Texts in Computer Science

Series Editors

David Gries, Department of Computer Science, Cornell University, Ithaca, NY, USA

Orit Hazzan, Faculty of Education in Technology and Science, Technion—Israel Institute of Technology, Haifa, Israel

More information about this series at http://www.springer.com/series/3191

Dengsheng Zhang

Fundamentals of Image Data Mining

Analysis, Features, Classification and Retrieval

Dengsheng Zhang Federation University Australia Churchill, VIC, Australia

ISSN 1868-0941 ISSN 1868-095X (electronic) Texts in Computer Science ISBN 978-3-030-17988-5 ISBN 978-3-030-17989-2 (eBook) https://doi.org/10.1007/978-3-030-17989-2

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my beloved wife Qin who makes this possible

Preface

Due to the rapid development of Internet and digital technology, a mammoth amount of digital data has been created in the world in just a few decades. The processing and management of big data including image data have become one of the great challenges facing humankind. Images are a dominant information source and communication method along with text. However, the processing and understanding of image data are far more difficult than dealing with textual data. Tremendous efforts have been made, and a large amount of research work has been carried out around the world in the past two decades to overcome the challenges of efficient management of image data. A significant progress has been achieved in the field of image data mining during this period of intensive research and experiments, highlighted by such breakthrough technologies as wavelets, MPEG, Google image search, convolutional neural network, machine learning, ImageNet, Matlab toolboxes, etc.

Given the complexity of image data mining, there is a need for a deep analysis of and insight into the field, especially the latest development, to help researchers understand opportunities and challenges in the field. This book timely captures and presents cutting-edge techniques in the field of image data mining as well as foundational know-how for understanding them. This book provides a complete recipe for image data mining and is a treasure of techniques on image analysis/understanding, feature extraction, machine learning, and image retrieval. The book is built upon the author's career-long and high-impact research in the frontier of this exciting research field. Theories and concepts in the book are typically formulated with practical mathematical models which are realized using algorithms, real data from actual experiments, or working examples. Students and researchers in mathematics and the broader science disciplines will be able to use this book to understand the actual problems/applications in this field and gain firsthand experience of computing. Students and researchers in many areas of the computing discipline will be able to use this book to understand how fundamental and advanced maths are applied to solve the variety of computing problems.

Churchill, Australia

Dengsheng Zhang

About This Book

The book covers the complete know-how on image data mining including math tools, analysis, features, learning, and presentation. It has been organized into four parts: fundamentals, feature extraction, image classification, and image retrieval.

Part I of the book aims to equip readers with some essential tools for image mining. Specifically, Part I provides a brief and evolutional journey from the classical Fourier transform (Chap. 1) to Gabor filters (Chap. 2) and to contemporary wavelet transform (Chap. 3). It prepares readers with fundamental math for some of the advanced mining techniques discussed in the book. Apart from the theories, this part also uses Fourier spectra, STFT spectrogram, Gabor filter spectra, and wavelet spectra to demonstrate how key information or features in an image can be captured by these fundamental transforms.

Parts II and III are the core of the book, which examine and analyze varieties of state-of-the-art models, tools, algorithms/procedures, and machines for image mining. In contrast to Part I which is mostly theoretical, these two parts focus on dealing with real image data and real image mining. Part II demonstrates how a variety of features can be mined or extracted from images for image representation; it covers three chapters which focus on color (Chap. 4), texture (Chap. 5) and shape (Chap. 6), respectively. Each chapter typically begins with simple methods or methods at the intro level and moves on to the more advanced methods in a natural flow. Most of the methods in Part II are demonstrated with intuitive illustrations.

If Part II is analog to raw mining, Part III is about refinery. Specifically, Part III presents readers with four powerful learning machines to classify image data, including Bayesian (Chap. 7), SVM (Chap. 8), ANN/CNN (Chap. 9) and DT (Chap. 10). Each chapter in this part begins with an icebreaking and introductory journey to give readers a big picture and an orientation to follow. It then navigates to the more advanced topics with illustrations to key concepts and components of the learning machine. The story of each machine learning method is typically told with concise maths, demonstrations, applications, and implementations.

After a breathtaking and arduous journey on image mining involving feature extraction and machine learning, readers are soothed with a recovering journey on image retrieval in Part IV. Part IV deals with putting images in order, inspecting the quality of a haul and organizing them for presentation or display. Indexing techniques suitable for image data are first described in detail in Chap. 11 followed by

the analysis of a number of image ranking techniques in Chap. 12. The part concludes in Chap. 13 with a number of interesting image presentation techniques and powerful image database visualization methods.

Key Features of the Book

A shortcut to AI. AI and machine learning are usually intimidating to many who don't have the sophisticated mathematics background. This book, however, offers readers a surprising shortcut to AI on machine learning by introducing four major machine learning tools with filtered and easy to understand mathematics using rich illustrations.

A natural marriage between maths and data. Maths and data can only be understood well when they are well matched. This book brings mathematics and computing into a single display and tells image stories with maths by a trained mathematician.

Visualization of image data mining. With more than 200 illustrations (multiple illustrations in some figures), it can be said that the book is a visualization of image data mining, making it very easy to read and understand for readers.

End of chapter summary. Every chapter of the book is equipped with an end of chapter summary to highlight the key points and connect the dots in the chapter.

Exercises. High-quality exercises with instructions or Matlab code have been created for most of the chapters in the book, giving readers the opportunities to test their skills learnt from the book.

Writing for scanning. The book makes extensive use of powerful techniques for scientific and academic writing including inverted pyramid writing, bullet lists, plain language, keyword headings, text chunking, analogy, scannable content, blurbs, etc. Due to writing for scanning, it makes reading the book very efficient and a good experience.

Contents

Part I Preliminaries

1	Four	ier Transform
	1.1	Introduction
	1.2	Fourier Series
		1.2.1 Sinusoids
		1.2.2 Fourier Series
		1.2.3 Complex Fourier Series 8
	1.3	Fourier Transform
	1.4	Discrete Fourier Transform 10
		1.4.1 DFT 10
		1.4.2 Uncertainty Principle 11
		1.4.3 Nyquist Theorem
	1.5	2D Fourier Transform
	1.6	Properties of 2D Fourier Transform 14
		1.6.1 Separability
		1.6.2 Translation
		1.6.3 Rotation
		1.6.4 Scaling
		1.6.5 Convolution Theorem
	1.7	Techniques of Computing FT Spectrum
	1.8	Summary
	1.9	Exercises
	Refer	ences
2		land Fourier Transform 25
2		lowed Fourier Transform
	2.1	Introduction
	2.2	Short-Time Fourier Transform
	• •	2.2.1 Spectrogram
	2.3	Gabor Filters
		2.3.1 Gabor Transform
		2.3.2 Design of Gabor Filters
		2.3.3 Spectra of Gabor Filters

	2.4	Summary 32
	2.5	Exercises
	Refer	ences
3	Way	let Transform 35
3	3 1	Discrete Wavelet Transform 35
	3.1	Multiresolution Analysis 36
	3.2	Fast Wavelet Transform
	5.5	2.3.1 DTW Decomposition Tree 27
		3.3.2 1D Haar Wayalat Transform 30
		3.3.2 1D Haar Wavelet Transform
		3.3.5 2D Haal wavelet Hallstoffi
	2.4	Summer
	5.4 2.5	Summary
	5.5	Exercises
Dor	+ II - I	mage Depresentation and Feature Extraction
1 41		mage Representation and Feature Extraction
4	Color	• Feature Extraction
	4.1	Introduction
	4.2	Color Space
		4.2.1 CIE XYZ, <i>xyY</i> Color Spaces
		4.2.2 RGB Color Space
		4.2.3 HSV, HSL and HSI Color Spaces 55
		4.2.4 CIE LUV Color Space
		4.2.5 Y'CbCr Color Space 62
	4.3	Image Clustering and Segmentation
		4.3.1 <i>K</i> -Means Clustering
		4.3.2 JSEG Segmentation
	4.4	Color Feature Extraction
		4.4.1 Color Histogram
		4.4.1.1 Component Histogram
		4.4.1.2 Indexed Color Histogram
		4.4.1.3 Dominant Color Histogram
		4.4.2 Color Structure Descriptor
		4.4.3 Dominant Color Descriptor
		4.4.4 Color Coherence Vector
		4.4.5 Color Correlogram
		4.4.6 Color Layout Descriptor
		4.4.7 Scalable Color Descriptor
		4.4.8 Color Moments
	4.5	Summary
	4.6	Exercises 79
	Refer	ences

5	Textu	ure Feat	ture Extrac	xtion	81
	5.1	Introdu	uction		81
	5.2	Spatial	Texture Fe	eature Extraction Methods	81
		5.2.1	Tamura 1	Textures	82
		5.2.2	Gray Lev	rel Co-occurrence Matrices	84
		5.2.3	Markov I	Random Field	86
		5.2.4	Fractal D	imension	87
		5.2.5	Discussio	ons	88
	5.3	Spectra	al Texture I	Feature Extraction Methods	89
		5.3.1	DCT-Bas	ed Texture Feature	89
		5.3.2	Texture F	Features Based on Gabor Filters	90
			5.3.2.1	Gabor Filters	90
			5.3.2.2	Gabor Spectrum	92
			5.3.2.3	Texture Representation	93
			5.3.2.4	Rotation-Invariant Gabor Features	94
		5.3.3	Texture F	Features Based on Wavelet Transform	96
			5.3.3.1	Selection and Application of Wavelets	96
			5.3.3.2	Contrast of DWT and Other Spectral	
				Transforms	100
			5.3.3.3	Multiresolution Analysis	101
		5.3.4	Texture F	Features Based on Curvelet Transform	102
			5.3.4.1	Curvelet Transform	102
			5.3.4.2	Discrete Curvelet Transform	104
			5.3.4.3	Curvelet Spectra	107
			5.3.4.4	Curvelet Features	107
		5.3.5	Discussio	ns	109
	5.4	Summ	ary		110
	5.5	Exerci	ses		110
	Refer	ences.			111
6	Shan	o Donno	contation		112
U	Shap	Introdu	semation .		113
	6.2	Doroon	tuol Shopo	Descriptors	113
	0.2	6 2 1	Circulorit	v and Compactness	114
		622	Econtric	y and Compaction	114
		6.2.2	Converit	w and Solidarity	115
		624	Eulor Nu	mber	117
		6.2.4	Banding		117
	63	Contor	Ir Based Ch	une Methods	110
	0.5	6 2 1	n-Daseu SI	nape memous	110
		0.3.1	6311	Position Function	119
			6312	Centroid Distance	119
			0.3.1.2 6 2 1 2	Angular Functions	119
			0.5.1.5		141

		6.3.1.4 Curvature Signature 12	22
		6.3.1.5 Area Function	24
		6.3.1.6 Discussions	25
(6.3.2	Shape Context	25
(6.3.3	Boundary Moments 12	26
	6.3.4	Stochastic Method 12	27
(6.3.5	Scale Space Method	28
		6.3.5.1 Scale Space 12	28
		6.3.5.2 Curvature Scale Space 12	29
	6.3.6	Fourier Descriptor 13	30
	6.3.7	Discussions 13	32
	6.3.8	Syntactic Analysis 13	32
	6.3.9	Polygon Decomposition 13	33
	6.3.10	Chain Code Representation	35
	6.3.11	Smooth Curve Decomposition	35
	6.3.12	Discussions 13	36
6.4	Region-l	Based Shape Feature Extraction 13	36
	6.4.1	Geometric Moments	36
	6.4.2	Complex Moments	38
	6.4.3	Generic Fourier Descriptor 14	41
	6.4.4	Shape Matrix 14	44
(6.4.5	Shape Profiles 14	45
		6.4.5.1 Shape Projections 14	45
		6.4.5.2 Radon Transform 14	46
(6.4.6	Discussions	49
(6.4.7	Convex Hull 15	50
(6.4.8	Medial Axis 15	51
6.5	Summar	y15	52
6.6	Exercise	es	53
Referen	nces		54

Part III Image Classification and Annotation

7	Baye	Bayesian Classification				
	7.1	Introduction				
	7.2	Naïve Bayesian Image Classification 164				
		7.2.1 NB Formulation				
		7.2.2 NB with Independent Features 166				
		7.2.3 NB with Bag of Features 166				
	7.3	Image Annotation with Word Co-occurrence 166				
	7.4	Image Annotation with Joint Probability 169				
	7.5	Cross-Media Relevance Model 171				
	7.6	Image Annotation with Parametric Model 172				

	7.7	Image Classification with Gaussian Process 174
	7.8	Summary
	7.9	Exercises
	Refer	ences
8	Supp	ort Vector Machine
	8.1	Linear Classifier
		8.1.1 A Theoretical Solution
		8.1.2 An Optimal Solution 181
		8.1.3 A Suboptimal Solution 182
	8.2	K-Nearest Neighbors Classification
	8.3	Support Vector Machine
		8.3.1 The Perceptron
		8.3.2 SVM—The Primal Form
		8.3.2.1 The Margin Between Two Classes 186
		8.3.2.2 Margin Maximization 189
		8.3.2.3 The Primal Form of SVM
		8.3.3 The Dual Form of SVM 190
		8.3.3.1 The Dual Form Perceptron 191
		8.3.4 Kernel-Based SVM 192
		8.3.4.1 The Dual Form SVM Versus NN
		Classifier 192
		8.3.4.2 Kernel Definition 193
		8.3.4.3 Building New Kernels 196
		8.3.4.4 The Kernel Trick 196
		8.3.5 The Pyramid Match Kernel 198
		8.3.6 Discussions 201
	8.4	Fusion of SVMs
		8.4.1 Fusion of Binary SVMs 202
		8.4.2 Multilevel Fusion of SVMs 203
		8.4.3 Fusion of SVMs with Different Features 203
	8.5	Summary
	Refer	ences
9	Artifi	cial Neural Network
	9.1	Introduction
	9.2	Artificial Neurons
		9.2.1 An AND Neuron 209
		9.2.2 An OR Neuron
	9.3	Perceptron 211
	9.4	Nonlinear Neural Network
	9.5	Activation and Inhibition
		9.5.1 Sigmoid Activation 215
		9.5.2 Shunting Inhibition

	9.6	The Ba	ckpropagation Neural Network	217
		9.6.1	The BP Network and Error Function	217
		9.6.2	Layer <i>K</i> Weight Estimation and Updating	219
		9.6.3	Layer $K - 1$ Weight Estimation and Updating	220
		9.6.4	The BP Algorithm	222
	9.7	Convol	utional Neural Network	223
		9.7.1	CNN Architecture	223
		9.7.2	Input Layer	224
		9.7.3	Convolution Layer 1 (C1)	224
			9.7.3.1 2D Convolution	226
			9.7.3.2 Stride and Padding	226
			9.7.3.3 Bias	226
			9.7.3.4 Volume Convolution in Layer C1	227
			9.7.3.5 Depth of the Feature Map Volume	227
			9.7.3.6 ReLU Activation	228
			9.7.3.7 Batch Normalization	229
		9.7.4	Pooling or Subsampling Layer 1 (S1)	230
		9.7.5	Convolution Layer 2 (C2)	230
		9.7.6	Hyperparameters	231
	9.8	Implem	nentation of CNN	232
		9.8.1	CNN Architecture	232
		9.8.2	Filters of the Convolution Layers	234
		9.8.3	Filters of the Fully Connected Layers	234
		9.8.4	Feature Maps of Convolution Layers	237
		9.8.5	Matlab Implementation	239
	9.9	Summa	ury	241
	Refer	ences		241
10	Imag	e Annot	ation with Decision Tree	243
	10.1	Introdu	ction	243
	10.2	ID3		245
		10.2.1	ID3 Splitting Criterion	245
	10.3	C4.5.		247
		10.3.1	C4.5 Splitting Criterion	247
	10.4	CART		248
		10.4.1	Classification Tree Splitting Criterion	248
		10.4.2	Regression Tree Splitting Criterion	249
		10.4.3	Application of Regression Tree	250
	10.5	DT for	Image Classification	252
		10.5.1	Feature Discretization	252
		10.5.2	Building the DT	254
		10.5.3	Image Classification and Annotation with DT	255
			\mathbf{c}	

	10.6	Summary	258
	Refer	ences	259
Par	t IV	Image Retrieval and Presentation	
11	Imag	e Indexing	263
	11.1	Numerical Indexing	263
		11.1.1 List Indexing	263
		11.1.2 Tree Indexing	263
	11.2	Inverted File Indexing	265
	11.2	11.2.1 Inverted File for Textual Documents Indexing	265
		11.2.2 Inverted File for Image Indexing	205
		11.2.2 Invented The for Inage Indexing	200
		11.2.2.1 Determine the Position Weight my	207
		11.2.2.2 Determine the Polytion Weight <i>pw</i>	207
		11.2.2.5 Determine the Relationship weight <i>rw</i>	208
	11.2	11.2.2.4 Inverted File for image indexing	209
	11.3 D.C	Summary	269
	Refer	ences	270
12	Imag	e Ranking	271
	12.1	Introduction	271
	12.2	Similarity Measures	271
		12.2.1 Distance Metric	271
		12.2.2 Minkowski-Form Distance	272
		12.2.3 Mass-Based Distance	273
		12.2.4 Cosine Distance	277
		12.2.5 χ^2 Statistics	278
		12.2.6 Histogram Intersection	278
		12.2.7 Quadratic Distance	279
		12.2.8 Mahalanobis Distance	280
	12.3	Performance Measures	281
		12.3.1 Recall and Precision Pair (RPP)	281
		12.3.2 <i>F</i> -Measure	284
		12.3.3 Percentage of Weighted Hits (PWH)	285
		12.3.4 Percentage of Similarity Ranking (PSR)	285
		12.3.5 Bullseve Accuracy	286
	12.4	Summary	287
	Refer	ences	287
10			200
13	Imag		289
	13.1	Introduction	289
	13.2	Caption Browsing	289
	13.3	Category Browsing	290

	13.3.1 Category Browsing on the Web	291
	13.3.2 Hierarchical Category Browsing	291
13.4	Content Browsing	294
	13.4.1 Content Browsing in 3D Space	295
	13.4.2 Content Browsing with Focus	295
	13.4.3 Force-Directed Content Browsing	295
13.5	Query by Example	297
13.6	Query by Keywords	301
13.7	Summary	304
Refere	nces	304
Appendix:	Deriving the Conditional Probability of a Gaussian	
	Process.	305
Index		311

About the Author

Dr. Dengsheng Zhang received his Ph.D. in computing from Monash University, Australia, in 2002. He has also earned a Bachelor of Science in Mathematics in 1985 and a Bachelor of Arts in English in 1987. He is currently a Senior Lecturer at School of Science, Engineering and Information Technology in Federation University Australia. Dr. Zhang is also a guest professor of Xi'an University of Posts & Telecommunications.

Dr. Zhang has over 25 years of research experience in the field of artificial intelligence and big data analysis. His main research interests include pattern recognition, machine learning, multimedia data classification, and retrieval. He has published more than 100 refereed papers on international journals and conference proceedings in his career. His publications have so far attracted nearly 10,000 citations according to Google Scholar. One of his papers published in Pattern Recognition in 2007 has been awarded the Best Journal Article by the International Association of Pattern Recognition (IAPR) in CVPR2010.

Dr. Zhang has won two Australian Research Council (ARC) Discovery Grants to support his research on image and music data classification. He is also an experienced Ph.D. supervisor.

Dr. Zhang has over 30 years of international teaching experience and has lectured extensively on both undergraduate and postgraduate courses including mathematical analysis, business statistics, business programming, web design and development, multimedia development, computer systems, computer networks, e-commerce, computer interface design and development, mobile agent, business systems, general operations, professional development, computer models for business decisions and project management, etc.

List of Figures

Fig. 1.1	Fourier spectra of different images. a A scenic image at the	
	left and its Fourier spectrum at the right; b a tree image in the	
	left and its Fourier spectra in the right. The brighter the pixel,	
	the higher magnitude of the spectrum	4
Fig. 1.2	Three sine waves $sin(nx)$ with different periods	
	and frequencies.	4
Fig. 1.3	Three sine waves $sin(2\pi nx)$ with different periods and	
	frequencies	6
Fig. 1.4	Illustration of $\int \sin x \sin(2x) dx = 0$	7
Fig. 1.5	Illustration of $\int \sin x \cos x dx = 0$	7
Fig. 1.6	Inverse relationship between spatial and frequency resolution.	
C	Left: the first 100 samples of the two sine waves; right:	
	the last 100 samples of the two sine waves	12
Fig. 1.7	Illustrations of different sampling rates for three signals	
	of the same time length	13
Fig. 1.8	FT spectra with different methods. a FT spectrum without	
	scaling; b FT spectrum with thresholding value 10; c FT	
	spectrum with linear scaling; d FT spectrum with log	
	transform; e FT spectrum with both log and linear transform;	
	and \mathbf{f} FT spectrum with enhanced contrast from $(\mathbf{e}) \dots \dots$	20
Fig. 1.9	FT spectra of different types of patterns. a Regular patterns	
	and their FT spectra on the right; b random patterns and their	
	FT spectra on the right; and \mathbf{c} directional patterns and their	
	FT spectra on the right	21
Fig. 2.1	Two images and their corresponding Fourier spectra	
	on the right	26
Fig. 2.2	Time-frequency illustration for FT and STFT	26
Fig. 2.3	The spectrogram of a sound wave	27
Fig. 2.4	The full width at half maximum of a Gaussian function	29
Fig. 2.5	The half-amplitude of Gabor filters in the frequency	
	domain using four scales and six orientations	30
Fig. 2.6	Bandwidth tiling in frequency plane using Gaussian	
	windows	30
Fig. 2.7	Spectra of Gabor filters at different scales and orientations	31

Fig. 3.1	Different frequency tiling of spectral plane. Left: the wavelet
Fig 2.2	The 2D DWT decomposition tree for a lady image
Fig. 3.2	The 2D DwT decomposition free for a lady image
Fig. 5.5	inustration of 2D Dw I process on a lady image. a Horizontal
	transform; b vertical transform; c spectrum of level 1 2D
F' 2.4	DW1 decomposition
Fig. 3.4	Two levels of 2D wavelet decomposition. a The spectrum
	plane of two levels of 2D DW I; b the spectrum of two levels
	of 2D DWT on the lady image; c the complete decomposition
	of the lady image
Fig. 3.5	Harr scaling function and wavelet function
Fig. 3.6	Illustration of the computing process of Haar wavelet
	transform
Fig. II.1	The 3D map for a 2D image
Fig. 4.1	Visible light spectrum and the tristimulus
Fig. 4.2	CIEXYZ color matching functions of human vision
Fig. 4.3	Color matching function of spectral colors. Left: rgb curve
	of spectral colors; Right: projection of the rgb curve onto
	the 2D rg plane (cyan)
Fig. 4.4	CIE xy color gamut.
Fig. 4.5	The sRGB triangle gamut shown inside the CIE XYZ
	gamut
Fig. 4.6	RGB color space in 3D.
Fig. 4.7	a Artists' way of making reddish colors. b Components
C	of HSV
Fig. 4.8	Hue and saturation. Left: pure colors on a ring; Right:
U	hue-saturation wheel
Fig. 4.9	HSV and HSL color spaces. a HSV cylinder; b HSL cylinder;
0	c HSV cone: d HSL double cone
Fig. 4.10	A color image on the left and its H. S. V channels on the right
	columns
Fig 4 11	MacAdam ellipses (magnified 10 times) on the CIE xy
1.9	gamit
Fig 4 12	CIE Lux and Lu'v' Left: MacAdam ellipses on CIE uv
115. 1.12	gamut: Right: MacAdam ellipses on CIF $\mu'\nu'$ gamut
Fig. 4.13	The flower image on the leftmost and its V' Ch and Cr
11g. 4.15	channels on the right
Fig. 4.14	An image segmentation using ISEC a An original color
1 ⁻¹ g. 4.14	An image segmentation using JSEC. a All original color
	image, b result of color quantization with 15 colors;
	c <i>J</i> -image at scale 3; d <i>J</i> -image at scale 2; e segmentation
	result at scale 3; I segmentation result at scale 2; g final result
	of segmentation after merging.

Fig. 4.15	RGB histograms of the Lena color image. Non-RGB colors are the areas of overlap between the R, G, B channels. Each channel is quantized into 256 colors or bins, which are on the horizontal axis, vertical axis shows the number of pixels in	
Fig. 4.16	each bin or color	66
Fig. 4.17	Concatenation of histograms of individual R, G, B channels into a single histogram (216 bins, 72 bins for each channel)	67
Fig. 4.18	Indexed color histograms of a color image. a The flower image quantized with a global palette of 216 indexed colors (notice the visible distortion on the sky and grass); b indexed color histogram of (a) (216 bins); c the flower image quantized with an adaptive palette of 216 indexed colors; d dominant color histogram of (c)	60
Fig. 4.19	Computation of color structure descriptor. Left: a color image with a 3×3 structure moving through the image. The structure captures the red color 56 times; Right: a color image with a 3×3 structure moving through the image. The structure captures the red color 218 times	70
Fig. 4.20	Accumulation of color structure descriptor. a A 5-color image and a 4×4 structuring element. b The accumulation of color structure histogram at a particular position of the structuring element in the image.	71
Fig. 4.21	Statistics of DCD numbers from 36.692 regions	72
Fig. 4.22	Segmented regions and their dominant colors underneath. The dominant colors are shown according to their percentages in the region	73
Fig. 4.23	Removal of noisy colors from segmented regions. a Three sample regions; b dominant colors of corresponding regions above; c DCDs after discarding insignificant colors from (b)	73
Fig. 4.24	Computation of color correlogram. a A 4-color image; b the color correlogram of a for horizontal distance $k = 1 \dots$	75
Fig. 5.1	An example of computing directionality	84
Fig. 5.2	Computation of a GLCM. An 8 gray levels image $I(x, y)$ on the left and its GLCM on the right	85
Fig. 5.3	FWHM sampling of spectral responses of Gabor filters in frequency plane	91
Fig. 5.4	Gabor filtered subbands for the lady image	92

Fig. 5.5	Computation of Gabor texture descriptor. A straw image on the left and its energy map on the right. The higher	
	the energy the brighter the block	93
Fig. 5.6	Computation of rotation-invariant Gabor texture descriptor.	
	a A straw image; b energy map of (a); c a rotated image	
	of (a); d energy map of (c). The higher the energy,	
	the brighter the block	95
Fig. 5.7	Frequency tiling of half frequency plan by Gabor filters,	
	the ovals are the covered spectrum while the black holes	
	are the lost spectrum	96
Fig. 5.8	Mexican hat, Morlet, Daubechies, Meyer, Symlet 4,	
	and Coiflet wavelets	97
Fig. 5.9	Wavelets in 3D space. Top left: Daubechies 2; Top right:	
	Symlet 4; Bottom left: Coiflet 1; Bottom right: Mexican	
	hat	98
Fig. 5.10	Wavelet spectra for the Lena image	99
Fig. 5.11	Comparison of curvelet, wavelet and Gabor filter. a A	
	curvelet; b a Daubechies wavelet and c a Gabor filter	103
Fig. 5.12	A curvelet and curvelet tiling in spatial domain. Left: a single	
	curvelet with width 2^{-j} and length $2^{-j/2}$; Right: curvelets	
	tuned to 2 scales at different orientations	103
Fig. 5.13	Edge representation using wavelets and curvelets	104
Fig. 5.14	Curvelet tiling of frequency plane with 5 level curvelets	104
Fig. 5.15	Curvelets at different scales are shown in the spatial domain	
	(left) and in the frequency domain (right) respectively	105
Fig. 5.16	Curvelet subbands at different scales for a flower image	
	(512×512) . Each subband captures curvelet coefficients	
	of the input image from one orientation	108
Fig. 5.17	Spectra of wavelets and Gabor filters for the flower image	
	in Fig. 5.16a. a Wavelet spectra; b Gabor filters spectra	108
Fig. 6.1	Examples of shape images	114
Fig. 6.2	Two different shapes with same circularity	115
Fig. 6.3	Computation of Eccentricity. a Eccentricity with principle	
	axes; b eccentricity with minimum bounding box	115
Fig. 6.4	A curled eel with 0 elongation	116
Fig. 6.5	A hand shape and its convex hull	116
Fig. 6.6	Shapes with different Euler numbers	117
Fig. 6.7	Examples of centroid distance signatures. Top row:	
	a tree shape on the left and its centroid distance signature	
	on the right; middle row: a ray fish on the left and its	
	signature on the right; bottom row: an apple shape	
	on the left and its signature on the right	120

Fig. 6.8	Computation of chord length signature. a A sea snake shape on the left and its $r(t)$ function on the right; b another sea snake shape on the left and its $r(t)$ function on the right; c illustration of computing $r^*(t)$ at point P of a hammer	
	shape	121
Fig. 6.9	Computation of angular signatures. a A heart shape; b $\theta(t)$ of (a); c $ \theta(t) $ of (a); d $\varphi(t)$ of (a); e $\psi(t)$ of (a); f illustration	
F ' (10	of the computation of $\varphi(t)$	123
F1g. 6.10	from Fig. 6.7 without smoothing; Bottom: curvature signature of the same tree shape with a Gaussian smoothing	124
Fig. 6.11	Computation of area signature. a Triangulation of a heart shape; b illustration on the calculation of the area	124
	of the shaded triangle	124
Fig. 6.12	Computation of shape context. a A point P on a shape boundary and all the vectors started from P ; b the log-polar histogram H of the vectors from P , the histogram H is the context of point P ; c the shape context map of shape of (a), each row of the context map is the flattened histogram of a point context, the number of rows is the number of sampled points	126
Fig. 6.13	Shape signature in scale space. a An original signature function $f(x)$ at the bottom and its successively smoothed versions on the top of it (up to scale 512), where σ is the scale of the smoothed function; b the interval tree derived from the zero-crossings of the second derivatives of the smoothed functions at the left, each (x, σ) in the interval tree corresponds to a zero-crossing point at position x	120
$\mathbf{E}_{\mathbf{a}} \in 14$	and scale σ of the function at left-hand side	128
Fig. 0.14	its CSS contour map (center) and CSS peaks (right)	129
Fig 615	The evolution of shape boundary as scale σ increases	130
Fig. 6.16	Reconstructed shapes of an apple shape using Fourier coefficients from a $r(t)$; b $z(t)$. In both (a) and (b), from left to right, the shapes are reconstructed using 5, 10, 20, 30, and all the Fourier coefficients, respectively.	131
Fig. 6.17	Syntactic analysis of a hammer shape.	132
Fig. 6.18	Polygon approximation by merging	133
Fig. 6.19	Polygon approximation by splitting	134
Fig. 6.20	Computation of chain code. a Chain code in eight-connectivity; b chain code in four-connectivity	135
Fig. 6.21	Smooth curve decomposition. Left: a horse shape and its boundary segments; right: the calculation	
	of the angle of a segment	136

Fig. 6.22	The first ten real Zernike polynomials	139
Fig. 6.23	The first 36 Zernike moments from order 1 to 10	140
Fig. 6.24	Real parts of the ART basis functions	141
Fig. 6.25	Polar raster transform. a An original shape image in polar	
	space; b polar raster sampled image of (a) plotted into	
	Cartesian space	142
Fig. 6.26	Rotation invariant GFD. Top row: two shape images with	
	different orientations; middle row: the polar raster sampled	
	images of the two corresponding shapes at the top row;	
	bottom row: the Fourier spectra images of the two	
	corresponding images at the middle row	143
Fig. 6.27	Computation of a shape matrix. A shape on the left	
	and its shape matrix on the right.	144
Fig. 6.28	Computation of a polar raster shape matrix. Left: polar	
	raster sampling of a shape; Right: its polar shape matrix	145
Fig. 6.29	Computation of shape profiles. A binary shape image	
-	with its vertical profile $P_{\nu}(x)$ (top) and horizontal profile	
	$P_h(y)$ (right-hand side)	146
Fig. 6.30	A shape profile from Radon transform	147
Fig. 6.31	Shape profiles of a hammer image. Top row: A hammer	
-	shape and its Radon transforms at 90° and 8°; Bottom row:	
	the 90° and 8° profiles of the hammer shape after zooming	
	in and realignment	148
Fig. 6.32	Radon transform of hammer shape. A hammer shape (left)	
	and its Radon transform spectrum (right)	149
Fig. 6.33	A dog shape and its Radon transform spectrum	149
Fig. 6.34	Convex hull and concavity tree of an apple shape.	
	a The convex hull of an apple shape and its concavities;	
	b Concavity tree representation of the convex hull	151
Fig. 6.35	Computation of media axis. Left: construction of medial axis	
	of a rectangle shape using locus of circles; Right: the medial	
	axis or skeleton of the hand shape	151
Fig. 6.36	Computation of a shape skeleton. a A horse shape image;	
	b distance map of (a); c skeleton of the shape	152
Fig. III.1	An image to be classified into one of the classes	156
Fig. III.2	An image on the left and it is color histogram on the right	156
Fig. III.3	Matching between an unknown image with a labeled	
	image	157
Fig. III.4	Use a labeled image to identify all the mountain images	
	in a database	157
Fig. III.5	Sample apples (right) and the learnt apple model (left)	158
Fig. III.6	Computation of a generative model. Sample images	
	are represented as features (right); a mixture distribution	
	model is learnt from those sample features (left)	158

Fig. III.7	A machine is fitted between two classes of data	159
Fig. 7.1	Image classification with Naïve Bayesian method	165
Fig. 7.2	Image annotation with co-occurrence of words	168
Fig. 7.3	Association of semantic words with block features	170
Fig. 7.4	Association of semantic words with region features	171
Fig. 7.5	Image annotation with parametric model	173
Fig. 7.6	Feature vectors shown as functions. Three histograms shown	
	as vertical color bars and their respective functions shown	
	as colored curves on the top	175
Fig. 7.7	A cluster of multidimensional data (green) and the	
	approximation function of the data shown in pink	175
Fig. 8.1	Comparison between NN and K-NN. a The data	
	to be classified; b classification result from a 1-NN	
	classifier; c classification result from a 5-NN classifier	184
Fig. 8.2	Hyperplanes between two classes of data	186
Fig. 8.3	The optimal hyperplane <i>H</i> between two classes of data	187
Fig. 8.4	Two classes of data and the hyperplanes separating them	188
Fig. 8.5	Mapping of nonlinear data to linear data in higher	
	dimensional space. a An original nonlinear data in 2D space;	
	b transformed data in 3D space using a quadratic mapping	107
F ' 0.6	function φ .	197
F1g. 8.6	Computation of pyramid match kernel. An image is divided	
	hito three levels of grids. At each level of the grid, a	
	at each level are given a weight and the weighted histograms	
	at each level are given a weight and the weighted histograms	200
Fig 87	Histogram intersection of two normal distributions	200
Fig. 8.8	Approximation of class boundary using piecewise	201
1 lg. 0.0	hyperplanes	202
Fig 89	A fusion of binary SVM classifiers	202
Fig. 8.10	A 3 levels fusion of SVMs	203
Fig. 8.11	A 3 levels class-by-class fusion of SVMs with both	200
1.8. 0.11	global and local features	204
Fig. 9.1	A neuron of human brain	208
Fig. 9.2	The alignment of an artificial neuron with a biologic	
U	neuron	208
Fig. 9.3	The modeling of an artificial neuron	209
Fig. 9.4	The data of AND can be separated by a single	
	line $-1.5 + x_1 + x_2 = 0$	210
Fig. 9.5	The neuron which implements the AND function	210
Fig. 9.6	The data of OR can be separated by a single line	
	$-0.5 + x_1 + x_2 = 0$	211
Fig. 9.7	The neuron which implements the OR function	211

	•	•	•
YYV/	Í	Í	i
~~ ~	•	•	•

Fig. 9.8	Outputs of an XOR cannot be separated by a single line	212
E:- 0.0	III 2D space	215
Fig. 9.9	The convex data region in the center cannot be separated	012
E'. 0.10	by a single line in 2D space XOD. The	213
Fig. 9.10	A three-layer neural network to implement XOR. The	
	two linear classifiers at the hidden layer are ANDed	014
F ' 0.11		214
F1g. 9.11	A three-layer neural network with a hidden layer which	014
F ' 0.10	can classify generic convex nonlinear data	214
Fig. 9.12	A non-convex data region (black dots) is approximated	014
F 0.12	by three convex regions	214
Fig. 9.13	A four-layer neural network which can classify any	
	nonlinear data	215
Fig. 9.14	Sigmoid function	215
Fig. 9.15	A shunting inhibitory neuron	216
Fig. 9.16	A K-layer backpropagation neural network	218
Fig. 9.17	Illustration of a connection between node <i>i</i> in layer $K = 1$	• • •
	and node j in layer K in a K-layer BP neural network	219
Fig. 9.18	Illustration of all connections relevant to w_{mi}^{K-1} in a K-layer	
	BP neural network. Relevant connections are shown	
	in red lines	221
Fig. 9.19	Architecture of a CNN	224
Fig. 9.20	Volume convolution. a Demonstration of volume filter	
	and high-dimensional convolution; b demonstration	
	of high-dimensional convolution $\mathbf{x} * w^\circ$ which can be done	
	using a series of 2D convolutions. Each of the filter channels	
	<i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> is convoluted with each of the corresponding	
-	image channels A, B, C, and D	225
Fig. 9.21	2D convolution. An image \mathbf{x} is convoluted with a filter	
	window w and the result of the convolution is given	
	by $\mathbf{x} * w$ at the right-hand side	226
Fig. 9.22	An input image is convoluted with two volume filters w°	
	and w^2 . The two result feature maps are at the rightmost	
	hand side (light red). The <i>stride</i> value is 2 and there	220
F ' 0.02		228
Fig. 9.23	Illustration of a max-pooling. The maximum value of each	
	quarter block of the left image is computed as the output	220
F ' 0.24	value of the max-pooling image at the right-hand side	230
Fig. 9.24	Volume convolution in layer C2. Volume filter w^2 is	
	convoluted with feature maps $A-D$ while volume filter w^2	001
E:- 0.25	is convoluted with feature maps C–F	231
г1g. 9.25	Pretrained filters of 6 of the 13 VGG16 convolution	0.25
E:- 0.26	Iayers Eiltere of the fully connected by the set	255
F1g. 9.26	Filters of the fully connected layers	236

Fig. 9.27	Feature maps from different convolution layers of VGG16	238
Fig. 9.28	Channels from each of the five blocks of VGG16 net	239
Fig. 10.1	A DT for image classification	244
Fig. 10.2	Contrast between linear regression and regression tree	251
Fig. 10.3	A regression tree for predicting median house price ('000)	
	in California from the geographic coordinates of Fig. 10.4.	
	Legend: La = latitude, Lo = longitude, $y = yes$, $n = no \dots$	251
Fig. 10.4	Data map of actual median house prices in California	
	and the tree partition of the data map, the darker the color,	
	the higher the house value	252
Fig. 10.5	A DT for image classification without post-pruning,	
	CT = color and texture	256
Fig. 10.6	The DT from Fig. 10.5 after pruning	258
Fig. 11.1	A <i>k</i> - <i>d</i> tree for a 2D dataset of 10 data	264
Fig. 11.2	An image with labeled regions	265
Fig. 11.3	A flower in the center with 4 segmented regions	267
Fig. 11.4	Calculation of d and d_{max} for a animal, b sky and c grass	
	regions	268
Fig. 12.1	Unit circles of Minkowski distance with different p values.	
	a $p = \frac{1}{2}$; b $p = 1$; c $p = 2$	273
Fig. 12.2	Top: a histogram feature vector; Bottom: the log-transformed	
-	histogram feature vector from the top histogram	274
Fig. 12.3	The three images have the same histogram	274
Fig. 12.4	The two images with different brightness have almost	
	completely different histograms.	275
Fig. 12.5	Illustration of m_p dimension calculation between two data	
	points x and y .	276
Fig. 12.6	Comparison between the cosine distance and L_p distance.	
	a $L_2(\mathbf{x}, \mathbf{y}) = L_2$; b $\cos(\mathbf{x}, \mathbf{y}) = \cos\theta$; c $L_1(\mathbf{x}, \mathbf{y}) = d_{11} + d_{12}$	277
Fig. 12.7	Histogram intersection of two histograms shown as gray	
	area	278
Fig. 12.8	An RPP curve from an actual image retrieval	283
Fig. 12.9	The RPP curve and F curve from an actual image	
	retrieval	284
Fig. 12.10	The F curves for two different RPP curves with the same	
	AUC	285
Fig. 13.1	Browsing images using image captions by Windows File	
	Explorer	290
Fig. 13.2	Category browsing using MS Windows File Explorer	291
Fig. 13.3	A website of category browsing	292
Fig. 13.4	Hierarchical organization of image categories on a website	293
Fig. 13.5	Image presentation based on content browsing	294
Fig. 13.6	Content browsing using a cylindrical image map	296
Fig. 13.7	Content browsing using a spherical image map	296

Fig. 13.8	Content browsing using a curved wall image map	297
Fig. 13.9	Content browsing with focus and spiral structure	298
Fig. 13.10	Force-directed content browsing	299
Fig. 13.11	A QBE example from Google	301
Fig. 13.12	Query images for Google's "Search by image"	301
Fig. 13.13	A content-based QBK system	302
Fig. 13.14	A QBK example from Google. a An example from Google's	
	Image search; b category browsing from Google's Image	
	search	303
Fig. 13.15	A hierarchical QBK in Google. An enlarged image at the	
	black strip and its relevant category at the right-hand side	
	of the enlarged image	303

List of Tables

Table 6.1	List of Zernike moments up to order 10	140
Table 9.1	AND gate	210
Table 11.1	A conceptual inverted file for textual document indexing	265
Table 11.2	An inverted file after sorting	266
Table 11.3	A conceptual inverted file for image document indexing	269
Table 11.4	The simplified inverted file from Table 11.3 after sorting	269