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Abstract

Deep learning techniques have been successfully applied to automatically segment and quantify 

cell-types in images acquired from both confocal and light sheet fluorescence microscopy. 

However, the training of deep learning networks requires a massive amount of manually-labeled 

training data, which is a very time-consuming operation. In this paper, we demonstrate an 

adversarial adaptation method to transfer deep network knowledge for microscopy segmentation 

from one imaging modality (e.g., confocal) to a new imaging modality (e.g., light sheet) for which 

no or very limited labeled training data is available. Promising segmentation results show that the 

proposed transfer learning approach is an effective way to rapidly develop segmentation solutions 

for new imaging methods.
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1 Introduction

In the last decade, various cell segmentation methods have been developed for images from 

electron microscopy [18], confocal [9], and light sheet imaging [12]. Recently, there have 

also been successful applications of cell segmentation using deep learning techniques [16], 

such as U-Net [14].

It is well known that the success of deep learning is dependent upon having a substantial 

number of labeled training samples [3]. Manual labeling of training samples, however, is 

prohibitively expensive in terms of time and labor. Therefore, having a sufficient number of 

training samples presents a major challenge in developing an automatic cell segmentation 

algorithm for a new imaging modality.
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Various transfer learning methods [4, 6, 17] were proposed to tackle the lack of training data 

challenge. Notably, R-CNN [4] first proposed fine-tuning deep features to transfer deep 

representations from a labeled dataset to a dataset where the labels are limited. A similar 

approach was adopted for neonatal video analysis in [6]. Recent transfer learning methods 

rely on Generative Adversarial Network (GAN) [5], which consists of a discriminative 

model and a generative model, and they are trained in an adversarial fashion: the generative 

model generates data to confuse the discriminative model while the goal of the latter is to 

distinguish the generated data from the real data. This paradigm has been applied to the 

state-of-the-art transfer learning method by adversarial adaptation [17], i.e., minimizing the 

disparity between the two models so that they cannot differentiate between the source 

dataset (i.e., the existing labeled dataset) and target dataset (i.e., the unlabeled dataset). One 

drawback of this method is that the underlying deep neural network is LeNet which is 

designed for classification and is not suitable for image segmentation.

There have been several applications to leverage GAN-based approaches in the microscopy 

segmentation field [2, 15, 19]. In [15], a multi-scale GAN was proposed with post 

processing for bright-field microscopy image segmentation, while [2] developed a GAN 

architecture with multiple deep neural network blocks in the discriminator. However, both 

methods were trained in a supervised fashion and still required manually labeled data. [19] 

utilized GAN to model the gap between the labeled and unlabeled data, yet their iterative 

training process required the labeled and unlabeled data to come from the same modality, 

and this model cannot be extended to a cross-modality situation.

Our contribution is two-fold. First, we present an unsupervised solution for cross-modality 

microscopy segmentation, inspired by the adversarial adaptation method [17]. Specifically, 

we trained a segmentation model for light sheet images by utilizing confocal images. To 

further validate this model, we manually labeled a limited number of light sheet images for 

evaluation purposes. Secondly, we extended the adversarial adaptation method [17] by (a) 

replacing the underlying deep model with an optimized U-Net [14] to improve segmentation 

performance; and (b) incorporating batch normalization [8] to expedite the training process.

2 Related Work

Recent transfer learning work has witnessed much progress thanks to the success of deep 

learning [4–7, 17]. R-CNN [4] fine-tuned pre-trained deep features to transfer knowledge 

from an image classification dataset to an object detection dataset. [6] also utilized pre-

trained deep features with a hidden Markov model for neonatal video analysis. [7] further 

extended the idea by averaging fine-tuned deep features from the K nearest categories to 

approximate the adaptations.

Generative Adversarial Network (GAN) [5] related work has been extensively explored for 

transfer learning. Prior work focused on generative tasks, e.g., DCGAN [13] used pre-

trained discriminators in GAN to generate human face images or CGAN [11] introduced 

additional conditioning on both generators and discriminators in GAN to generate image 

tags. Later, CoGAN [10] applied GAN for transfer learning by proposing two independent 

GANs for source and target images to learn a joint distribution from different datasets. [17] 
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simplified CoGAN by removing the generative model of CoGAN and designed a 

discriminative model. However, these methods are tested on classification tasks and not 

suitable for microscopy segmentation.

Several methods have used GAN for microscopy segmentation [2, 15, 19]. [2] applied GAN 

by proposing a multiple input architecture in the discriminators of GAN, which takes as 

input both microscopy images and corresponding annotated segmentation. [15] extended 

GAN by replacing the generative model with a multi-scale segmentation network. One 

limitation of these method, however, is that they still require manually annotated images 

during training. [19] followed the dual-network structure in [15] and expanded it with an 

iterative training process, which could gradually update the segmentation network to 

generate correct results for images without manual annotations, but could not handle the 

cross-modality scenario.

Inspired by [17], our work applied GAN with an optimized U-Net [14] and batch 

normalization [8] for cross-modality microscopy segmentation.

3 Methods

Our work integrates an optimized U-Net [14] with adversarial adaptation [17]. In addition, 

batch normalization [8] is adopted to facilitate the training process. Each component of our 

proposed model is described in more detail in the following sections.

3.1 Adversarial Adaptation

Our unsupervised adversarial adaptation framework consists of three parts: a source model 

Ms, a target model Mt and an adversarial model Ma, as shown in Fig. 1. We assume that 

there is an existing source data set Ds with labels Ls that has been used to train a model Ms 

using supervised learning to an acceptable performance. In our case, Ds are confocal images 

and the labels Ls are binary assignments (nucleus/background) for each pixel in each of the 

images in Ds. The labels Ls are manually generated. Also given is the target dataset Dt, 

which is unlabeled. The goal of the adversarial adaptation framework is to create a model Mt 

that can assign labels (nucleus/background) to each pixel of each image in Dt. In our 

application, the images in Dt are light-sheet images. The adversarial network approach is 

thus used to transfer the knowledge from the model Ms to the model Mt. While we focus on 

transfer learning from confocal image segmentation to light sheet image segmentation in this 

case, this approach is generalizable to other cases. For example, Ds could be images with a 

particular setting of microscope acquisition parameters, while Dt could be the same imaging 

modality, but with a different setting of microscope acquisition parameters.

The source model is first trained using Ds and Ls. The loss function used in training is

ℒs Ds, Ls, Ms = − ∑
Ds

1L = LslogS Ms Ds

− ∑
Ds

1 − 1L = Ls log 1 − S Ms Ds , (1)
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which is a standard cross entropy function for a binary segmentation task. S represents the 

softmax layer, as illustrated in Fig. 1. The target and source model share the same 

architecture but are trained separately. The source model is trained using the labeled source 

data Ds, while the target model training is through adversarial adaptation.

The trained source model Ms is used to train the target model via adversarial adaptation. The 

objective of adversarial adaptation is to minimize differences of these two models so that the 

target model can learn a discriminative mapping from the source domain to the target 

domain. We use the GAN-based loss [5] for this goal

ℒa Ds, Dt, Mt = − ∑
Ds

logMa Ms Ds − ∑
Dt

log 1 − Ma Mt Dt .
(2)

This is also a standard binary cross entropy loss function, where the label 1 and 0 are 

assigned for the source dataset and the target dataset, respectively.

In the training process, the parameters of the source model Ms is fixed to avoid oscillation 

[17] and Ms is also used for the initialization of the target model Mt. In addition, inverted 

labels [5], i.e., assigning opposite labels for source images and target images, were adopted 

using the loss function.

ℒa′ Ds, Dt, Ma = − ∑
Dt

logMa Mt Dt − ∑
Ds

log 1 − Ma Ms Ds .
(3)

In summary, we have two independent loss functions in the adversarial learning process. 

Equations 2 and 3 optimize the target model Mt , and the adversarial model Ma, respectively. 

The dual-loss-function setting proves to be an efficient training technique; using a single loss 

function can cause vanishing gradients [17].

3.2 U-Net

U-Net [14] consists of two networks, a contracting network and an upsampling network. 

This symmetric structure is capable of capturing precise localization information of the 

images, and can achieve state-of-the-art results on several datasets. One drawback of the 

network, however, is that it is unable to segment the boundary of images due to the pooling 

process. Therefore, we propose to use a sliding window approach to extensively scan the 

whole image and only segment the center pixel of the window. The filter size and layer 

number are adjusted based on the input image size. Figure 2 shows our optimized U-Net. We 

use this model as our implementation choice of Ms and Mt in Sect. 2. The TensorFlow 

model in [1] is used for implementation.

3.3 Batch Normalization

To mitigate the problem of covariate shift, our work also incorporates batch normalization 

[8], which uses the mean and variance within each batch to normalize the activation values 

of the non-linear layers so that the activation values can achieve a standard Gaussian 
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distribution during training. A noticeable performance improvement was observed when 

applying this technique in the adversarial network Ma.

4 Dataset

We are continuing acquiring new data for research and we have obtained nine confocal 

images and four light sheet images so far. The confocal images (Ds) with a resolution of 800 

× 600 (0.4613 × 0.4613 μm2/pixel) were used to train the source model Ms. For each pixel in 

the confocal images, we extracted a 31 × 31 sub-image centered on that pixel, and then 

assigned the binary label of that pixel, i.e., nucleus or background, as the label for this sub-

image. The same image batch generating paradigm was applied to the 620 × 520 (0.4853 × 

0.4853 μm2/pixel) light sheet images (Dt). To evaluate the effectiveness of the transfer 

learning, we used a limited set of manually-labeled data for the light sheet image. Example 

images are shown in Fig. 3. Please note that manually labeled light sheet images are not used 

in the training process.

5 Experiments

We conducted three sets of experiments to prove the effectiveness of our proposed model. 

We first performed an ablation study of our model with the state-of-the-art adversarial 

adaptation [17] as the baseline. Second, we compared our unsupervised method with the 

supervised state-of-the-art segmentation method, U-Net. Finally, we explored a bi-

directional adaptation, i.e., from confocal images segmentation to light sheet image 

segmentation and vice versa. Sørensen-Dice similarity coefficient (DICE), 2TP/(2TP + FP + 

FN), was used to evaluate the segmentation performance. The adversarial model has 3 fully 

connected layers with Leaky ReLU activation function. All of the layers have 1024 hidden 

units with Batch Normalization. All of the models were trained over 10000 iterations with a 

batch size of 128 and no further improvement was observed.

5.1 Ablation Study

Adversarial adaptation [17] was employed as a baseline to validate the performance of the 

adversarial learning. [17] uses LeNet with ReLu activation function as the source and target 

model. We replaced the LeNet with our optimized U-Net and added batch normalization in 

the model. The results are provided in Table 1, which reveal the incremental improvement of 

our proposed approach.

5.2 Comparison with U-Net

For this experiment, we compared the performance of the proposed method with U-Net, 

which trained on light sheet images at a variety of settings in terms of the number of the 

available training samples. We had to reduce the size of the network by removing the last 

fully connected layer to avoid severe over-fitting. Table 2 presents the results of the 

supervised method. The results show that the performance of U-Net suffers when training 

data is limited while our proposed method can take advantage of data from other domains to 

tackle this problem.
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5.3 Bi-Directional Adaptation

In addition to transfer the segmentation knowledge from confocal domain to light sheet 

domain, we conducted another experiment for the opposite domain, i.e. light sheet to 

confocal to further demonstrate the capabilities of our method. The results of this bi-

directional experiment are shown in Table 3. Example visual results are also illustrated in 

Fig. 4.

6 Conclusion

This paper demonstrates the capabilities of an unsupervised adversarial adaptation 

framework for cross-modality transfer learning. Our model leverages the dataset from 

confocal images to train a segmentation model for light sheet images and achieves strong 

results in this challenging task. We also investigate the generality of our model by exploring 

bi-directional adaptation, indicating potential for other cross-modality applications in 

imaging research. Finally, our work shows promise in applying transfer learning to image 

segmentation problems in the neuroscience domain.
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Fig.1. 
The overview of the proposed framework. Note that Ms and Mt share the same deep network 

structure (number of layers, number of units, connectivity), while Ma can have a different 

structure
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Fig.2. 
The structure of our optimized U-Net
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Fig.3. 
Example confocal (left) and light sheet (right) images
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Fig.4. 
Segmentation results of our adversarial adaption model: confocal domain to light sheet 

domain (left) and light sheet domain to confocal domain (right). The red contour obtained 

using MATLAB imcontour function on the binary segmentation predictions. The bottom row 

shows the zoomed results.
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Table 1.

Experimental results of unsupervised adaption from confocal images to light sheet images. Light sheet image 

labels were NOT used in either experiment

Experimental settings DICE

Adversarial adaptation [17] 0.593

Adversarial adaptation + U-Net 0.672

Adversarial adaptation + U-Net + Batch 0.709

Normalization

Bioinform Biomed Eng (2019). Author manuscript; available in PMC 2020 March 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guo et al. Page 13

Table 2.

Experimental results of supervised methods and our unsupervised method. For the supervised methods, cross 

validation is applied and averaged results are shown

Model Experimental settings DICE

U-Net Trained on 1 light sheet images, tested on 3 light sheet images 0.577

U-Net Trained on 3 light sheet images, tested on 1 light sheet image 0.676

Ours Tested on 4 light sheet images 0.709
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Table 3.

Experimental results of Bi-directional adaptation

Source domain Target domain DICE

Confocal Light sheet 0.709

Light sheet Confocal 0.680
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