Skip to main content

Subspace Ensemble-Based Neighbor User Searching for Neighborhood-Based Collaborative Filtering

  • Conference paper
  • First Online:
  • 2787 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11447))

Abstract

Neighborhood-based collaborative filtering (NCF) typically uses a similarity measure for finding similar users to a target user or similar products on which the target user rated. To find neighbor users, traditional similarity measures rely only on the ratings of co-rated items when calculating similarity of pairwise users. Some hybrid similarity measures can avoid this situation but they suffer from the time-consuming issue. To solve the mentioned issues, the current paper presents an effective method of subspace ensemble-based neighbor user searching (SENUS) for NCF. First, three item subspaces are constructed, or interested, neither interested nor uninterested, and uninterested subspaces. In each subspace, we calculate the co-rating support values for pairwise users. Then, SENUS combines three co-rating support values to get the total co-rating support values for pairwise users, which are utilized to generate direct neighbor users for a target user. For the target user, its neighbor users include direct and indirect ones in SENUS, where its indirect neighbors are the direct neighbors of its direct neighbors. Experimental results on public datasets indicate that the proposed method is promising in recommender systems.

Supported in part by the National Natural Science Foundation of China under Grant No. 61373093, by the Soochow Scholar Project, by the Six Talent Peak Project of Jiangsu Province of China, and by the Collaborative Innovation Center of Novel Software Technology and Industrialization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. Agarwal, N., Haque, E., Liu, H., Parsons, L.: Research paper recommender systems: a subspace clustering approach. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp. 475–491. Springer, Heidelberg (2005). https://doi.org/10.1007/11563952_42

    Chapter  Google Scholar 

  3. Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inf. Sci. 178(1), 37–51 (2008)

    Article  Google Scholar 

  4. Bilge, A., Polat, H.: A comparison of clustering-based privacy-preserving collaborative filtering schemes. Appl. Soft Comput. 13(5), 2478–2489 (2013)

    Article  Google Scholar 

  5. Birtolo, C., Ronca, D.: Advances in clustering collaborative filtering by means of fuzzy C-means and trust. Expert Syst. Appl. 40(17), 6997–7009 (2013)

    Article  Google Scholar 

  6. Bobadilla, J., Ortega, F., Hernando, A.: Recommender systems survey. Knowl. Based Syst. 46(1), 109–132 (2013)

    Article  Google Scholar 

  7. Bobadilla, J., Ortega, F., Hernando, A.: A collaborative filtering similarity measure based on singularities. Inf. Process. Manage. 48(2), 204–217 (2012)

    Article  Google Scholar 

  8. Choi, S.M., Ko, S.K., Han, Y.S.: A movie recommendation algorithm based on genre correlations. Expert Syst. Appl. 39(9), 8079–8085 (2012)

    Article  Google Scholar 

  9. Cleger-Tamayo, S., Fernández-Luna, J.M., Huete, J.F.: Top-n news recommendations in digital newspapers. Knowl. Based Syst. 27(6), 180–189 (2012)

    Article  Google Scholar 

  10. Garcia, I., Sebastia, L., Onaindia, E.: On the design of individual and group recommender systems for tourism. Expert Syst. Appl. 38(6), 7683–7692 (2011)

    Article  Google Scholar 

  11. Guan, Y., Zhao, D., Zeng, A., Shang, M.S.: Preference of online users and personalized recommendations. Physica A Stat. Mech. Appl. 392(16), 3417–3423 (2013)

    Article  Google Scholar 

  12. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2015)

    Article  Google Scholar 

  13. Hu, R., Dou, W., Liu, J.: ClubCF: a clustering-based collaborative filtering approach for big data application. IEEE Trans. Emerg. Topics Comput. 2(3), 302–313 (2014)

    Article  Google Scholar 

  14. Phelps, J.E., Lewis, R., Mobilio, L.J., Perry, D.K., Raman, N.: Viral marketing or electronic word-of-mouth advertising: examining consumer responses and motivations to pass along email. J. Advertising Res. 44(44), 333–348 (2009)

    Google Scholar 

  15. Koohi, H., Kiani, K.: User based collaborative filtering using fuzzy C-means. Measurement 91, 134–139 (2016)

    Article  Google Scholar 

  16. Koohi, H., Kiani, K.: A new method to find neighbor users that improves the performance of collaborative filtering. Expert Syst. Appl. 83, 30–39 (2017)

    Article  Google Scholar 

  17. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  18. Koutrika, G., Bercovitz, B., Garcia-Molina, H.: FlexRecs: expressing and combining flexible recommendations. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, no. 14, pp. 745–758. ACM, New York (2009)

    Google Scholar 

  19. Li, Q., Myaeng, S.H., Kim, B.M.: A probabilistic music recommender considering user opinions and audio features. Inf. Process. Manage. 43(2), 473–487 (2007)

    Article  Google Scholar 

  20. Li, T., Ding, C.: The relationships among various nonnegative matrix factorization methods for clustering. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 362–371, December 2006

    Google Scholar 

  21. Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X.: A new user similarity model to improve the accuracy of collaborative filtering. Knowl. Based Syst. 56(3), 156–166 (2014)

    Article  Google Scholar 

  22. Martinez-Cruz, C., Porcel, C., Bernabé-Moreno, J., Herrera-Viedma, E.: A model to represent users trust in recommender systems using ontologies and fuzzy linguistic modeling. Inf. Sci. 311, 102–118 (2015)

    Article  Google Scholar 

  23. Patra, B.K., Launonen, R., Ollikainen, V., Nandi, S.: Exploiting Bhattacharyya similarity measure to diminish user cold-start problem in sparse data. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) Discovery Science, pp. 252–263. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_22

    Chapter  Google Scholar 

  24. Patra, B.K., Launonen, R., Ollikainen, V., Nandi, S.: A new similarity measure using bhattacharyya coefficient for collaborative filtering in sparse data. Knowl. Based Syst. 82, 163–177 (2015). http://www.sciencedirect.com/science/article/pii/S0950705115000830

    Article  Google Scholar 

  25. Pirasteh, P., Hwang, D., Jung, J.E.: Weighted similarity schemes for high scalability in user-based collaborative filtering. Mobile Netw. Appl. 20(4), 497–507 (2015)

    Article  Google Scholar 

  26. Ramezani, M., Moradi, P., Akhlaghian, F.: A pattern mining approach to enhance the accuracy of collaborative filtering in sparse data domains. Physica A Stat. Mech. Appl. 408(32), 72–84 (2014)

    Article  Google Scholar 

  27. Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, CSCW 1998, no. 10, pp. 345–354. ACM, New York (1998)

    Google Scholar 

  28. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009(1), 1–19 (2009)

    Article  Google Scholar 

  29. Tsai, C.F., Hung, C.: Cluster ensembles in collaborative filtering recommendation. Appl. Soft Comput. J. 12(4), 1417–1425 (2012)

    Article  Google Scholar 

  30. Wang, Y., Deng, J., Gao, J., Zhang, P.: A hybrid user similarity model for collaborative filtering. Inf. Sci. 418–419, 102–118 (2017)

    Article  Google Scholar 

  31. Wen, H., Fang, L., Guan, L.: A hybrid approach for personalized recommendation of news on the web. Expert Syst. Appl. 39(5), 5806–5814 (2012)

    Article  Google Scholar 

  32. Zhang, J., Peng, Q., Sun, S., Liu, C.: Collaborative filtering recommendation algorithm based on user preference derived from item domain features. Physica A Stat. Mech. Appl. 396(2), 66–76 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Zhang, L. (2019). Subspace Ensemble-Based Neighbor User Searching for Neighborhood-Based Collaborative Filtering. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11447. Springer, Cham. https://doi.org/10.1007/978-3-030-18579-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18579-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18578-7

  • Online ISBN: 978-3-030-18579-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics