Skip to main content

Estimation of Lung Properties Using ANN-Based Inverse Modeling of Spirometric Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11466))

Abstract

Spirometry is the most commonly used test of lung function because the forced expiratory flow-volume (FV) curve is effort-independent and simultaneously sensitive to pathological processes in the lungs. Despite this, a method for the estimation of respiratory system parameters, based on this association, has not been yet proposed. The aim of this work was to explore a feedforward neural network (FFNN) approximating the inverse mapping between the FV curve and respiratory parameters. To this end, the sensitivity analysis of the reduced model for forced expiration has been carried out, showing its local identifiability and the importance of particular parameters. This forward model was then applied to simulate spirometric data (8000 elements), used for training, validating, optimizing and testing the FFNN. The suboptimal FFNN structure had 52 input neurons (for spirometric data), two hidden nonlinear layers with 30 and 20 neurons respectively, and 10 output neurons (for parameter estimates). The total relative error of estimation of individual parameters was between 11 and 28%. Parameter estimates yielded by this inverse FFNN will be used as starting points for a more precise local estimation algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pellegrino, R., Viegi, G., Brusasco, V., et al.: Interpretative strategies for lung function tests. Eur. Respir. J. 26(5), 948–968 (2005)

    Article  Google Scholar 

  2. Lambert, R.K., Wilson, T.A., Hyatt, R.E., Rodarte, J.R.: A computational model for expiratory flow. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 52(1), 44–56 (1982)

    Google Scholar 

  3. Polak, A.G.: A forward model for maximum expiration. Comput. Biol. Med. 28(6), 613–625 (1998)

    Article  Google Scholar 

  4. Polak, A.G., Lutchen, K.R.: Computational model for forced expiration from asymmetric normal lungs. Ann. Biomed. Eng. 31(8), 891–907 (2003)

    Article  Google Scholar 

  5. Hedges, K.L., Tawhai, M.H.: Simulation of forced expiration in a biophysical model with homogeneous and clustered bronchoconstriction. J. Biomech. Eng. 138(6), 061008 (2016)

    Article  Google Scholar 

  6. Polak, A.G., Wysoczański, D., Mroczka, J.: In silico study on the impact of heterogeneous narrowing of small airways on spirometry results. Eur. Respir. J. 50(suppl. 61), PA3008 (2017)

    Google Scholar 

  7. Lambert, R.K.: Sensitivity and specificity of the computational model for maximal expiratory flow. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 57(4), 958–970 (1984)

    Google Scholar 

  8. Lambert, R.K., Castile, R.G., Tepper, R.S.: Model of forced expiratory flows and airway geometry in infants. J. Appl. Physiol. 96(2), 688–692 (2004)

    Article  Google Scholar 

  9. Lambert, R.K., Beck, K.C.: Airway area distribution from the forced expiration maneuver. J. Appl. Physiol. 97(2), 570–578 (2004)

    Article  Google Scholar 

  10. Morlion, B., Polak, A.G.: Simulation of lung function evolution after heart-lung transplantation using a numerical model. IEEE Trans. Biomed. Eng. 52(7), 1180–1187 (2005)

    Article  Google Scholar 

  11. Mroczka, J., Polak, A.G.: Reduced model for forced expiration and analysis of its sensitivity. In: Feng, D.D., Dubois, O., Zaytoon, J., Carson, E. (eds.) Modelling and Control in Biomedical Systems 2006 (Including Biological Systems), pp. 159–164. Elsevier, Oxford (2006)

    Google Scholar 

  12. Mroczka, J., Polak, A.G.: Selection of identifiable parameters from the reduced model for forced expiration. In: Magjarevic, R., Nagel, J.H. (eds.) World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings, vol. 14, pp. 764–768. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-36841-0_180

    Chapter  Google Scholar 

  13. Tikhonov, A.N., Goncharsky, A., Stepanov, V.V.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, London (1995)

    Book  Google Scholar 

  14. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  MathSciNet  Google Scholar 

  15. Kůrková, V.: Kolmogorov’s theorem and multilayer neural networks. Neural Netw. 5(3), 501–506 (1992)

    Article  Google Scholar 

  16. Ramuhalli, P., Udpa, L., Udpa, S.S.: Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation. J. Appl. Phys. 93(10), 8274–8276 (2003)

    Article  Google Scholar 

  17. Kabir, H., Wang, Y., Yu, M., Zhang, Q.J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microw. Theory Tech. 56(4), 867–879 (2008)

    Article  Google Scholar 

  18. Weibel, E.R.: Morphometry of the Human Lung. Springer, Berlin (1963). https://doi.org/10.1007/978-3-642-87553-3

    Book  Google Scholar 

  19. Bogaard, J.M., Overbeek, S.E., Verbraak, A.F.M., et al.: Pressure-volume analysis of the lung with an exponential and linear-exponential model in asthma and COPD. Eur. Respir. J. 8(9), 1525–1531 (1995)

    Google Scholar 

  20. Kim, D., Son, J.S., Ko, S., Jeong, W., Lim, H.: Measurements of the length and diameter of main bronchi on three-dimensional images in Asian adult patients in comparison with the height of patients. J. Cardiothorac. Vasc. Anesth. 28(4), 890–895 (2014)

    Article  Google Scholar 

  21. Canals, M., Novoa, F.F., Rosenmann, M.: A simple geometrical pattern for the branching distribution of the bronchial tree, useful to estimate optimality departures. Acta. Biotheor. 52(1), 1–16 (2004)

    Article  Google Scholar 

  22. Hannallah, M.S., Benumof, J.L., Ruttimann, U.E.: The relationship between left mainstem bronchial diameter and patient size. J. Cardiothorac. Vasc. Anesth. 9(2), 119–121 (1995)

    Article  Google Scholar 

  23. Majumdar, A., et al.: Relating airway diameter distributions to regular branching asymmetry in the lung. Phys. Rev. Lett. 95(16), 168101 (2005)

    Article  Google Scholar 

  24. Brown, R.H., Mitzner, W.: Effect of lung inflation and airway muscle tone on airway diameter in vivo. J. Appl. Physiol. 80(5), 1581–1588 (1996)

    Article  Google Scholar 

  25. Baldi, S., Miniati, M., Bellina, C.R., et al.: Relationship between extent of pulmonary emphysema by high-resolution computed tomography and lung elastic recoil in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 164(4), 585–589 (2001)

    Article  Google Scholar 

  26. Thomaseth, K., Cobelli, C.: Generalized sensitivity functions in physiological system identification. Ann. Biomed. Eng. 27(5), 607–616 (1999)

    Article  Google Scholar 

  27. Polak, A.G.: Indirect measurements: combining parameter selection with ridge regression. Meas. Sci. Technol. 12(3), 278–287 (2001)

    Article  Google Scholar 

  28. Quanjer, P.H., Tammeling, G.J., Cotes, J.E., et al.: Lung volumes and forced ventilatory flows. Eur. Respir. J. 6(suppl 16), 5–40 (1993)

    Article  Google Scholar 

  29. Dötsch, H.G., Van den Hof, P.M.: Test for local structural identifiability of high-order non-linearly parametrized state space models. Automatica 32(6), 875–883 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant no. 2016/21/B/ST7/02233 from the National Science Centre, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam G. Polak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polak, A.G., Wysoczański, D., Mroczka, J. (2019). Estimation of Lung Properties Using ANN-Based Inverse Modeling of Spirometric Data. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics