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Abstract. Suppose there are n Markov chains and we need to pay a
per-step price to advance them. The “destination” states of the Markov
chains contain rewards; however, we can only get rewards for a subset of
them that satisfy a combinatorial constraint, e.g., at most k of them, or
they are acyclic in an underlying graph. What strategy should we choose
to advance the Markov chains if our goal is to maximize the total reward
minus the total price that we pay?
In this paper we introduce a Markovian price of information model to
capture settings such as the above, where the input parameters of a
combinatorial optimization problem are given via Markov chains. We
design optimal/approximation algorithms that jointly optimize the value
of the combinatorial problem and the total paid price. We also study
robustness of our algorithms to the distribution parameters and how to
handle the commitment constraint.
Our work brings together two classical lines of investigation: getting op-
timal strategies for Markovian multi-armed bandits, and getting exact
and approximation algorithms for discrete optimization problems using
combinatorial as well as linear-programming relaxation ideas.

Keywords: Multi-armed bandits · Gittins index · Probing algorithms.

1 Introduction

Suppose we are running an oil company and are deciding where to set up new
drilling operations. There are several candidate sites, but the value of drilling
each site is a random variable. We must therefore inspect sites before drilling.
Each inspection gives more information about a site’s value, but the inspection
process is costly. Based on laws, geography, or availability of equipment, there
are constraints on which sets of drilling sites are feasible. We ask:

What adaptive inspection strategy should we adopt to find a feasible set
of sites to drill which maximizes, in expectation, the value of the chosen
(drilled) sites minus the total inspection cost of all sites?

Let us consider the optimization challenges in this problem:

(i) Even if we could fully inspect each site for free, choosing the best feasible
set of sites is a combinatorial optimization problem.

http://arxiv.org/abs/1902.07856v1
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(ii) Each site may have multiple stages of inspection. The costs and possible
outcomes of later stages may depend on the outcomes of earlier stages. We
use a Markov chain for each site to model how our knowledge about the
value of the site stochastically evolves with each inspection.

(iii) Since a site’s Markov chain model may not exactly match reality, we want
a robust strategy that performs well even under small changes in the model
parameters.

(iv) If there is competition among several companies, it may not be possible to
do a few stages of inspection at a given site, abandon that site’s inspection
to inspect other sites, and then later return to further inspect the first site.
In this case the problem has additional “take it or leave it” or commitment
constraints, which prevent interleaving inspection of multiple sites.

While each of the above aspects has been individually studied in the past,
no prior work addresses all of them. In particular, aspects (i) and (ii) have not
been simultaneously studied before. In this work we advance the state of the art
by solving the (i)-(ii)-(iii) and the (i)-(ii)-(iv) problems.

To study aspects (i) and (ii) together, in §2 we propose the Markovian Price
of Information (Markovian PoI) model. The Markovian PoI model unifies
prior models which address (i) or (ii) alone. These prior models include those of
Kleinberg et al. [33] and Singla [37], who study the combinatorial optimization
aspect (i) in the so-called price of information model, in which each site has just
a single stage of inspection; and those of Dimitriu et al. [17] and Kleinberg et
al. [33, Appendix G], who consider the multiple stage inspection aspect (ii) for
the problem of selecting just a single site.

Our main results show how to solve combinatorial optimization problems,
including both maximization and minimization problems, in the Markovian

PoI model. We give two methods of transforming classic algorithms, originally
designed for the Free-Info (inspection is free) setting, into adaptive algorithms
for the Markovian PoI setting. These adaptive algorithms respond dynami-
cally to the random outcomes of inspection.

– In §3.3 we transform “greedy” α-approximation algorithms in the Free-

Info setting into α-approximation adaptive algorithms in the Markovian

PoI setting (Theorem 3.1). For example, this yields optimal algorithms for
matroid optimization (Corollary 3.1).

– In §4 we show how to slightly modify our α-approximations for the Marko-

vian PoI setting in Theorem 3.1 to make them robust to small changes in
the model parameters (Theorem 4.1).

– In §5 we use online contention resolution schemes (OCRSs) [19] to transform
LP based Free-Info maximization algorithms into adaptive Markovian

PoI algorithms while respecting the commitment constraints. Specifically,
a 1/α-selectable OCRS yields α-approximation with commitment (Theo-
rem 5.1).

The general idea behind our first result (Theorem 3.1) is the following. A
Frugal combinatorial algorithm (Definition 3.6) is, roughly speaking, “greedy”:
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it repeatedly selects the feasible item of greatest marginal value. We show how
to adapt any Frugal algorithm to the Markovian PoI setting:

– Instead of using a fixed value for each item i, we use a time-varying “proxy”
value that depends on the state of i’s Markov chain.

– Instead of immediately selecting the item i of greatest marginal value, we
advance i’s Markov chain one step.

The main difficulty lies in choosing each item’s proxy value, for which simple
heuristics can be suboptimal. We use a quantity for each state of each item’s
Markov chain called its grade, and an item’s proxy value is its minimum grade so
far. A state’s grade is closely related to the Gittins index from the multi-armed
bandit literature, which we discuss along with other related work in §6.

2 The Markovian Price of Information Model

To capture the evolution of our knowledge about an item’s value, we use the
notion of a Markov system from [17] (who did not consider values at the desti-
nations).

Definition 2.1 (Markov System). A Markov system S = (V, P, s, T,π, r) for
an element consists of a discrete Markov chain with state space V , a transition
matrix P = {pu,v} indexed by V ×V (here pu,v is the probability of transitioning
from u to v), a starting state s, a set of absorbing destination states T ⊆ V ,
a non-negative probing price πu ∈ R≥0 for every state u ∈ V \ T , and a value
rt ∈ R for each destination state t ∈ T . We assume that every state u ∈ V
reaches some destination state.

We have a collection J of ground elements, each associated with its own
Markov system. An element is ready if its Markov system has reached one of its
absorbing destination states. For a ready element, if ω is the (random) trajectory
of its Markov chain then d(ω) denotes its associated destination state. We now
define the Markovian PoI game, which consists of an objective function on J .

Definition 2.2 (Markovian PoI Game). Given a set of ground elements J ,
constraints F ⊆ 2J , an objective function f : 2J × R|J| → R, and a Markov
system Si = (Vi, Pi, si, Ti,πi, ri) for each element i ∈ J , the Markovian PoI

game is the following. At each time step, we either advance a Markov system Si

from its current state u ∈ Vi \ Ti by incurring price πu
i , or we end the game by

selecting a subset of ready elements I ⊆ J that are feasible—i.e., I ∈ F .

A common choice for f is the additive objective f(I,x) =
∑

i∈I
xi.

Let ω denote the trajectory profile for the Markovian PoI game: it consists
of the random trajectories ωi taken by all the Markov chains i at the end of the
game. To avoid confusion, we write the selected feasible solution I as I(ω). A
utility/disutility optimization problem is to give a strategy for a Markovian

PoI game while optimizing both the objective and the total price.
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Utility Maximization (Util-Max): A Markovian PoI game where the
constraints F are downward-closed (i.e., packing) and the values ri are non-
negative for every i ∈ J (i.e., ∀t ∈ Ti, r

t
i ≥ 0, and can be understood as a reward

obtained for selecting i). The goal is to find a strategy ALG maximizing utility:

Umax(ALG)
∆
= Eω

[
f
(
I(ω), {r

d(ωi)
i }i∈I(ω)

)

︸ ︷︷ ︸
value

−
∑

i

∑
u∈ωi

πu
i︸ ︷︷ ︸

total price

]
. (1)

Since the empty set is always feasible, the optimum utility is non-negative.

We also define a minimization variant of the problem that is useful to capture
covering combinatorial problems such as minimum spanning trees and set cover.

Disutility Minimization (Disutil-Min) : A Markovian PoI game where
the constraints F are upward-closed (i.e., covering) and the values ri are non-
negative for every i ∈ J (i.e., ∀t ∈ Ti, r

t
i ≥ 0, and can be understood as a cost

we pay for selecting i). The goal is to find a strategy ALG minimizing disutility:

Umin(ALG)
∆
= Eω

[
f
(
I(ω), {r

d(ωi)
i }i∈I(ω)

)
+
∑

i

∑
u∈ωi

πu
i

]
.

We will assume that the function f is non-negative when all ri are non-negative.
Hence, the disutility of the optimal policy is non-negative.

In the special case where all the Markov chains for a Markovian PoI game
are formed by a directed acyclic graph (Dag), we call the corresponding opti-
mization problem Dag-Util-Max or Dag-Disutil-Min.

3 Adaptive Utility Maximization via Frugal Algorithms

Frugal algorithms, introduced in Singla [37], capture the intuitive notion of
“greedy” algorithms. There are many known Frugal algorithms, e.g., optimal
algorithms for matroids and O(1)-approx algorithms for matchings, vertex cover,
and facility location. These Frugal algorithms were designed in the traditional
free information (Free-Info) setting, where each ground element has a fixed
value. Can we use them in the Markovian PoI world?

Our main contribution is a technique that adapts any Frugal algorithm to
the Markovian PoI world, achieving the same approximation ratio as the orig-
inal algorithm. The result applies to semiadditive objective functions f , which
are those of the form f(I,x) =

∑
i∈I

xi + h(I) for some h : 2J → R.

Theorem 3.1. For a semiadditive objective function val, if there exists an α-
approximation Frugal algorithm for a Util-Max problem over some packing
constraints F in the Free-Info world, then there exists an α-approximation
strategy for the corresponding Util-Max problem in the Markovian PoI world.

We prove an analogous result for Disutil-Min in §D. The following corollar-
ies immediately follow from known Frugal algorithms [37].
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Corollary 3.1. In the Markovian PoI world, we have:

– An optimal algorithm for both Util-Max and Disutil-Min for matroids.
– A 2-approx for Util-Max for matchings and a k-approx for a k-system.
– A min{f, logn}-approx for Disutil-Min for set-cover, where f is the max-

imum number of sets in which a ground element is present.
– A 1.861-approx for Disutil-Min for facility location.
– A 3-approx for Disutil-Min for prize-collecting Steiner tree.

Before proving Theorem 3.1, we define a grade for every state in a Markov
system in §3.1, much as in [17]. This grade is a variant of the popular Gittins
index. In §3.2, we use the grade to define a prevailing cost and an epoch for
a trajectory. In §3.3, we use these definitions to prove Theorem 3.1. We con-
sider Util-Max throughout, but analogous definitions and arguments hold for
Disutil-Min.

3.1 Grade of a State

To define the grade τv of a state v ∈ V in Markov system S = (V, P, s, T,π, r), we
consider the following Markov game called τ-penalized S, denoted S(τ). Roughly,
S(τ) is the same as S but with a termination penalty, which is a constant τ ∈ R.

Suppose v ∈ V denotes the current state of S in the game S(τ). In each
move, the player has two choices: (a) Halt that immediately ends the game, and
(b) Play that changes the state, price, and value as follows:

– If v ∈ V \T , the player pays price πv, the current state of S changes according
to the transition matrix P , and the game continues.

– If v ∈ T , then the player receives penalized value rv − τ , where τ is the
aforementioned termination penalty, and the game ends.

The player wishes to maximize his utility, which is the expected value he
obtains minus the expected price he pays. We write Uv(τ) for the utility attained
by optimal play starting from state v ∈ V .

The utility Uv(τ) is clearly non-increasing in the penalty τ , and one can also
show that it is continuous [17, Section 4]. In the case of large penalty τ → +∞,
it is optimal to halt immediately, achieving Uv(τ) = 0. In the opposite extreme
τ → −∞, it is optimal to play until completion, achieving Uv(τ) → +∞. Thus,
as we increase τ from −∞ to +∞, the utility Uv(τ) becomes 0 at some critical
value τ = τv. This critical value τv that depends on state v is the grade.

Definition 3.1 (Grade). The grade of a state v in Markov system S is τv
∆
=

sup{τ ∈ R | Uv(τ) > 0}. For a Util-Max problem, we write the grade of a state
v in Markov system Si corresponding to element i as τvi .

The quantity grade of a state is well-defined from the above discussion. We
emphasize that it is independent of all other Markov systems. Put another way,
the grade of a state is the penalty τ that makes the player indifferent between
halting and playing. It is known how to compute grade efficiently [17, Section 7].



6 Gupta et al.

3.2 Prevailing Cost and Epoch

We now define a prevailing cost [17] and an epoch. The prevailing cost of Markov
system S is its minimum grade at any point in time.

Definition 3.2 (Prevailing Cost). The prevailing cost of Markov system Si

in a trajectory ωi is Y max(ωi) = minv∈ωi
{τvi }. For trajectory profile ω, denote

Y max(ω) the list of prevailing costs for each Markov system.

Put another way, the prevailing cost is the maximum termination penalty
for the game S(τ) such that for every state along ω the player does not want to
halt.

Observe that the prevailing cost of a trajectory can only decrease as it extends
further. In particular, it decreases whenever the Markov system reaches a state
with grade smaller than each of the previously visited states. We can therefore
view the prevailing cost as a non-increasing piecewise constant function of time.
This motivates us to define an epoch.

Definition 3.3 (Epoch). An epoch for a trajectory ω is any maximal contin-
uous segment of ω where the prevailing cost does not change.

Since the grade can be computed efficiently, we can also compute the prevailing
cost and epochs of a trajectory efficiently.

3.3 Adaptive Algorithms for Utility Maximization

In this section, we prove Theorem 3.1 that adapts a Frugal algorithm in Free-

Info world to a probing strategy in the Markovian PoI world. This theorem
concerns semiadditive functions, which are useful to capture non-additive objec-
tives of problems like facility location and prize-collecting Steiner tree.

Definition 3.4 (Semiadditive Function [37]). A function f(I,X) : 2J ×
R|J| → R is semiadditive if there exists a function h : 2J → R s.t. f(I,x) =∑

i∈I
xi + h(I).

All additive functions are semiadditive with h(I) = 0 for all I. To capture the
facility location problem on a graph G = (J,E) with metric (J, d), clients C ⊆ J ,
and facility opening costs x : J → R≥0, we can define h(I) =

∑
j∈C mini∈I d(j, i).

Notice h only depends on the identity of facilities I and not their opening costs.

The proof of Theorem 3.1 takes two steps. We first give a randomized re-
duction to upper bound the utility of the optimal strategy in the Markovian

PoI world with the optimum of a surrogate problem in the Free-Info world.
Then, we transform a Frugal algorithm into a strategy with utility close to
this bound.
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Upper Bounding the Optimal Strategy Using a Surrogate. The main
idea in this section is to show that for Util-Max, no strategy (in particular,
optimal) can derive more utility from an element i ∈ J than its prevailing cost.
Here, the prevailing cost of i is for a random trajectory to a destination state
in Markov system Si. Since the optimal strategy can only select a feasible set
in F , this idea naturally leads to the following Free-Info surrogate problem:
imagine each element’s value is exactly its (random) prevailing cost, the goal is
to select a set feasible in F to maximize the total value. In Lemma 3.1, we show
that the expected optimum value of this surrogate problem is an upper bound
on the optimum utility for Util-Max. First, we formally define the surrogate
problem.

Definition 3.5 (Surrogate Problem). Given a Util-Max problem with semi-
additive objective val and packing constraints F over universe J , the correspond-
ing surrogate problem over J is the following. It consists of constraints F and
(random) objective function f̃ : 2J → R given by f̃(I) = val(I,Ymax(ω)), where
Ymax(ω) denotes the prevailing costs over a random trajectory profile ω consist-
ing of independent random trajectories for each element i ∈ J to a destination
state. The goal is to select I ∈ F to maximize f̃(I).

Let SUR(ω)
∆
= maxI∈F{val(I,Ymax(ω))} denote the optimum value of the

surrogate problem for trajectory profile ω. We now upper bound the optimum
utility in the Markovian PoI world. Our proof borrows ideas from the “pre-
vailing reward argument” in [17].

Lemma 3.1. For a Util-Max problem with objective val and packing con-
straints F , let OPT denote the utility of the optimal strategy. Then,

OPT ≤ Eω[SUR(ω)] = Eω

[
maxI∈F{val(I,Ymax(ω))}

]
,

where the expectation is over a random trajectory profile ω that has every Markov
system reaching a destination state.

We prove Lemma 3.1 in §A.

Designing an Adaptive Strategy Using a Frugal Algorithm. A Frugal

algorithm selects elements one-by-one and irrevocably. Besides greedy algorithms,
its definition also captures “non-greedy” algorithms such as primal-dual algo-
rithms that do not have the reverse-deletion step [37].

Definition 3.6 (Frugal Packing Algorithm). For a combinatorial opti-
mization problem on universe J in the Free-Info world with packing constraints
F ⊆ 2J and objective f : 2J → R, we say Algorithm A is Frugal if there exists
a marginal-value function g(Y, i, y) : RJ × J × R → R that is increasing in y,
and for which the pseudocode is given by Algorithm 1. Note that this algorithm
always returns a feasible solution if ∅ ∈ F .

The following lemma shows that a Frugal algorithm can be converted to a
strategy with the same utility in the Markovian PoI world.
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Algorithm 1 Frugal Packing Algorithm A

1: Start with M = ∅ and vi = 0 for each element i ∈ J .
2: For each element i 6∈ M , compute vi = g(YM , i, Yi). Let j =

arg maxi6∈M & M∪i∈F{vi}.
3: If vj > 0 then add j into M and go to Step 2. Otherwise, return M .

Lemma 3.2. Given a Frugal packing Algorithm A, there exists an adaptive
strategy ALGA for the corresponding Util-Max problem in Markovian PoI

world with utility at least Eω[val(A(Ymax(ω)),Ymax(ω))], where A(Ymax(ω) is
the solution returned by A for objective f(I) = val(Ymax(ω), I).

We prove Lemma 3.2 in §B. Finally, we can prove Theorem 3.1.

Proof (Proof of Theorem 3.1). From Lemma 3.2, the utility of ALGA is at least
Eω[val(A(Ymax(ω)),Ymax(ω))]. Since Algorithm A is an α-approx algorithm in
the Free-Info world, it follows

Eω[val(A(Ymax(ω)),Ymax(ω))] ≥
1

α
· Eω

[
max
I∈F

{val(I,Ymax(ω))}
]
.

Using the upper bound on optimal utilityOPT ≤ Eω

[
maxI∈F{val(I,Ymax(ω))}

]

from Lemma 3.1, we have utility of ALGA is at least 1
α ·OPT.

In §D, a similar approach is used for the Disutil-Min problem with semi-
additive function. This shows that for both Util-Max or Disutil-Min problem
with semi-additive function, a Frugal algorithm can be transformed from Free-

Info to Markovian PoI world while retaining its performance.

4 Robustness in Model Parameters

In practical applications, the parameters of Markov systems (i.e., transition prob-
abilities, values, and prices) are not known exactly but are estimated by statisti-
cal sampling. In this setting, the true parameters, which govern how each Markov
system evolves, differ from the estimated parameters that the algorithm uses to
make decisions. This raises a natural question: how well does an adapted Frugal

algorithm do when the true and the estimated parameters differ? We would hope
to design a robust algorithm, meaning small estimation errors cause only small
error in the utility objective.

In the important special case where the Markov chain corresponding to each
element is formed by a directed acyclic graph (Dag), an adaptation of our strat-
egy in Theorem 3.1 is robust. This Dag assumption turns out to be necessary
as similar results do not hold for general Markov chains (see Appendix F.1). In
particular, we prove the following generalization of Theorem 3.1 under the Dag

assumption.
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Theorem 4.1 (Informal statement). If there exists an α-approximation Frugal

algorithm A (α ≥ 1) for a packing problem with a semiadditive objective function,
then it suffices to estimate the true model parameters of a Dag-Markovian PoI

game within an additive error of ǫ/poly, where poly is some polynomial in the
size of the input, to design a strategy with utility at least 1

α ·OPT−ǫ, where OPT

is the utility of the optimal policy that knows all the true model parameters.

Specifically, our strategy ÂLGA for Theorem 4.1 is obtained from the strat-
egy in Theorem 3.1 by making use of the following idea: each time we advance
an element’s Markov system, we slightly increase the estimated grade of every
state in that Markov system. This ensures that whenever we advance a Markov
system, we advance through an entire epoch and remain optimal in the “teasing
game”.

Our analysis of ÂLGA works roughtly as follows. We first show that close
estimates of the model parameters of a Markov system can be used to closely
estimate the grade of each state. We can therefore assume that close estimates
of all grades are given as input. Next we define the “shifted” prevailing cost
corresponding to the “shifted” grades. This allows us to equate the utility of

ÂLGA by the utility of running A in the “modified” surrogate problem where
the input to A is the “shifted” prevailing costs instead of the true prevailing
costs. Finally, we prove that the “shifted” prevailing costs are close to the real
prevailing costs and thus the “modified” surrogate problem is close to the surro-
gate problem. This allows us to bound the utility of running A in the “modified”
surrogate problem by the optimal strategy to the surrogate problem. Combining
with Lemma 3.1 finishes the proof of Theorem 4.1.

Similar arguments extend to prove the analogous result for Disutil-Min.
We formally state our main theorem and the parameters on which it depends

in Section 4.1. Section 4.2 shows that close estimates of transition probabili-
ties can be used to obtain close estimates of the grades. In Section 4.3, we use
these estimated grades to transform a Frugal algorithm into a robust adaptive
algorithm for Dag-Util-Max. Similar arguments can be used to obtain the
corresponding results for Dag-Disutil-Min (we omit this proof).

4.1 Main Results and Assumptions

We first explicitly define the input size of Dag-Util-Max as follows.

(i) n is the number of Markov systems.

(ii) k is the maximum number of elements in a feasible solution, i.e., k
∆
=

maxI∈F |I|.
(iii) D is the maximum depth of any Dag Markov system.

Denote B an upper bound on all input prices and values, i.e., ∀i, ∀π ∈ πi, ∀r ∈
ri, we have |π| ≤ B, |r| ≤ B. We make the following assumption.

Assumption 4.2 The upper bound B is polynomial in n, k, and D.
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Such an assumption turns out to be necessary (see Appendix F.2). We now state
our main theorem of this section.

Theorem 4.3. Consider a Dag-Util-Max problem with a semiadditive objec-
tive and satisfying Assumption 4.2. Suppose there exists an α-approximation
Frugal algorithm in the Free-Info world. If each input parameter is known
to within an additive error of ǫ/poly, where poly is some polynomial in n, k, and

D, then there exists an adaptive algorithm ÂLG with utility at least

1

α
·OPT− ǫ,

where OPT is the utility of the optimal policy that exactly knows the true input
parameters.

To simplify the proof of Theorem 4.3, we also assume the following without
loss of generality (see Appendix F.3 for justifications).

(iv) All non-zero transition probabilities are lower bounded by 1/P , where P is
a polynomial in n, k, and D.

(v) We know the prices π and the rewards r exactly, i.e., the only unknown
input parameters are the transition probabilities.

4.2 Well-Estimated Input Parameters Imply Well-Estimated
Grades

We call the set of Markov systems constructed using our estimated transition
probabilities the estimated world. The ith Markov system in this estimated world
is denoted by Ŝi = (Vi, P̂i, si, Ti,πi, ri), where P̂i contains the estimated transi-
tion probabilities. Note, πi and ri are exact due to Assumption (v). We estimate
the grade of a state by simply computing the grade of that state in the estimated
world. The following Lemma 4.1 bounds the error in estimated grades in terms
of the error in transition probabilities.

Lemma 4.1. Consider the Dag-Util-Max problem satisfying the assumptions
in Section 4.1. Suppose all transition probabilities are estimated to within an
additive error of ǫ < 1/P , then ∀i, ∀u ∈ Vi, the estimated grade τ̂ui is within an
additive factor of O(L · ǫ) from the real grade τui , where L = D2BP .

Proof. We show below that τui ≥ τ̂ui − L · ǫ. A symmetrical argument shows
τ̂ui ≥ τui − L · ǫ, which finishes the proof of this lemma.

We consider the Markov game Ĝu defined in Section 3.1 in the estimated
world. By definition, there exists an optimal policy Pol that advances the chain
at least one more step and achieves an expected utility of 0. Also consider the
Markov game Gu in the real world and apply Pol in Gu. Notice Pol might
be sub-optimal in Gu and might therefore obtain a negative expected value. Let
τfair be the cost τ in Gu such that Pol obtains an expected value of 0. It follows
that τui ≥ τfair. It therefore suffices to show that τfair ≥ τ̂ui − L · ǫ.
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Denote the set of trajectories when applying Pol (in either world) by S
and those in which the item is picked by Swin. Denote pω the probability of a
trajectory ω ∈ S in the real world and p̂ω the probability of it in the estimated
world. Let rω be the utility of ω (as defined for Util-Max by ignoring the cost
τ) in either world. It follows that

τfair =
1∑

ω∈Swin
pω

·
∑

ω∈S

(pω · rω) =
∑

ω∈S

(
pω∑

ω∈Swin
pω

· rω

)
,

and that

τ̂ui =
1∑

ω∈Swin
p̂ω

·
∑

ω∈S

(p̂ω · rω) =
∑

ω∈S

(
p̂ω∑

ω∈Swin
p̂ω

· rω

)
.

Since each transtion probability is lower bounded by 1/P , it is estimated to
within a multiplicative error of (1± O(Pǫ)). Since pω and p̂ω can be written
as the product of at most D probabilities, each term pω∑

ω∈Swin
pω

is within a

multiplicative error of (1±O(DPǫ)) from p̂ω∑
ω∈Swin

p̂ω

. It follows that τfair is

within a multiplicative factor of (1±O(DPǫ)) from τ̂ui . But notice that τ̂ui ≤
DB, which implies that τfair ≥ τ̂ui −O(D2BP · ǫ) = τ̂ui −O(L · ǫ).

4.3 Designing an Adaptive Strategy for DAG-Utility Maximization

From the previous section we know how to obtain close estimates of the grades.
Now we use well-estimated grades to design a robust adaptive strategy for Dag-
Util-Max and prove Theorem 4.3. Theorem 4.3 directly follows by combining
Lemma 3.1 and the following Lemma 4.2.

Lemma 4.2. Assuming the conditions of Theorem 4.3 and that the grade of
each state is estimated to within an additive factor of ǫ/4kDi, where Di is the

depth of Si, then there exists an adaptive algorithm ÂLG with utility at least

1

α
· Eω

[
max
I∈F

{val(I,Ymax(ω))}

]
− ǫ.

To prove Lemma 4.2, we describe our algorithm ÂLGA (Algorithm 2). We

define Ŷmax as follows.

Definition 4.1. Fix a trajectory profile ω where each Markov system reaches the
destination state. For each i and u ∈ Vi, let du(ωi) be the number of transitions
for Si to reach u from si by taking the trajectory ωi ∈ ω. Let γ̂u

i (ωi) = τ̂ui +

du(ωi)ǫ/2kDi. Define Ŷ max
ωi

∆
= minu∈ωi

{γ̂u
i (ωi)}. Denote the list of Ŷ max

ωi
’s as

Ŷmax(ω) and Ŷmax
M (ω) the list of Ŷ max

ωi
values in the set M .
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Algorithm 2 Algorithm ÂLGA for Util-Max in Markovian PoI

1: Start with M = ∅. Set vi = 0 and ctri = 0 for all elements i.

2: For each element i 6∈ M , set vi = g
(
Ŷmax

M , i, τ̂ui + ctri · ǫ/2kDi

)
where u is

the current state of i.
3: Consider the element j = arg maxi6∈M & M∪i∈F{vi} and vj > 0.
4: Proceed Sj for one step and set ctrj = ctrj +1. If tj is reached by Sj , select

j into M .
5: If every element i 6∈ M has vi ≤ 0 then return set M . Else, go to Step 2.

The key idea in ÂLGA (the main difference from Algorithm 4) is the “upward
shifting” technique in Step 2. As we advance a Markov system, we shift our
estimates of its grades upward. This guarantees that our algorithm is optimal in
the teasing game GT defined for Claim A.2.

Proof (Proof of Lemma 4.2). This lemma immediately follows from the following
two claims (whose proofs are in Appendix E).

Claim. The utility of running ÂLGA in the real world is exactly the same as

Eω

[
val(Alg(Ŷmax(ω),A),Ymax(ω))

]
.

Claim. For any trajectory profile ω and for any i, |Ŷ max
ωi

− Y max
ωi

| ≤ ǫ/2k. Thus

val(Alg(Ŷmax(ω),A),Ymax(ω)) ≥
1

α
·max

I∈F
{val(I,Ymax(ω))} − ǫ.

5 Handling Commitment Constraints

Consider the Markovian PoImodel defined in §2 with an additional restriction
that whenever we abandon advancing a Markov system, we need to immediately
and irrevocably decide if we are selecting this element into the final solution I.
Since we only select ready elements, any element that is not ready when we
abandon its Markov system is automatically discarded. We call this constraint
commitment. The benchmark for our algorithm is the optimal policy without the
commitment constraint. For single-stage probing, such commitment constraints
have been well studied, especially in the context of stochastic matchings [11,6].

We studyUtil-Max in theDagmodel with the commitment constraint. Our
algorithms make use of the online contention resolution schemes (OCRSs) pro-
posed in [19]. OCRSs address our problem in the Free-Info world4 (i.e., we can
see the realization of the r.v.s for free, but there is the commitment constraint).

4 In fact, OCRSs consider a variant where the adversary chooses the order in which
the elements are tried. This handles the present problem where we may choose the
order.
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Constant factor “selectable” OCRSs are known for several constraint families:
1
4 for matroids, 1

2e for matchings, and Ω( 1k ) for intersection of k matroids [19].
We show how to adapt them to Markovian PoI with commitment.

Theorem 5.1. For an additive objective, if there exists a 1/α-selectable OCRS
(α ≥ 1) for a packing constraint F , then there exists an α-approximation algo-
rithm for the corresponding Dag-Util-Max problem with commitment.

The proof of this result uses a new LP relaxation (inspired from [22]) to
bound the optimum utility of a Markovian PoI game without commitment
(see §5.1). Although this relaxation is not exact even for Pandora’s box (and
cannot be used to design optimal strategies in Corollary 3.1), it turns out to
suffice for our approximation guarantees. In §5.2, we use an OCRS to round
this LP with only a small loss in the utility, while respecting the commitment
constraint.

Remark 5.1. We do not consider Disutil-Min problem under commitment be-
cause it captures prophet inequalities in a minimization setting where no poly-
nomial approximation is possible even for i.i.d. r.v.s [18, Theorem 4].

In §5.1, we give an LP relaxation to upper bound the optimum utility without
the commitment constraint. In §5.2, we apply an OCRS to round the LP solution
to obtain an adaptive policy, while satisfying the commitment constraint.

5.1 Upper Bounding the Optimum Utility

Define the following variables, where i is an index for the Markov systems.

– yui : probability we reach state u in Markov system Si for u ∈ Vi \ Ti.
– zui : probability we play Si when it is in state u for u ∈ Vi \ Ti.
– xi =

∑
u∈Ti

zui : probability Si is selected into the final solution when in a
destination state.

– PF is a convex relaxation containing all feasible solutions for packing F .

We can now formulate the following LP, which is inspired from [22].

max
z

∑

i

( ∑

u∈Ti

rui z
u
i −

∑

u∈Vi\Ti

πu
i z

u
i

)

subject to ysii = 1 ∀i ∈ J

yui =
∑

v∈Vi
(Pi)uvz

v
i ∀i ∈ J, ∀u ∈ Vi \ si

xi =
∑

u∈Ti
zui ∀i ∈ J

zui ≤ yui ∀i ∈ J, ∀u ∈ Vi

x ∈ PF

xi, y
u
i , z

u
i ≥ 0 ∀i ∈ J, ∀u ∈ Vi

The first four constraints characterize the dynamics in advancing the Markov
systems. The fifth constraint encodes the packing constraint F . We denote the
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optimal solution of this LP as (x,y, z). We can efficiently solve the above LP for
packing constraints such as matroids, matchings, and intersection of k matroids.

If we interpret the variables yui , xi, and zui as the probabilities corresponding
to the optimal strategy without commitment, it forms a feasible solution to the
LP. This implies the following claim.

Lemma 5.1. The optimum utility without commitment is at most the LP value.

5.2 Rounding the LP Using an OCRS

Before describing our rounding algorithm, we define an OCRS. Intuitively, it is
an online algorithm that given a random set ground elements, selects a feasible
subset of them. Moreover, if it can guarantee that every i is selected w.p. at least
1
α · xi, it is called

1
α -selectable.

Definition 5.1 (OCRS [19]). Given a point x ∈ PF , let R(x) denote a random
set containing each i independently w.p. xi. The elements i reveal one-by-one
whether i ∈ R(x) and we need to decide irrevocably whether to select an i ∈ R(x)
into the final solution before the next element is revealed. An OCRS is an online
algorithm that selects a subset I ⊆ R(x) such that I ∈ F .

Definition 5.2 ( 1
α -Selectability [19]). Let α ≥ 1. An OCRS for F is 1

α -
selectable if for any x ∈ PF and all i, we have Pr[i ∈ I | i ∈ R(x)] ≥ 1

α .

Our algorithm ALG uses OCRS as an oracle. It starts by fixing an arbitrary
order π of the Markov systems. (Our algorithm works even when an adversary
decides the order of the Markov systems.) Then at each step, the algorithm
considers the next element i in π and queries the OCRS whether to select element
i if it is ready. If OCRS decides to select i, then ALG advances the Markov
system such that it plays from each state u with independent probability zui /y

u
i .

This guarantees that the desination state is reached with probability xi. If OCRS
is not going to select i, then ALG moves on to the next element in π. A formal
description of the algorithm can be found in Algorithm 3.

Algorithm 3 Algorithm ALG for Handling the Commitment Constraint

1: Fix an arbitrary order π of the items. Set M = ∅ and pass x to OCRS.
2: Consider the next element i in the order of π. Query OCRS whether to add

i to M if i is ready.
(a) If OCRS would add i to M , then keep advancing the Markov system: play
from each current state u ∈ Vi \Ti independently w.p. zui /y

u
i , and otherwise

go to Step 2. If a destination state t is reached then add i to M w.p. zti/y
t
i .

(b) Go to Step 2.

We show below that ALG has a utility of at least 1/α times the LP value.



The Markovian Price of Information 15

Lemma 5.2. The utility of ALG is at least 1/α times the LP optimum.

Since by Lemma 5.1 the LP optimum is an upper bound on the utility of any
policy without commitment, this proves Theorem 5.1. We now prove Lemma 5.2.

Proof (Proof of Lemma 5.2). Recollect that we call a Markov system ready if
it reaches an absorbing destination state. We first notice that once ALG starts
to advance a Markov system i, then by Step 2 of Algorithm 3, element i is
ready with probability exactly xi. This agrees with what ALG tells the OCRS.
Since the OCRS is 1/α-selectable, the probability that any Markov system Si

begins advancing is 1/α. Here the probability is both over the random choice
of the OCRS and the randomness due to the Markov systems. Conditioning on
the event that Si begins advancing, the probability that it is selected into the
final solution on reaching a destination state t ∈ Ti is exactly zti . Hence, the
conditioned utility from Markov system Si is exactly

∑
u∈Ti

rui z
u
i −

∑
u∈Vi\Ti

πu
i z

u
i .

By removing the conditioning and by linearity of expectation, the utility of ALG

is at least 1
α ·
∑

i

(∑
u∈Ti

rui z
u
i −

∑
u6∈Ti

πu
i z

u
i

)
, which proves this lemma.

6 Related Work

Our work is related to work on multi-armed bandits in the scheduling liter-
ature. The Gittins index theorem [21] provides a simple optimal strategy for
several scheduling problems where the objective is to maximize the long-term
exponentially discounted reward. This theorem turned out to be fundamental
and [38,39,41] gave alternate proofs. It can be also used to solve Weitzman’s
Pandora’s box. The reader is referred to the book [20] for further discussions
on this topic. Influenced by this literature, [17] studied scheduling of Markovian
jobs, which is a minimization variant of the Gittins index theorem without any
discounting. Their paper is part of the inspiration for our Markovian PoI

model.
The Lagrangian variant of stochastic probing considered in [22] is similar to

our Markovian PoI model. However, their approach using an LP relaxation to
design a probing strategy is fundamentally different from our approach using a
Frugal algorithm. E.g., unlike Corollary 3.1, their approach cannot give optimal
probing strategies for matroid constraints due to an integrality gap. Also, their
approach does not work for Disutil-Min. In §5, we extend their techniques
using OCRSs to handle the commitment constraint for Util-Max.

There is also a large body of work in related models where information has a
price [28,10,32,25,14,1,13,12]. Finally, as discussed in the introduction, the works
in [33] and [37] are directly relevant to this paper. The former’s primary focus
is on single item settings and its applications to auction design, and the latter
studies price of information in a single-stage probing model. Our contributions
concern selecting multiple items in multi-stage probing model, in some sense
unifying these two lines of work.
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The field of combinatorial optimization has been extensively studied: we re-
fer the readers to Schrijver’s popular book [36], and the references therein. In
recent years, there has also been a lot of interest in studying these combina-
torial problems for stochastic inputs. [15,16,24,22,9,34,35] considered stochastic
knapsack, [11,2,6,8,3] studied stochastic matchings, [23,27,7] studied stochastic
orienteering, [5,29,4,31,30] considered stochastic submodular maximization, and
[22,23,26,35] studied budgeted multi-armed bandits. These works (besides [22])
do not consider mixed-sign utility objective or multi-stage probing, which is our
primary focus.
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A Proof of Lemma 3.1

We restate Lemma 3.1 below.

Lemma 3.1. For a Util-Max problem with objective val and packing con-
straints F , let OPT denote the utility of the optimal strategy. Then,

OPT ≤ Eω[SUR(ω)] = Eω

[
maxI∈F{val(I,Ymax(ω))}

]
,

where the expectation is over a random trajectory profile ω that has every Markov
system reaching a destination state.

Proof. We abuse the notation and use OPT to denote both the optimal policy
and its utility. Suppose we fix a trajectory profile ω where each Markov system
Si reaches a destination state. Let I(ω) be the set of elements selected by OPT

on ω, where notice that some of the unselected elements may not be ready:
OPT might have selected I(ω) only after playing prefixes of trajectories in ω.
The following observation follows from the definition of SUR(ω).

Observation A.1 For any trajectory profile ω,

val(I(ω),Ymax(ω)) ≤ SUR(ω).

Now, using the following Lemma A.1 along with Observation A.1 finishes the
proof of Lemma 3.1.

Lemma A.1. The utility of the optimal strategy

OPT ≤ Eω [val(I(ω), Y max(ω))] .

Proof (Proof of Lemma A.1). Since for every trajectory profile ω both OPT

in the Markovian PoI world and Eω [val(I(ω), Y max(ω))] in the Free-Info

world pick the same set of elements I(ω), the expected value due to the set
function h is the same. Hence, WLOG assume h(I) = 0 for all I ∈ F .

Now consider the following teasing game GT defined using the prevailing cost
from Definition 3.2. Consider a game where each Markov system Si starts at its
initial state si and a player is invited to advance the Markov systems. Besides
advancing, the player is allowed to select any arbitrary elements (need not be
feasible in F) or terminate the game at any time during the game. Whenever an
element i is selected, the player pays a corresponding cost, which is set to be the
prevailing cost defined by the trajectory that lead to the current state in Si. The
player’s goal is to maximize the expected value, which is the expected utility (as
defined for Util-Max) from advancing the Markov systems minus the expected
total cost he pays when some items are selected. Observe that in this game the
costs are updated in a “teasing” manner according to the prevailing costs that
motivates the player to continue playing. By an argument similar to [17], we
have the following lemma.
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Lemma A.2. The teasing game GT is fair, which means that no strategy achieves
a positive expected value by playing it and that there exists a strategy with zero
expected value. Moreover, the following strategy plays fairly: irrespective of the
order in which the Markov systems are played, whenever the player starts to
advance a Markov system, he continues to advance it through the entire epoch.

Now consider running the optimal policy OPT in the teasing game. Let ω

be a trajectory profile in which each chain reaches its destination state. Let ωT

denote a trajectory profile until the moment whenOPT returns the solution I(ω)
on the trajectory profile ω. It should be noticed that each trajectory in ωT is a
prefix of the corresponding trajectory in ω. In particular, for an element i ∈ I(ω),
ωi coincides with (ωT )i since the destination state of Si is reached. For an element
i /∈ I(ω), however, (ωT )i may only be a prefix of ωi. It follows that applying
OPT in GT along trajectory profile ω incurs a cost of

∑
i∈I(ω) Y

max
(ωT )i

, where

Y max
(ωT )i

is the prevailing cost for Si on trajectory (ωT )i according to Definition 3.2.
Since GT is a fair game, the expected utility of OPT cannot be larger than the
expected cost it pays, i.e.,

OPT ≤ Eω

[ ∑

i∈I(ω)

Y max
(ωT )i

]
.

Since the elements i ∈ I(ω) are ready, we have ωi = (ωT )i and

∑

i∈I(ω)

Y max
(ωT )i

=
∑

i∈I(ω)

Y max
ωi

.

This implies

OPT ≤ Eω

[ ∑

i∈I(ω)

Y max
ωi

]
,

which finishes the proof of Lemma A.1.

B Proof of Lemma 3.2

We restate Lemma 3.2 below.

Lemma 3.2. Given a Frugal packing Algorithm A, there exists an adaptive
strategy ALGA for the corresponding Util-Max problem in Markovian PoI

world with utility at least Eω[val(A(Ymax(ω)),Ymax(ω))], where A(Ymax(ω) is
the solution returned by A for objective f(I) = val(Ymax(ω), I).

Proof (Proof of Lemma 3.2). We describe how to adapt the Frugal Algo-
rithm A to an adaptive strategy ALGA in the Markovian PoI world. ALGA

uses the grade τ as proxy for Ymax, since Ymax is known only when the Markov
systems reach their destination states. More specifically, at each moment when
the Frugal Algorithm A is trying to evaluate the marginal-value function for
each element, instead of using the Ymax value for each element, which we may
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not yet know at the moment, the strategy uses the τ values to compute the
marginal. For the element chosen by A, the corresponding Markov system will
be advanced one more step. A more specific description of our algorithm ALGA

is given Algorithm 4. Here Ymax
M for a set M ⊆ J is defined as the list of Ymax

values that are in the set M .

Algorithm 4 ALGA for Util-Max in Markovian PoI

1: Start with M = ∅ and vi = 0 for all elements i.
2: For each element i 6∈ M , set g(Ymax

M , i, τui

i ) where ui is the current state of
i.

3: Consider the element j = arg maxi6∈M & M∪i∈F{vi}.
4: If vj > 0, then if Sj is not in a destination state then proceed Sj by one step

and go to Step 2. Else, when vj > 0 but Sj is in a destination state tj , select
j into M and go to Step 2.

5: Else, if every element i 6∈ M has vi ≤ 0 then return set M .

In the following Claim B, we argue that for any trajectory profile ω, running
ALGA in Markovian PoI returns the same set of elements as running A for
Ymax(ω).

Claim (Claim B). For any trajectory profile ω, the solution returned by run-
ning Algorithm 4 in the Markovian PoI world is the same as the solution by
Algorithm A on Ymax(ω).

Before proving Claim B, we use it to prove Lemma 3.2 by showing that the
utility of Algorithm 4 in the Markovian PoI world is at least

Eω[val(A(Ymax(ω)),Ymax(ω))].

By Claim B, the value due to the set function h is the same for both al-
gorithms. So without loss of generality, assume h is always 0. We consider the
teasing game GT as defined in Claim A.2. By definition, g is an increasing func-
tion of the last parameter y. Since grade is used as that parameter and the grade
of each state visited during an epoch is at least the grade of the initial state of
that epoch, it follows that once Algorithm 4 starts to play a Markov system Si, it
will not switch before finishing an epoch. Therefore, by Claim A.2, Algorithm 4
plays a fair game. So the expected cost that Algorithm 4 pays is the same as its
expected utility from playing the Markov systems. However, Claim B gives the
expected cost payed by Algorithm 4 is the same as the utility of running Algo-
rithm A in the Free-Info world, i.e., Eω[val(A(Ymax(ω)),Ymax(ω))]. Hence,
the utility of running Algorithm 4 is at least Eω[val(A(Ymax(ω)),Ymax(ω))].

It remains to prove the missing Claim B in the proof of Lemma 3.2.

Proof (Proof of Claim B). Suppose we fix a trajectory profile ω where each
Markov system reaches some destination state. We prove the claim by induction
on the number of elements already selected into the set M . Suppose the set of
elements selected into M is the same by running the two algorithms until now.
We show that the next element selected by the algorithms into M is the same.
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Assume for the purpose of contradiction that the next element picked by A
is j but the next element picked by Algorithm 4 is i 6= j. By the definition of
Algorithm A,

j = arg maxi′ /∈M

{
g
(
Ymax

M (ω), i′, Y max
ωi′

)}
. (2)

where ω′
i denotes the trajectory of Si′ in ω. Now we look at the trajectory ωi, it

follows that the prevailing cost Y max
ωi

is non-increasing over this trajectory and is
equal to Y max

ωi
when Si reaches the destination state. We look at the last moment

t0 when the prevailing cost of Si decreases. Consider the first moment t1 after t0
that our Algorithm 4 decides to play Si (but has not actually played Si yet). It
follows that the prevailing cost of Si at moment t1 is exactly the same as Y max

ωi

and also the grade τui

i of the current state ui. Denote Y max
ω′

j
the prevailing cost

of Sj and uj the state of Sj at moment t1. Then we have Y max
ω′

j
≥ Y max

ωj
because

the prevailing cost of Sj is also non-increasing. By the definition of t1, one has

g
(
Ymax

M (ω), i, Y max
ωi

)
= g (Ymax

M (ω), i, τui

i )

> g
(
Ymax

M (ω), j, τ
uj

j

)
≥ g

(
Ymax

M (ω), j, Y max
ω′

j

)
.

However, since g is increasing in the last parameter, it follows that

g
(
Ymax

M (ω), j, Y max
ω′

j

)
≥ g

(
Ymax

M (ω), j, Y max
ωj

)
,

which implies

g
(
Ymax

M (ω), i, Y max
ωi

)
> g

(
Ymax

M (ω), j, Y max
ωj

)
.

This contradicts with the definition of j in Eq (2).

C Comparing Grade and Weitzman’s Index for Pandora’s

Box

Recall Weitzman’s Pandora’s box formulation of the oil-drilling problem men-
tioned in Section 1. Given probability distributions of n independent random
variables Xi (amount of oil at site i) and their probing (inspection) prices πi,
the goal is to design a strategy to adaptively probe a set Probed to maximize
expected utility

E

[
max

i∈Probed

{Xi} −
∑

i∈Probed

πi

]
.

The Weitzman’s index for site i, denoted by τmax
i , is defined using the fol-

lowing equation E[(Xi − τmax
i )+] = πi. It is known that the following strategy is

optimal [40].
Selection Rule: The next site to be probed is the one with with the highest

Weitzman’s index.
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Stopping Rule: Terminate when the maximum realized value amongst the
probed sites exceeds the Weitzman’s index of every unprobed site.

It turns out that Weitman’s index τmax
i is simply the grade, defined in Sec-

tion 3.1, in disguise. To see this, we start by noticing that each variable Xi with
probing price πi can be thought of as the following Markov system. There is one
initial state si with moving cost πi. si has transitions, with probabilities accord-
ing to the distribution of Xi, to a set Ti of destination states, each corresponding
to a possible outcome of the variable Xi . The value of each destination state is
naturally set to be the corresponding outcome of Xi. We show below that τmax

i

is simply the grade τsii of the initial state si.

According to our definition of grade in Section 3.1, in the τsii -penalized
Markov game S(τsii ), there is a fair strategy that probes site i and achieves
a zero utility. Such a strategy would pick site i (i.e., play in the corresponding
destination state) if and only if Xi − τsii ≥ 0. The utility of that policy is thus
−πi + E[(Xi − τsii )+] = 0. Comparing with the definition of Weitzman’s index,
this shows τmax

i = τsii . The optimality of Weitzman’s strategy is therefore also
implied by Theorem 3.1.

D Adaptive Algorithms for Disutility Minimization

We give the corresponding definitions for the Disutil-Min problem.

Definition D.1 (Prevailing Reward for Disutil-Min). The prevailing re-
ward of Si for the trajectory Pi in Disutil-Min is defined as

Rmin
Pi

∆
= max

u∈Pi

{−τui }.

For a trajectory profile ω, denote Rmin
ω

the list of prevailing rewards for each
Markov system.

For a trajectory Pi in the Disutil-Min problem, consider the change of the
prevailing reward as the Markov system starts from si and moves according to Pi.
It follows that the prevailing reward is non-decreasing in this process. Moreover,
it increases whenever the Markov system reaches a state that has smaller grade
than each previously visited state. Now we are ready to state the definition of
an epoch.

Definition D.2 (Epoch for Disutil-Min). An epoch is defined to be the
period from the time when the prevailng reward increases until the moment just
before the next time it increases.

It follows that within an epoch, all states visited has grade no smaller than
the prevailing reward at the start of this epoch and thus the prevailing reward
stays constant in an epoch. We can therefore view the prevailing reward as a
non-decreasing piece-wise constant function of time.
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Definition D.3 (Frugal Covering Algorithm). For a Disutil-Min prob-
lem in the Deterministic world with covering constraints F and cost function
cost, we say Algorithm A is Frugal if there exists a marginal-value function
g(Y, i, y) : RJ × J × R → R that is decreasing in y, and for which the pseu-
docode is given by Algorithm 5. Moreover, the function g(Y, i, y) should encode
the constraints F , such that whenever M is infeasible, then ∃i /∈ M with vi > 0.
This requirement will ensure that a feasible solution is returned.

Algorithm 5 Frugal Covering Algorithm A

1: Start with M = ∅ and vi = 0 for each element i ∈ J .
2: For each element i 6∈ M , compute vi = g(YM , i, Yi). Let j =

arg maxi6∈M{vi}.
3: If vj > 0 then add j into M and go to Step 2. Otherwise, return M .

With the definitions above, one can prove the following theorem for Disutil-

Min using similar techniques as in Section 3.3.

Theorem D.1. For a semiadditive objective function cost, if there exists an α-
approximation Frugal algorithm for a Disutil-Min problem over some cover-
ing constraints F in the Free-Info world, then there exists an α-approximation
strategy for the corresponding Disutil-Min problem in the Markovian PoI

world.

E Missing Proofs in the Robustness Model

Proof of Claim 4.3. Because ÂLGA shifts the estimated grade upward by
ǫ/2kDi each time we advance Si and that each grade is estimated to within an

additive error of ǫ/2kDi, whenever ÂLGA starts to advance a Markov system,
it continues to advance it through the whole epoch. It follows from Claim A.2

that ÂLGA is an optimal policy in the teasing game GT . By a similar argument
as the proof of Claim B, one can show that for any list of trajectories ω, running

ÂLGA in the real world returns the same solution as running A on Ŷmax(ω).
These imply the claim. ✷

Proof of Claim 4.3. Since Markov system i can be played at most Di times,
it follows that the estimated grade is shifted upward by at most (Di− 1)ǫ/2kDi.
It follows that each estimated grade after the upward shifting is still within an
additive error of ǫ/2k from the real grade, which finishes the first part of the
grade.
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The second part follows from the following inequalities.

val(Alg(Ŷmax(ω),A),Ymax(ω))

≥ val(Alg(Ŷmax(ω),A), Ŷmax(ω))− k · ǫ/2k

≥
1

α
·max
I∈F

{
val(I, Ŷmax(ω))

}
− ǫ/2

≥
1

α
· val

(
arg max

I∈F {val(I,Ymax(ω))} , Ŷmax(ω)
)
− ǫ/2

≥
1

α
·max
I∈F

{val(I,Ymax(ω))} − ǫ,

where the last line follows because α ≥ 1. ✷

F Assumptions in the Robustness Model

F.1 DAG Assumption

We give an example to illustrate why the Dag assumption is necessary for our
robustness results to hold. We show that if there are cycles in the Markov chains,
one might need to estimate the input parameters to a super-exponentially accu-
rate precision in order to achieve a small additive loss in the performance.

Consider the following Util-Max problem of picking at most one item (i.e.
the constraint F is the uniform Matroid with rank 1) where all the input param-
eters are polynomially bounded. We have n Markov systems {Si}1≤i≤n. The last
n− 2 Markov systems each has only one state, which is a destination state, with
value 0. These Markov systems can be safely ignored since one can pick noth-
ing and obtains 0 utility. We can therefore focus only on the other two Markov
systems.

The 2nd Markov system S2 has only one state, which is a destination state,
with value 1. The first Markov system S1 has three states {s1, v, t1}, where s1 is
the initial state with playing cost n2/22

n

, ti is the destination state with value
n2/2, and v is some intermediate state with playing cost 0. The transitions in
S1 are as follows. s1 goes to v deterministically. v goes to s1 with probability
1 − 1/p22

n

and t1 with probability 1/p22
n

, where p ∈ (0, 1]. Notice that S1

contains a cycle and a negligible transition out of the cycle to the destination.
It follows that the utility obtained by always playing S1 is n2/2− pn2, which is
n2/4 if p = 1/4 and −n2/2 if p = 1.

In this case, if we fail to estimate the transition probabilities of S1 to a super-
exponentially accurate precision of O(1/22

n

), it would render it impossible even
to distinguish between the case where playing S1 has utility Θ(n2) and the case
where playing S1 has negative utility, which makes it impossible to obtain an
approximation policy within a small additive error from the optimal policy.

F.2 Polynomial Upper Bound on Input Parameters

Here, we give an example to illustrate why Assumption 4.2 is necessary for our
robustness results to hold. We show that if some parameters are exponential in
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the input parameter, then one might need to estimate some input parameters to
within an additive error that is exponential in the input parameters.

Consider the following Util-Max problem of picking at most one item (i.e.
the constraint F is the uniform Matroid with rank 1) where all the input param-
eters are polynomially bounded. We have n Markov systems {Si}1≤i≤n. The last
n − 1 Markov systems deterministically give 0 utility. The first Markov system
S1 has an initial state s1 and two destination states t1 and t2. The initial state
s1 has price 3n. It goes to t1 with probability p and t2 with probability 1− p. t1
has reward 2× 3n and t2 has reward 0.

The player has to decide between playing S1 or doing nothing at all. If p =
1/2+Θ(1/2n), then the utility of playing S1 is Θ(1.5n) and if p = 1/2−Θ(1/2n),
then the utility of playing S1 is−Θ(1.5n). It follows that one need to estimate the
transition probabilities to within an additive error that is exponentially small.

F.3 Other Assumptions Without Loss of Generality

Recall that for the Dag-Util-Max problem in the robustness model, we made
the following assumptions.

– All non-zero transition probabilities are lower bounded by 1/P , where P is
some polynomial in the parameters above.

– We can estimate the prices π and the rewards r exactly, i.e. the only unknown
input parameters are the transition probabilities.

The assumption that all non-zero transition probabilities are polynomially
lower bounded is without loss of generality. It can be removed by the following
procedure. We start by setting a threshold 1/P and estimating all the data
to within an additive error smaller than 1/P . We then ignore the transitions
that have estimated probabilities smaller than 2/P . This is done by reallocating
these probability masses to other transitions from the same state in both the
original Markov systems and the estimated Markov systems. After the removal
of these negligible transition probabilities, the remaining Markov systems have
a lower bound of 1/P on all the transition probabilities. Since the maximum
price paid on any sample path in a Markov system is at most DB, it follows
that this changes the optimal policy by at most a very small additive factor if
the polynomial P we take is large enough. Therefore, we shall assume without
loss of generality a lower bound on all non-zero transition probabilities.

The assumption that we can estimate the prices π and the rewards r exactly
is again without loss of generality and can be removed by the following argument
with a small additive term in the theoretical guarantee. Suppose all the prices
π and the rewards r are estimated within an additive error of δ/nD. Since one
needs at most D steps to reach the destination for each Markov system, the
utility is affected by at most a small additive factor of δ/nD× nD = δ if we set
δ to be small. Therefore, we will assume that estimations of the prices π and
the rewards r are exact and only the estimations of transition probabilities have
deviations from the real transition probabilities.


	The Markovian Price of Information

