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Abstract. When formal systems modelling is used as part of the de-
velopment process, modellers need to understand the requirements in
order to create appropriate models, and domain experts need to validate
the final models to ensure they fit the needs of stakeholders. A suitable
mechanism for such a validation are acceptance tests.
In this paper we discuss how the principles of Behaviour-Driven Devel-
opment (BDD) can be applied to i) formal modelling and ii) validation of
behaviour specifications, thus coupling those two tasks. We show how to
close the gap between the informal domain specification and the formal
model, thus enabling the domain expert to write acceptance tests in a
high-level language matching the formal specification.
We analyse the applicability of this approach by providing the Gherkin
scenarios for an Event-B/iUML-B formal model of a ‘fixed virtual block’
approach to train movement control, developed according to the Hybrid
ERTMS/ETCS Level 3 principles specified by the EEIG ERTMS Users
Group and presented as a case study on the 6. International ABZ Con-
ference 2018.
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1 Introduction

A fully proven formal model is still pointless if it does not represent the cus-
tomer’s needs. Therefore formal models must be thoroughly validated in order
to show that they capture useful functionality. However, today’s formal meth-
ods tools offer limited support for validation and it remains essentially a manual
task, e.g. expert review, which is tedious, time consuming and error prone.

One widely-used and reliable validation method is acceptance testing, which,
assuming adequate coverage, can provide assurance that a system (in our case
embodied by the formal model) does indeed represent the informal customer
requirements. Acceptance tests describe a sequence of stimulation steps involving
concrete data examples to test the functional responses of the system. However,
acceptance tests can also be viewed as a collection of user scenarios providing a
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useful and definitive specification of the behavioural requirements of the system.
The high level nature of acceptance tests, which are both human-readable and
executable, guarantees that they reflect the current state of the product and do
not become outdated. They are also necessarily precise and concise to ensure
that the acceptance tests are repeatable over evolutions of the system. As such,
the acceptance tests may be seen as the single reference or source of truth.

Behavior-driven development (BDD) methodology combines the general tech-
niques and principles of test-driven development with ideas from domain-driven
design and object oriented methods. It advocates that tests should be written
first, describing desired functionality. Then the actual functionality should be
implemented (or as in our case, a model should be created) to match the formu-
lated requirements.

The remainder of the paper is structured as follows.
In Section 2 we give a brief overview of an Event-B/iUML-B formal model

of a ‘fixed virtual block’ approach to train movement control.
In Section 3 we provide a short description of the Gherkin notation and

Cucumber framework and demonstrate the validation of the presented Event-B/
iUML-B models using Gherkin acceptance tests. In the same section we analyse
discovered problems and challenges and suggest further improvements.

In Section 4 we summarise the benefits of the approach for validating formal
models and outline how the proposed method and tools will integrate into the
formal modelling process being developed in the ENABLE-S3 project.

2 Hybrid ERTMS/ETCS Level 3

In this paper we use the Event-B model of a hybrid ERTMS/ETCS Level 3 (HL3)
[4] presented in [3]. HL3 is a ‘fixed virtual block’ approach to train movement,
where the trackside train detection (TTD) section is divided into a fixed number
of virtual sections (VSS). A train movement controller called the Radio Block
Centre (RBC) manages the Movement Authority (MA) granted to each train
in mission. This granted MA is the permission for a train to move safely to a
specific location avoiding train collisions. However, in order for the RBC to grant
a MA it needs to know which sections are free. The status of the virtual sections
is calculated by the Virtual Block Detector (VBD) depending on the information
it receives from the environment:

• Track occupancy received from the trackside.
• Position reports and integrity confirmations received from the trains.
• Timer expiry.

The state of a VSS can be one of the four states:

• Free: there is no train on the section.
• Unknown: there might be zero or more trains on the section.
• Ambiguous: there might be one or more trains on the sections.
• Occupied : there is one train on the section.
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Fig. 1. Section conventions (taken from [4])

The RBC uses free sections to calculate the MA, while the other states
are necessary for example to mitigate against possible roll-back of disconnected
trains, and to optimise the use of sections in a safe manner.

The transitions from one state to the other can only happen under certain
conditions, which are represented as guards in the Event-B model. The VSS state
machine is fully connected and the transition table in the specification presents
12 transitions, some of which decomposed into different alternatives.

There are also explicit events to model the expiry of started timers. Addi-
tionally, each transition in the VSS statemachine is modelled as an event, we
also explicitly model the start and the completion of the statemachine run.

For example take transition #4A which has only one condition: “TTD is
free”. However, in Event-B this event is modelled as follows:

event 4A unknown free refines 4 unknown free
any vss // generated class instance
where
@isin unknown: vss ∈ unknown
@grd1: Sections∼(vss) /∈ occupiedTTD
@grd2: startVSSUpdate = TRUE
@grd3: vss /∈ updatedVSS

then
@act1: updatedVSS := updatedVSS ∪{vss}
@leave unknown: unknown := unknown \{vss}
@enter free: free := free ∪{vss}
@act disconnectProp: disconnectPropagationTimer(vss) := Idle
@act integProp: integrityLossPropagationTimer(vss) := Idle

end

Such events can be difficult to validate due to the complexity of the conditions
which are difficult to explain to domain experts, hence the need to bridge the
gap between domain experts and formal modelling experts.
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3 Model Validation

Our approach was to create executable acceptance tests on the plain Event-B
level first and to switch to the visual and thus easier to comprehend iUML-B
level afterwards. This procedure gives us the opportunity to solve some low-level
technical challeges (described in more detail later in this chapter) first and then
to deal with the gap between the domain model and the formal model.

3.1 Acceptance Tests for Event-B models.

Gherkin. Gherkin [9] is a language that defines lightweight structures for de-
scribing the expected behaviour in plain text as a collection of features, readable
by both domian experts and developer, yet still automatically executable.

A feature is a description of one single piece of business value, best structured
as a story “As a �role�I want �feature�so that �business value�”, which gives
an answer to three fundamental questions – who requires what and why.

The features contain a list of scenarios, every scenario representing one use
case. In the simplest case the scenario also contains the test data and thus
represents an individual test case. A scenario outline describes a group of similar
useage scenarios and contains placeholder for the particular test data specified
as a list of examples, each data set representing one individual test case.

Each scenario consists of steps describing the interaction with the system
under tests: “Given �preconditions�When �interaction�Then �postconditions�”,
providing an initial state for the test, test input (execution trigger) as well as
expected output, the observable outcome shall be compared with.

Cucumber. Cucumber is a framework for executing acceptance tests written in
Gherkin language and provides Gherkin language parser, test automation as well
as report generation. In order to make such test cases automatically executable,
the user must supply the actual step definitions providing the gluing code, which
implements the interaction with the System Under Test (SUT).

Compound steps may encapsulate complex interaction with a system caused
by a single domain activity, thus decoupling the features from the technical in-
terfaces of the SUT. This defines a new domain-related testing language, which
may simplify the feature description. The description of the business function-
ality shall, however, still be contained in the features.

Event-B. Event-B [1,5] is a formal method for system development, supported by
the Rodin Platform (Rodin) [2], an extensible open source toolkit. A machine in
Event-B corresponds to a transition system where variables represent the state
and events specify the transitions.

Cucumber for Event-B. In the scope of this project we have developed Cucumber
for Event-B as a custom Cucumber extension, which allows to execute Gherkin
scenarios on an Event-B model. It is a collection of step definitions providing
means for the Event-B state space traversal:
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Given machine with ”�formula�”
Setup constants with the given constraints and initialize the machine.

When fire event ”�name�”with ”�formula�”
Fire the given event with the given parameters constraints.

Then event ”�name�”with ”�formula�”is enabled/disabled
Check if the given event with the given parameters constraints is enabled/disabled.

Then formula ”�formula�”is TRUE/FALSE

Check if the given formula evaluates to TRUE or FALSE.

An essential property of acceptance tests is reproducibility. The user shall
assure that the tested machine is deterministic and, if not, refine it further.

Cucumber for Event-B can be found under https://github.com/tofische/
cucumber-event-b and has been released under Eclipse Public License 2.0.

Environment definition. Let us deal with the very basic scenario of a train
entering the controlled section.

Background:
Given machine
When fire event ”VBD start vss update”
And fire event ”4A unknown free” with ”vss=VSS11”
And fire event ”4A unknown free” with ”vss=VSS12”
And fire event ”4A unknown free” with ”vss=VSS21”
And fire event ”4A unknown free” with ”vss=VSS22”
And fire event ”4A unknown free” with ”vss=VSS23”
And fire event ”4A unknown free” with ”vss=VSS31”
And fire event ”4A unknown free” with ”vss=VSS32”
And fire event ”4A unknown free” with ”vss=VSS33”
And fire event ”VBD vss update complete”

Scenario: Enter HL3 area
When fire event ”ENV enter HL3 area” with ”tr=TRAIN1”
And fire event ”VBD start vss update”
And fire event ”1A free unknown” with ”ttd=TTD10 & vss=VSS11”
And fire event ”1A free unknown” with ”ttd=TTD10 & vss=VSS12”
And fire event ”self free” with ”vss=VSS21”
And fire event ”self free” with ”vss=VSS22”
And fire event ”self free” with ”vss=VSS23”
And fire event ”self free” with ”vss=VSS31”
And fire event ”self free” with ”vss=VSS32”
And fire event ”self free” with ”vss=VSS33”
And fire event ”VBD vss update complete”
Then is TRUE formula ”free = {VSS21,VSS22,VSS23,VSS31,VSS32,VSS33}”
Then is TRUE formula ”occupied = {}”
Then is TRUE formula ”ambiguous = {}”
Then is TRUE formula ”unknown = {VSS11,VSS12}”
When fire event ”ENV start of mission” with ”tr=TRAIN1”
# ...

https://github.com/tofische/cucumber-event-b
https://github.com/tofische/cucumber-event-b
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This example reveals the fact, that there are two kinds of events which must
be treated differently. The environment events represent some relevant change in
the environment and are thus triggered from outside of the modeled system (in
our case through the tests). The system events on the other side represent the
reaction of the modeled system to the external stimulus and shall therefore be
considered as an implementation detail not prescribed by the acceptance tests.

The acceptance tests being of black box nature shall contain environment
events only. Nevertheless, when running the tests, the system must be given
the opportunity to fire all internal events according to the assumed execution
strategy. For our purposes run to completion semantic is sufficient – after an
environment event (according to the test scenario) fires, the particular step def-
initions shall automatically trigger all enabled internal events until the system
stabilizes and only environment events are enabled. However, this requires some
kind of naming convention (e.g. event name prefix) which allows the steps to
distinguish the event kind (environment of system).

The previous example would be then reduced to following snippet, including
domain events only:

Scenario: Enter HL3 area
When fire event ”ENV enter HL3 area” with ”tr=TRAIN1”
And fire event ”ENV start of mission” with ”tr=TRAIN1”
# ...

Event selection. During the refinement process an event is often decomposed
into different alternatives, e.g. ENV exit HL3 area into ENV exit HL3 area and
ENV exit HL3 area free ttd. The acceptance tests shall not be aware of this de-
composition, so that they may reference an abstract event, ENV exit HL3 area in
this case. The step definitions shall then descend the refinement hierarchy and
select an appropriate enabled concrete event. This process is unique as long as
all concrete refinements of one abstract event are disjunct, otherwise the event
selection fails and the model must be adjusted. In order to utilize this capability
it might be necessary to rename decomposed events so that they can be clearly
distingished from the refined abstract ones.

Timeouts. While unsolicited environment events (caused by some unexpected
change in the environment) may occur at any time, answers to previously is-
sued system command shall happen within a defined time period, otherwise the
system shall assume an error in the environment and process an appropriate
corrective action.

There are several techniques how to model time. If both events (answer and
timeout) are enabled simultaneously, the environment (in our case the acceptance
tests) must be able to choose, which situation happens. This approach simplifies
the model, however the acceptance tests must be aware of the timeout names.
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# ...
When fire event ”VBD ghost timer expires” with ”ttd=TTD10”
# ...

Another possibility is to consider the timeouts as an internal model concept,
and only trigger the time progress (ticks) by the environment. However, the
explicit notion of time clutters the model and has therefore been omitted from
our model and left for further analysis.

Data. While the event parameters are often simple values, the attribute values
may have complex types. This raises the issue of how to describe such data for
the setup of constants on one side and for the attribute value checks on the other
side. We want to represent the data in a table form, but we have to overcome
different viewpoints: class instance groups the values of all attributes (row by
row), while in Event-B one variable represents the value of one attribute for all
instances (column by column). This is still an open point left for future work.

There is no technical difference between attributes and associations. However,
there is a logical distinction between an attribute and an association, which shall
be respected by the test language.

3.2 Acceptance Tests for iUML-B models.

iUML-B. Customer requirements are typically based on a domain model, which
is often expressed in terms of entities with attributes and relationships. State-
machines and activity diagrams are used to describe the behaviour.

It is desirable to express the acceptance tests in terms of the domain model
so that domain experts who are not familiar with the formal notations can easily
create and validate them.

iUML-B [6,7,8], an extension of the Rodin Platform, provides a ‘UML like’
diagrammatic modelling notation for Event-B in the form of class-diagrams
and state-machines, with automatic generation of Event-B formal models. The
iUML-B is a formal notation which is much closer to the domain model and
makes therefore the formal models more visual and thus easier to comprehend.

Class diagrams provide a way to visually model data relationships. Classes,
attributes and associations are linked to Event-B data elements (carrier sets,
constants, or variables) and generate constraints on those elements. Methods
elaborate Event-B events and contribute additional parameter representing the
class instance.

A state-machine automatically generates Event-B data elements (sets, con-
stants, axioms, variables, and invariants) to implement the states, and con-
tributes additional parameters representing the state machine instance, as well
as guards and actions representing state changes to existing events elaborated by
transitions. State-machines support nested states (hierarchical state machiness)
and may be also lifted to the instances of a class so that the behaviour of each
instance of the class is modelled by an independent instance of the state-machine.
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Fig. 2. State machine of train states

Cucumber for iUML-B. Cucumber for iUML-B provides a collection of step
definitions translating the iUML-B constructs into the corresponding underlying
Event-B model elements (events and variables), allowing the acceptance tests to
use the the notation provided by the iUML-B. The acceptance tests can then
refer domain elements like classes and their methods, attributes and associations
as well as state machine states and transitions.

However, this requires a great deal of discipline on the part of modelers, as
only the strict adherence to the Domain Driven Design principles, especially
a rigorous compliance to an ubiquitous language shared between the domain
experts and the formal modeling experts is crucial, as each deviation leads to
failed tests and hence to manual rectifications.

The following steps are defined for validating state-machines:

Given state machine ”�name�:�inst�”

Preset the given instance of the given state machine.

When trigger transition ”�trans�”

Trigger the given state machine transition.

Then transition ”�trans�”is enabled/disabled

Check if the given state machine transition is enabled/disabled.

Then is in state ”�state�”

Check if the state machine is in the given state.

The following steps are defined for validating class diagrams:

Given class ”�name�:�inst�”

Preset the given class with the given instance.

When call method ”�name�”with ”�formula�”

Call the given class instance method.

Then method ”�name�”with ”�formula�”is enabled/disabled

Check if the given class instance method is enabled/disabled.

Then attribute ”�attr�”is ”�value�”

Check if the given class instance attribute is equal to the given value.

In general, class attributes and associations can be any binary relation (i.e.,
not necessarily functional), hence further checks can be defined accordingly.
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4 Conclusion

In this paper we have discussed how the BDD principles can be applied to the
formal model validation and also demonstrated the applicability of this approach
by providing the Gherkin scenarios for an Event-B/iUML-B formal model of a
‘fixed virtual block’ approach to train movement control. In summary, we have
confirmed the benefits of validating the formal models using the acceptance tests.

In addition we also pointed out, how to close the gap between the informal
domain specification and the formal model, thus enabling the domain expert to
write acceptance tests in a high-level language matching the formal specification.

Finally, we analysed the advantages of such an approach and proposed mea-
sures to mitigate identified drawbacks.

Once validated the acceptance tests can also be used in order to show the con-
formity of the implementation with respect to the formal model. This transition
has also been left for the future work.

Recommendations. We recommend to adopt the BDD methodology already dur-
ing requirement elicitation phase before modeling activities, as the subsequent
adaptation of tests to the existing model is tedious and costly.

Furthermode, we intend to enhance the Cucumber for Event-B framework
according to the aforementioned proposals and also integrate it tightly with the
iUML-B plugin.
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