Skip to main content

Differential Expression Analysis of ZIKV Infected Human RNA Sequence Reveals Potential Genetic Biomarkers

  • Conference paper
  • First Online:
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11465))

Abstract

Zika virus (ZIKV) infection is considered to be an emerging viral outbreak due to its link to diseases like microcephaly, Guillain-Barre Syndrome in human which is an alarming concern. In this study, we implemented our reproducible RNA-seq analysis pipeline to quantify RNA-seq data in terms of transcripts, and gained common expression results from intersection of three differential expression identification tools. This uncovered significant DEGs of high consensus, significant DEGs of moderate consensus, significant DEGs of low consensus. Moreover, the highly significant DEGs provided us with six DEGs which are transcription factors, which may be involved in the altered biological process somehow. The presented study provides researchers with highly reproducible pipeline for viral studies as well as the novel computational findings for the transcription factors (TFs) involved in ZIKV infection which could enable the researchers to develop new therapeutic strategies to tackle the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imran, M., Khan, A., Ansari, A.R., Shah, S.T.H.: Modeling transmission dynamics of Ebola virus disease. Int. J. Biomath. 10(04), 1750057 (2017)

    Article  MathSciNet  Google Scholar 

  2. Jabeen, A., Ahmad, N., Raza, K.: Machine learning-based state-of-the-art methods for the classification of RNA-seq data. In: Dey, N., Ashour, A.S., Borra, S. (eds.) Classification in BioApps. LNCVB, vol. 26, pp. 133–172. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65981-7_6

    Chapter  Google Scholar 

  3. Tiwari, S.K., Dang, J., Qin, Y., Lichinchi, G., Bansal, V., Rana, T.M.: Zika virus infection reprograms global transcription of host cells to allow sustained infection. Emerg. Microbes Infect. 6(4), e24 (2017)

    Google Scholar 

  4. Agrawal, R., Oo, H.H., Balne, P.K., Ng, L., Tong, L., Leo, Y.S.: Zika virus and the eye. Ocul. Immunol. Inflamm. 26(5), 654–659 (2018)

    Article  Google Scholar 

  5. Shi, Y., Gao, G.F.: Structural biology of the Zika virus. Trends Biochem. Sci. 42(6), 443–456 (2017)

    Article  Google Scholar 

  6. Oh, Y., et al.: Zika virus directly infects peripheral neurons and induces cell death. Nat. Neurosci. 20(9), 1209 (2017)

    Article  Google Scholar 

  7. Xia, H., et al.: An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9(1), 414 (2018)

    Article  Google Scholar 

  8. Rolfe, A.J., Bosco, D.B., Wang, J., Nowakowski, R.S., Fan, J., Ren, Y.: Bioinformatic analysis reveals the expression of unique transcriptomic signatures in Zika virus infected human neural stem cells. Cell Biosci. 6(1), 42 (2016)

    Article  Google Scholar 

  9. Moni, M.A., Lio, P.: Genetic profiling and comorbidities of Zika infection. J. Infect. Dis. 216(6), 703–712 (2017)

    Article  Google Scholar 

  10. Barzon, L., Lavezzo, E., Costanzi, G., Franchin, E., Toppo, S., Palù, G.: Next-generation sequencing technologies in diagnostic virology. J. Clin. Virol. 58(2), 346–350 (2013)

    Article  Google Scholar 

  11. Raza, K., Ahmad, S.: Recent advancement in next-generation sequencing techniques and its computational analysis. Int. J. Bioinf. Res. Appl. Inderscience (in Press)

    Google Scholar 

  12. Soneson, C., Love, M.I., Robinson, M.D.: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research, vol. 4, p. 152 (2015)

    Article  Google Scholar 

  13. Andrews, S.: FastQC: a quality control tool for high throughput sequence data (2010)

    Google Scholar 

  14. Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014)

    Article  Google Scholar 

  15. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357 (2012)

    Article  Google Scholar 

  16. Anders, S., Pyl, P.T., Huber, W.: HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169 (2015)

    Article  Google Scholar 

  17. Huber, W., et al.: Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12(2), 115 (2015)

    Article  Google Scholar 

  18. Gentleman, R.C., et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5(10), R80 (2004)

    Article  Google Scholar 

  19. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010)

    Article  Google Scholar 

  20. McCarthy, D.J., Chen, Y., Smyth, G.K.: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40(10), 4288–4297 (2012)

    Article  Google Scholar 

  21. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014)

    Article  Google Scholar 

  22. Trapnell, C., et al.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28(5), 511 (2010)

    Article  Google Scholar 

  23. Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., Pachter, L.: Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31(1), 46 (2013)

    Article  Google Scholar 

  24. Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L., Pachter, L.: Improving RNA-Seq expression estimates by correcting for fragment bias. Genomebiology 12(3), R22 (2011)

    Google Scholar 

  25. Tang, H., et al.: Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18(5), 587–590 (2016)

    Article  Google Scholar 

  26. Kopylova, E., Noé, L., Touzet, H.: SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24), 3211–3217 (2012)

    Article  Google Scholar 

  27. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Han, H., et al.: TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46(D1), D380–D386 (2017)

    Article  Google Scholar 

  29. Pujato, M., Kieken, F., Skiles, A.A., Tapinos, N., Fiser, A.: Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes. Nucleic Acids Res. 42(22), 13500–13512 (2014)

    Article  Google Scholar 

  30. Zanini, F., Pu, S.Y., Bekerman, E., Einav, S., Quake, S.R.: Single-cell transcriptional dynamics of flavivirus infection. Elife 7, e32942 (2018)

    Article  Google Scholar 

  31. Fontaine, K.A., et al.: The cellular NMD pathway restricts Zika virus infection and is targeted by the viral capsid protein. mBio, 9, e02126-18 (2018)

    Google Scholar 

  32. Chen, Q., et al.: Treatment of human glioblastoma with a live attenuated Zika virus vaccine candidate. MBio 9(5), e01683-18 (2018)

    Google Scholar 

  33. Walter, L.T., et al.: Evaluation of possible consequences of Zika virus infection in the developing nervous system. Mol. Neurobiol. 55(2), 1620–1629 (2018)

    Article  Google Scholar 

  34. Zhao, D., Yang, J., et al.: The unfolded protein response induced by Tembusu virus infection. BMC Vet. Res. 15(1), 34 (2019)

    Article  Google Scholar 

  35. Panayiotou, C., et al.: Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation. J. Virol. JVI-02054 (2018)

    Google Scholar 

  36. Hou, S., et al.: Zika virus hijacks stress granule proteins and modulates the host stress response. J. Virol. JVI-00474 (2017)

    Google Scholar 

  37. Volpi, V.G., Pagani, I., Ghezzi, S., Iannacone, M., D’Antonio, M., Vicenzi, E.: Zika virus replication in dorsal root ganglia explants from interferon receptor1 knockout mice causes myelin degeneration. Sci. Rep. 8(1), 10166 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

The author A. Jabeen acknowledges Maulana Azad National Fellowship-Junior Research Fellowship (JRF) received from the UGC, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jabeen, A., Ahmad, N., Raza, K. (2019). Differential Expression Analysis of ZIKV Infected Human RNA Sequence Reveals Potential Genetic Biomarkers. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11465. Springer, Cham. https://doi.org/10.1007/978-3-030-17938-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17938-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17937-3

  • Online ISBN: 978-3-030-17938-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics