) 
were found to be represented by unconnected graphs. Similar disconnected nature of 
the graphs was revealed by the non-ACSSs fragments. 

To get a better understanding of the topology of networks, the unconnected graphs of 
ACSSs and non-ACSSs fragments were first segmented into a set of sub-graphs of 
non-trivial lengths (≥ 3 nodes); then, shortest paths in the respective subgraphs were 
calculated. 

The graph fragmentation was performed using Python’s NetworkX library (with 
'matplotlib' library used for image generation). Structural graphs of all ACSS or non-
ACSS fragments were found to be fragmented into more than one sub-graph in almost 
every case (except of nuclear receptor protein 1XNX). To ascertain the nature of 
clustering characteristics the mean clustering coefficient as well as the mean shortest 
paths for each of these sets of subgraphs representing ACSS or non-ACSS were 
calculated (see Table-3). 

The SWN character was observed only for ACSS of 1XNX (Fig.-3).  However, the 
subgraphs of ACSSs with non-trivial number of nodes (namely ≥ 3) demonstrate the 
SWN character, for 6 cases, with the details provided in Table-4. Changing the cut-off 
distance from 6.5Å to another value (e.g. 10Å or larger) doesn’t change the 
fundamental behaviour, because, the residues involved in ACSS will be still scattered 
over the entire protein structure. 



3.8 CABS-flex simulations 

With the help of CABS modelling, we computed the values of root mean square 
fluctuations RMSF, shown as red curves (on right Y-axis) on middle plots in Figs. 4a, 
4b and 4c. The values of B-factors are shown as black curves (on left Y-axis). 
Although quantitative comparison between B-factors and RMSFs is not possible due 
to different temperatures and environmental factors used in simulations and 
experiments, qualitatively the data agree. The most fluctuating protein residues during 
near-native state simulations result in a series of peaks in RMSF profile (red curve, 
right X-axis) which correlate with experimentally measured B-factor values (black 
curve, left Y-axis). Upper and bottom snapshots in Fig. 4 correspond to protein 
representation coloured by crystallographic B-factor values from PDB and by RMSF 
values from CABS-flex simulation, respectively.  

1Q5Y consists of two alpha-helices and four beta strands. First two peaks in RMSF 
profile (Fig. 4a) correspond to regions connecting the first alpha helix with its 
neighbouring beta-strands. The third peak is associated with beta hairpin loop 
connecting the second and third beta strands. Finally, the fourth and fifth peaks 
correspond to the regions connecting second helix with its neighbouring beta-strands. 
The results from B-factor profile are slightly different.  Both alpha-helices have high 
temperature factors values. As follows from B-factor and RMSF profiles (Fig. 4a) 
each of two broad peaks corresponding to H1 and H2 on B-factor profile splits into 
two peaks on RMSF profile. This phenomenon possibly occurs as a result of 
competition between the energy gain and the entropy loss of different secondary 
structural elements upon temperature increase (102). At low crystallization 
temperature complexity of structural variations of alpha-helix ensemble of microstates 
is comparable to the one from less structured connecting loop ensemble of 
microstates. However, as temperature T increases less structured connecting regions 
gain more entropy compared to structured alpha helix, as a consequence at room 
temperature residues from connecting loops are more destabilized having larger 
RMSF values than those forming alpha-helices. In other words, as T increases, alpha 
helix destabilizes to a smaller extent, compared to its connecting loops. However 
overall, protein fluctuations from RMSF profile can be mapped to B-factor values and 
agree well with experimentally measured X-ray B-factors 

Fig. 4b and Fig. 4c show RMSF and B-factor profiles as well as corresponding 
snapshots for two different proteins, 1SC3 and 2JXX. RMSF and B-factor profiles 
have multiple peaks which are interpreted as a sign of least stable parts of proteins 
studied. Similar to 1Q5Y protein, we observe that connecting loops as well as C- and 
N-terminals are the most fluctuating parts of protein. The overall trend is that the 
mobility of atoms obtained from simulations are in good agreement with the 
crystallographic B-factors. 

4.Conclusion:  

The aim of the present work was to decipher some general patterns of residues 
forming the ACSS of 30 allosteric proteins, and compare them with non-ACSS 
residues in the same proteins. Our aim was to report the general quantifiable 
differences between these two (aforementioned) sets of residues and not to study the 
general mechanism of allosteric communication. By performing the CABS-based 
simulations of proteins around their native conformations we demonstrated that 



protein fluctuations depicted by RMSF profiles can be mapped to B-factors and show 
satisfactory degree of agreement with experimental data.  

 Our results may benefit the protein engineering community and those studying the 
general mechanism of allosteric communication or in general, long-distance 
communication in proteins. The knowledge of the topological invariants of 
communication paths and the biophysical, biochemical and structural patterns may 
help in a better understanding of allostery. As many recent papers(103-107) have 
pointed out, the long-distance communication features within proteins involve several 
types of non-linear characteristics that may often be dependent on transient 
fluctuations, making it difficult to arrive at a generalized dynamic picture.  However a 
generalized static picture of the long-distance communication route can be obtained, 
which may help to better understand such communication schemes, especially those 
related to allostery. The present work attempted to report such generalized findings. 
While certain yet-unknown (to the best of our knowledge) patterns regarding the 
thermal fluctuation profile of ACSS atoms, the structural and topological nature of the 
ACSS have come to light, incongruities of our findings regarding the extent of 
betweenness centrality in ACSS network and their small-world nature indicates the 
need for more focused studies directed at these issues, which in turn, may shed new 
light on allosteric signal communication. For example, proteins, in general, are fractal 
objects with known characteristics of trapping energy(108-111). Do the findings on 
betweenness and on small-world network nature reported in this work indicate the 
possibility of energy traps in ACSSs? - We plan to probe into many such questions in 
future. 
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Figure Labels/Titles and Figure Legends : 

Figure 1 Title: Cliques and Communities in ACSS networks.  

Figure-1 Legend: Cliques and communities found in 30 ACSS under study. Residues 
are identified in the format [Residue-Number in a protein:The coarse-grained 
character of the residue]. The coarse-grained character labelling scheme employed is: 
Acidic-A, Basic-B, Cysteine-C, Proline-P, Hydrophobic-H, Hydroxyl-X, Amide-E, 
Small-S. 

Figure 2 Title: Maximal-Common-Subgraph generated from different subsets of 
Kinase ACSS. 

Figure-2 Legend: The Maximal-Common-Subgraph (viz., maximal common pattern 
present in the ACSS cliques) of different subsets of Kinase ACSS. Fig 2.1. 
demonstrates 'Hydrophobic-Hydrophobic-Basic' embodied among PDB ids:1CZA, 
1PFK, 1SNI, 2BTZ, 2XRW ACSS cliques; Fig 2.2 demonstrates 'Hydroxyl-
Hydrophobic-Basic' embodied among PDB id.s:1DKU, 1PFK, 3MK6, 4AW0 ACSS 
cliques; Fig2.3 demonstrates 'Hydrophobic-Acidic-Hydrophobic' embodied among 
PDB ids:1E0T, 1PFK, 1SQ5, 2BTZ ACSS cliques; Fig 2.4. demonstrates 
'Hydrophobic-Basic-Basic' embodied among PDB id.s:1PFK, 2JJX, 2VTT ACSS 
cliques; Fig 2.5. demonstrates 'Hydrophobic-Hydrophobic-Hydrophobic' embodied 
among PDB id.s:1SNI, 1SQ5, 2BTZ, 3BQC, 3EQC ACSS cliques. Details of ACSS 
cliques can be found from Fig.-1 and from Supplementary Material-3. The coarse-
grained character labelling scheme employed is: Acidic-A, Basic-B, Cysteine-C, 
Proline-P, Hydrophobic-H, Hydroxyl-X, Amide-E, Small-S. 

Figure-3: The SWN of PDB Id.-1XNX's ACSS. 

Figure-3 Legend: The entire scope of ACSS of 1XNX was found to generate a SWN. 
Details of the SWN can be found in Table-4.A. The coarse-grained character labelling 
scheme employed is: Acidic-A, Basic-B, Cysteine-C, Proline-P, Hydrophobic-H, 
Hydroxyl-X, Amide-E, Small-S. 

Figure4: Comparison of RMSF values from the MD simulations and B-factor values 
from X-ray crystallography. 

Figure-4 Legend: Comparison of RMSF values from the MD simulations and B-factor 
values from X-ray crystallography for three proteins identified by PDB codes 1Q5Y 
(a), 1SC3 (b) and 2JXX (c). Top and bottom snapshots show protein's cartoon 
representation coloured by B-factor and RMSF values, respectively. Note that 
conformations shown at bottom represents average conformation of most probably 
cluster from the CABS-flex simulation. 

	 	



Table 1: B-Factor of residues constituting ACSS and those constituting non-ACSS 
Kin. ACSS Kin. non-ACSS Pept. ACSS Pept. non-ACSS N.R. ACSS N.R. non-ACSS T.F. ACSS T.F. non-ACSS 

                
Res. B-factor Res. B-factor Res. B-factor Res. B-factor Res. B-factor Res. B-factor Res. B-factor Res. B-fact. 

                

ALA 36.53(24.21) ALA 30.34(17.73)   ALA 20.89(14.36)   ALA 32.89(22.47) ALA 25.94(4.15) ALA 37.71(19.94) 
                
ARG 35.21(21.93) ARG 37.69(21.34) ARG 25.69(13.14) ARG 23.68(16.86) ARG 27.79(17.02) ARG 46.01(24.03) ARG 46.38(17.76) ARG 46.82(22.25) 
ASN 59.04(30.24) ASN 36.84(19.79)   ASN 24.04(16.16) ASN 13.86(5.30) ASN 44.61(23.59) ASN 28.83(19.51) ASN 52.78(24.03) 
ASP 35.64(13.31) ASP 38.09(21.57) ASP 14.62(3.92) ASP 26.64(19.43)   ASP 40.96(24.86) ASP 38.26(12.27) ASP 42.54(21.98) 
  CYS 29.03(16.94) CYS 35.69(1.38) CYS 20.16(14.56)   CYS 38.71(27.67) CYS 52.52(26.14) CYS 28.70(13.13) 
GLN 28.44(9.25) GLN 39.92(22.96)   GLN 25.74(21.61) GLN 54.70(5.09) GLN 35.91(20.80) GLN 36.90(4.65) GLN 39.24(20.99) 
GLU 39.59(17.93) GLU 38.99(20.70) GLU 15.95(4.99) GLU 32.80(18.88) GLU 51.66(18.04) GLU 47.97(26.94)   GLU 53.41(24.19) 
GLY 27.87(9.56) GLY 32.86(17.22)   GLY 22.80(16.68)   GLY 47.41(27.43)   GLY 39.62(22.36) 
HIS 44.97(20.35) HIS 35.71(20.97)   HIS 27.35(20.58) HIS 13.88(2.28) HIS 37.59(23.26) HIS 37.62(18.24) HIS 34.54(21.18) 
ILE 42.26(16.44) ILE 29.78(15.62)   ILE 21.97(15.70)   ILE 44.0(28.05)   ILE 38.45(19.11) 
LEU 40.69(19.53) LEU 29.97(16.05)   LEU 19.34(13.89) LEU 54.75(5.83) LEU 34.14(23.81)   LEU 40.07(20.85) 
LYS 38.72(11.67) LYS 38.81(20.22)   LYS 31.09(18.67)   LYS 46.38(27.14) LYS 47.32(3.57) LYS 53.42(23.40) 
MET 43.12(22.56) MET 31.10(15.56)   MET 18.20(14.14) MET 59.16(0.80) MET 41.21(24.96)   MET 42.64(23.60) 
PHE 28.48(6.08) PHE 29.68(16.62)   PHE 22.49(15.94) PHE 16.25(2.38) PHE 37.18(23.42)   PHE 41.84(23.56) 
  PRO 33.25(17.87)   PRO 21.53(16.09)   PRO 39.67(25.50)   PRO 41.43(19.17) 
SER 34.86(13.03) SER 33.41(19.38) SER 11.33(0.60) SER 23.36(17.02) SER 8.37(0.82) SER 38.91(26.37) SER 17.47(1.97) SER 41.46(21.70) 
THR 45.03(27.45) THR 32.29(18.18) THR 12.35(0.40) THR 20.91(15.51)   THR 42.18(25.24) THR 51.90(20.00) THR 40.01(19.26) 
  TRP 31.22(23.75) TYR 36.82(1.73) TRP 27.45(22.24)   TRP 44.96(32.35)   TRP 32.68(13.28) 
TYR 52.48(24.13) TYR 31.12(16.42)   TYR 22.70(18.29) TYR 11.47(3.65) TYR 43.32(28.58) TYR 67.23(2.49) TYR 39.88(18.00) 
VAL 38.10(23.12) VAL 28.78(14.69)   VAL 19.41(15.28) VAL 57.18(0.37) VAL 38.22(24.76)   VAL 37.22(21.24) 

Table 1 legend: B-factors were calculated at the residual level in ACSS and non-ACSS, they are presented 
as Mean(Std. Dev.) 
  



Table 2: The Centrality Indices for ACSS and non-ACSS for four groups of allosteric proteins. 
 
 Kinase 

ACSS 
Residues 

Kinase 
non-
ACSS 
Residues 

Peptidase 
ACSS 
Residues 

Peptidase 
non-ACSS 
Residues 

Nuclear 
receptor 
ACSS 
Residues 

Nuclear 
receptor 
non-
ACSS 
Residues 

Transcription 
Factor ACSS 
Residues 

Transcription 
Factor non-
ACSS 
Residues 

Average 
Degree 
Centrality 

0.411 0.518 0.722 0.814 0.613 0.690 0.426 0.659 

Average 
Closeness 
Centrality 

0.488 0.596 0.809 0.843 0.707 0.754 0.474 0.719 

Average 
Betweenness 
Centrality 

0.075 0.122 0.194 0.038 0.137 0.141 0.062 0.119 

 
Table 2 Legend: The three types of major centrality measures calculated on the ACSS and non-ACSS graphs of the same 
size. 
  



Table 3: Comparison of Global Clustering Coefficient Average and Global Average Shortest Path Length for ACSS and 
non-ACSS 
 Kinases Nuclear Receptors Peptidases Transcription 
        Factors 
 ACSS Non- ACSS Non-ACSS ACSS Non- ACSS  Non- 
  ACSS    ACSS   ACSS 

Global 0.145 0.559 0.208 0.594 0.0 0.521 0.0  0.584 
Clustering          
Coefficient          
Average          
Global Average 1.229 7.396 0.976 6.587 1.0 6.136 1.119  5.042 
Shortest Path          
Length          

          
	

	 	



Table: 4.A. 
  

  Is it a Small world for Erdös- Nodes in Graph Number Number Average Average Shortest Path 
Group Protein Rényi random graph  of Nodes of Edges Clustering Length 
        Coefficient  
          

  P=0.3 P=0.5 P=0.7      
          

Nuclear 1XNX N Y Y ['A', 'H', 'E', 'B', 7 16 0.838 1.238 
Receptors     'H', 'A', 'A']     
          

 
Table 4.A legend: Summary of SWN characteristics for ACSS residues of 1XNX. 
	 	



 
Table 4.B.  
  Is it a Small world for Nodes Number Number Average Average 

 

Group Protein Erdös-Rényi random in of of Clustering Shortest 
 

   graph  Graph Nodes Edges Coefficient Path 
 

         Length  

       
 

  P=0. P=0. P=0.      
 

  3 5 7      
 

          
 

 

2BTZ _subset Y Y N ['H', 7 10 0.59 1.619 
 

 
 

Kinases 
    'X',     

 

    'E',     
 

          

     'H',     
 

     'H',     
 

     'H',     
 

     'H']     
 

          
 

 2JJX(A)_subset_1 Y Y N ['E', 3 3 1 1 
 

     'S',     
 

     'A']     
 

          
 

 2JJX(A)_subset_2 Y Y N ['B', 3 2 0 1.333 
 

     'H',     
 

     'B']     
 

          
 

 3EQC_subset Y Y N ['H', 7 8 0.571 2.048 
 

     'H',     
 

     'X',     
 

     'H',     
 

     'H',     
 

     'H',     
 

     'H']     
 

          
 

 3MK6(A)_subset Y N N ['X', 3 2 0 1.333 
 

     'H',     
 

     'B']     
 

          
 

Nuclear 2AX6_subset N Y N ['E', 3 2 0 1.333 
 

Receptors     'H',     
 

    'A']     
 

         
 

Peptidases 
No SWN was observed even among the subgraphs of residues constituting ACSSs of peptidases. 

 

 
 

Transcription          
 

Factors No SWN was observed among the subgraphs of residues constituting ACSSs of transcription factors. 
 

          
 

 
Table 4.B legend: Summary of SWN characteristics in the subgraphs of ACSSs  
	 	



	
	 	

Figure 1. Cliques and Community Graphs 



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 2. Maximum Common Subgraphs 



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 3. Small World Network 



	
	
	
	

	
Figure 4. Comparison of RMSF Values with B factors 

	
	
	
	
	
	
	
	
	
	
	
	


