Skip to main content

Counting Sorting Scenarios and Intermediate Genomes for the Rank Distance

  • Conference paper
  • First Online:
Book cover Algorithms for Computational Biology (AlCoB 2019)

Abstract

An important problem in genome comparison is the genome sorting problem, that is, the problem of finding a sequence of basic operations that transforms one genome into another whose length (possibly weighted) equals the distance between them. These sequences are called optimal sorting scenarios. However, there is usually a large number of such scenarios, and a naïve algorithm is very likely to be biased towards a specific type of scenario, impairing its usefulness in real-world applications. One way to go beyond the traditional sorting algorithms is to explore all possible solutions, looking at all the optimal sorting scenarios instead of just an arbitrary one. Another related approach is to analyze all the intermediate genomes, that is, all the genomes that can occur in an optimal sorting scenario. In this paper, we show how to count the number of optimal sorting scenarios and the number of intermediate genomes between any two given genomes, under the rank distance.

JPPZ is supported by FAPESP grant 2017/02748-3. LC is supported by an NSERC Discovery Grant and a Sloan Foundation Fellowship. JM is supported by FAPESP grant 2018/00031-7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS, vol. 4175, pp. 163–173. Springer, Heidelberg (2006). https://doi.org/10.1007/11851561_16

    Chapter  Google Scholar 

  2. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)

    Google Scholar 

  3. Braga, M.D.V., Willing, E., Stoye, J.: Genomic distance with DCJ and indels. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 90–101. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15294-8_8

    Chapter  Google Scholar 

  4. Braga, M.D., Stoye, J.: The solution space of sorting by DCJ. J. Comput. Biol. 17(9), 1145–1165 (2010)

    Article  MathSciNet  Google Scholar 

  5. Compeau, P.E.C.: DCJ-Indel sorting revisited. Algorithms Mol. Biol. 8(1), 6 (2013)

    Article  Google Scholar 

  6. Cosner, M.E., Raubeson, L.A., Jansen, R.K.: Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol. Biol. 4(1), 1–17 (2004)

    Article  Google Scholar 

  7. Feijão, P.: Reconstruction of ancestral gene orders using intermediate genomes. BMC Bioinform. 16(14), S3 (2015)

    Article  Google Scholar 

  8. Feijão, P., Mane, A., Chauve, C.: A tractable variant of the single cut or join distance with duplicated genes. In: Meidanis, J., Nakhleh, L. (eds.) RECOMB-CG 2017. LNCS, vol. 10562, pp. 14–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67979-2_2

    Chapter  Google Scholar 

  9. Feijao, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 8(5), 1318–1329 (2011)

    Article  Google Scholar 

  10. Feijão, P., Meidanis, J.: Extending the algebraic formalism for genome rearrangements to include linear chromosomes. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(4), 819–831 (2013)

    Article  Google Scholar 

  11. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: 1995 Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 581–592. IEEE (1995)

    Google Scholar 

  12. Jamshidpey, A., Jamshidpey, A., Sankoff, D.: Sets of medians in the non-geodesic pseudometric space of unsigned genomes with breakpoints. BMC Genomics 15(6), S3 (2014)

    Article  Google Scholar 

  13. Kim, J., et al.: Reconstruction and evolutionary history of eutherian chromosomes. Proc. Nat. Acad. Sci. 114(27), E5379–E5388 (2017)

    Article  Google Scholar 

  14. Larget, B., Kadane, J.B., Simon, D.L.: A Bayesian approach to the estimation of ancestral genome arrangements. Mol. Phylogenet. Evol. 36(2), 214–223 (2005)

    Article  Google Scholar 

  15. Lubell, D.: A short proof of Sperner’s lemma. J. Comb. Theory 1(2), 299 (1966)

    Article  MathSciNet  Google Scholar 

  16. Miklós, I., Kiss, S.Z., Tannier, E.: Counting and sampling SCJ small parsimony solutions. Theor. Comput. Sci. 552, 83–98 (2014)

    Article  MathSciNet  Google Scholar 

  17. Ouangraoua, A., Bergeron, A.: Combinatorial structure of genome rearrangements scenarios. J. Comput. Biol. 17(9), 1129–1144 (2010)

    Article  MathSciNet  Google Scholar 

  18. Palmer, J.D., Herbon, L.A.: Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. J. Mol. Evol. 28(1), 87–97 (1988)

    Article  Google Scholar 

  19. Pevzner, P., Tesler, G.: Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 13(1), 37–45 (2003)

    Article  Google Scholar 

  20. Shao, M., Lin, Y., Moret, B.: Sorting genomes with rearrangements and segmental duplications through trajectory graphs. BMC Bioinform. 14(15), S9 (2013)

    Article  Google Scholar 

  21. Sperner, E.: Ein satz über untermengen einer endlichen menge. Math. Z. 27(1), 544–548 (1928)

    Article  MathSciNet  Google Scholar 

  22. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10(1), 120 (2009)

    Article  Google Scholar 

  23. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

  24. Zanetti, J.P.P., Biller, P., Meidanis, J.: Median approximations for genomes modeled as matrices. Bull. Math. Biol. 78(4), 786–814 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Meidanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zanetti, J.P.P., Chindelevitch, L., Meidanis, J. (2019). Counting Sorting Scenarios and Intermediate Genomes for the Rank Distance. In: Holmes, I., Martín-Vide, C., Vega-Rodríguez, M. (eds) Algorithms for Computational Biology. AlCoB 2019. Lecture Notes in Computer Science(), vol 11488. Springer, Cham. https://doi.org/10.1007/978-3-030-18174-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18174-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18173-4

  • Online ISBN: 978-3-030-18174-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics