Skip to main content

Automatically Learning a Human-Resource Ontology from Professional Social-Network Data

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11489))

Included in the following conference series:

Abstract

In this work, we build an ontology (automatically learned) in the domain of Human Ressources by using a simple, efficient and undemanding procedure. Our principal challenge is to tackle the problem of automatically grouping human-provided job titles into a hierarchy and by similarity (as they are presented in human-made HR ontologies). We use the Louvain algorithm, a greedy optimization method that, given a sufficient amount of data, interconnects domain-specific jobs that have more skills in common than jobs from different domains. In our case, we used publicly available profiles from LinkedIn (written in English by users in France). An automatic evaluation was performed and shows that the resulting ontology is similar in size and structure to ESCO (one of the most complete human-made ontology for HR). The whole procedure allows recruitment professionals to easily generate and update this ontology with virtually no human intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Three entities that codify a statement in the form of subject-predicate-object expressions.

  2. 2.

    The hierarchy for the skill/competence and knowledge concepts is not yet available in full.

  3. 3.

    These profiles most probably correspond to LinkedIn users who have not yet any experience in the professional world or who have not updated their profile.

  4. 4.

    Loosely translated as: “head of China market/person who is in charge of the Chinese market”.

  5. 5.

    We did not include a spelling checker because the data contains terminology, acronyms, neologisms and variations that do not correspond to dictionary forms.

  6. 6.

    http://code.google.com/p/language-detection/.

  7. 7.

    The complete Hola graph is available for a dynamic consultation at http://www-etud.iro.umontreal.ca/~alfonsda/project/holaOntology/index.html.

  8. 8.

    In our case, the classes correspond to the automatically detected communities.

  9. 9.

    Some ontologies from other domains evolve so quickly that conventional classes at the time of the schema conception might become obsolete, e.g., the smartphone sensor network ontologies analyzed in [2], like OntoSensor or CESN have a Class Richness score of 0.59 and 0.71 respectively.

  10. 10.

    Even thought the enrichment of the ESCO ontology was not among this work’s objectives, we do not discard this possible application of the Hola procedure.

References

  1. Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with AKTiveRank. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_1

    Chapter  Google Scholar 

  2. Ali, S., Khusro, S., Ullah, I., Khan, A., Khan, I.: Smartontosensor: ontology for semantic interpretation of smartphone sensors data for context-aware applications. J. Sens. 2017 (2017)

    Google Scholar 

  3. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  4. Brank, J., Grobelnik, M., Mladenić, D.: A survey of ontology evaluation techniques. In: Slovenian KDD Conference (2005)

    Google Scholar 

  5. Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005). https://doi.org/10.1007/11428817_21

    Chapter  Google Scholar 

  6. Corcho, Ó., Gómez-Pérez, A., González-Cabero, R., Suárez-Figueroa, M.C.: ODEval: a tool for evaluating RDF(S), DAML+OIL, and OWL concept taxonomies. In: Bramer, M., Devedzic, V. (eds.) AIAI 2004. IIFIP, vol. 154, pp. 369–382. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8151-0_32

    Chapter  Google Scholar 

  7. Dasgupta, S., Padia, A., Maheshwari, G., Trivedi, P., Lehmann, J.: Formal ontology learning from English is-a sentences. arXiv preprint arXiv:1802.03701 (2018)

  8. Dellschaft, K., Staab, S.: On how to perform a gold standard based evaluation of ontology learning. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 228–241. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_17

    Chapter  Google Scholar 

  9. Feilmayr, C., Wöß, W.: An analysis of ontologies and their success factors for application to business. Data Knowl. Eng. 101, 1–23 (2016)

    Article  Google Scholar 

  10. Gupta, A., Piccinno, F., Kozhevnikov, M., Pasca, M., Pighin, D.: Revisiting taxonomy induction over wikipedia. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, December 11–17 2016, pp. 2300–2309. EPFL-CONF-227401 (2016)

    Google Scholar 

  11. Kanawati, R.: Détection de communautés dans les grands graphes d’interactions (multiplexes): état de l’art. In: HAL archives ouvertes (2013)

    Google Scholar 

  12. Kessler, R., Lapalme, G.: Agohra: Génération d’une ontologie dans le domaine des ressources humaines. Traitement Automatique des Langues 58(1), 39–62 (2017)

    Google Scholar 

  13. Mukherjee, S., Ajmera, J., Joshi, S.: Unsupervised approach for shallow domain ontology construction from corpus. In: Proceedings of the 23rd International Conference on World Wide Web. WWW 2014 Companion, pp. 349–350. ACM, New York (2014). https://doi.org/10.1145/2567948.2577350

  14. Oliveira, H., Lima, R., Gomes, J., Ferreira, R., Freitas, F., Costa, E.: A confidence–weighted metric for unsupervised ontology population from web texts. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012. LNCS, vol. 7446, pp. 176–190. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32600-4_14

    Chapter  Google Scholar 

  15. Posse, C.: Cloud jobs API: machine learning goes to work on job search and discovery (2016). https://cloud.google.com/blog/big-data/2016/11/cloud-jobs-api-machine-learning-goes-to-work-on-job-search-and-discovery

  16. Tartir, S., Arpinar, I.B., Sheth, A.P.: Ontological evaluation and validation. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 115–130. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8847-5_5

    Chapter  Google Scholar 

  17. le Vrang, M., Papantoniou, A., Pauwels, E., Fannes, P., Vandensteen, D., De Smedt, J.: ESCO: boosting job matching in europe with semantic interoperability. Computer 47(10), 57–64 (2014)

    Article  Google Scholar 

  18. Wandmacher, T., Ovchinnikova, E., Krumnack, U., Dittmann, H.: Extraction, evaluation and integration of lexical-semantic relations for the automated construction of a lexical ontology. In: Proceedings of the Third Australasian Workshop on Advances in Ontologies, vol. 85, pp. 61–69. Australian Computer Society, Inc. (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alfonso-Hermelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alfonso-Hermelo, D., Langlais, P., Bourg, L. (2019). Automatically Learning a Human-Resource Ontology from Professional Social-Network Data. In: Meurs, MJ., Rudzicz, F. (eds) Advances in Artificial Intelligence. Canadian AI 2019. Lecture Notes in Computer Science(), vol 11489. Springer, Cham. https://doi.org/10.1007/978-3-030-18305-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18305-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18304-2

  • Online ISBN: 978-3-030-18305-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics