
ar
X

iv
:1

90
4.

05
54

0v
1

 [
cs

.C
R

]
 1

1
A

pr
 2

01
9

Privacy protocols

Jason Castiglione∗ Dusko Pavlovic†

Peter-Michael Seidel

Email: {jcastig, dusko, pseidel}@hawaii.edu

University of Hawaii, Honolulu HI, USA

Abstract

Security protocols enable secure communication over insecure channels. Privacy proto-
cols enable private interactions over secure channels. Security protocols set up secure
channels using cryptographic primitives. Privacy protocols set up private channels using
secure channels. But just like some security protocols can be broken without breaking
the underlying cryptography, some privacy protocols can be broken without breaking
the underlying security. Such privacy attacks have been used to leverage e-commerce
against targeted advertising from the outset; but their depth and scope became appar-
ent only with the overwhelming advent of influence campaigns in politics. The blurred
boundaries between privacy protocols and privacy attacks present a new challenge for
protocol analysis. Covert channels turn out to be concealed not only below overt chan-
nels, but also above: subversions, and the level-below attacks are supplemented by
sublimations and the level-above attacks.

1 Introduction: What is privacy?

The concept of privacy has been a source of much controversy and confusion, not only in
social and political discourse, but also in research.

The controversy arises from the fact that privacy is not a security requirement, like secrecy
or authenticity, but a fundamental social right. In the US jurisprudence, justices Warren and
Brandeis [57] defined it as the right to be left alone. Privacy is thus not just a technical task
of controlling some assets, but first of all a political task, requiring that some policies should
be specified and implemented. Privacy policies are generally designed to balance public and

∗Supported by NSF.
†Partially supported by NSF and AFOSR.

1

http://arxiv.org/abs/1904.05540v1

private interests, assets, and resources. This balancing sometimes comes down to playing
out the political forces against one another.

The confusion around privacy also arises from the fact that it is both a technical and a
political problem. The problems of privacy are discussed in many different research commu-
nities, often in different terms, or with the same terms denoting different concepts. Privacy
provides an opportunity for security researchers to contribute to political discourse [47]. It
also provides politicians an incentive to get involved in the technical discourse about security.
The overarching source of confusion are the political narratives constructed the process of
shifting and blurring the boundaries between the public and the private, which has been the
driving force behind social transformations for centuries [6, 26].

History of privacy. Social history is first of all the history of shifting demarcation lines
between the public sphere and the private sphere [7, 39, 50]. Communist revolutions usually
start by abolishing not only private property, but also private rights. Tyrannies and oli-
garchies, on the other hand, erode public rights and ownership, and privatize resources and
social life. The distinction between the realm of public (city, market, warfare. . .) and the
realm of private (family, household, childbirth. . .) was established and discussed in antiquity
[4, 13]. It was a frequent topic in Greek tragedies: e.g. Sophocles’ Antigone is torn between
her private commitment to her brothers and her public duty to the king. The English word
politics comes from the Greek word πόλις, denoting the public sphere; the English word
economy comes from the Greek word οίκος, denoting the private sphere.

Distinguishing privacy. There are many aspects of privacy, conceptualized in different
research communities, and studied by different methods; and perhaps even more aspects
that are not conceptualized in research, but arise in practice, and in informal discourse. We
carve out a small part of the concept, and attempt to model it formally.

As an abstract requirement, privacy is a negative constraint, in the form "bad things should
not happen". Note that secrecy and confidentiality are also such negative constraints, whereas
authenticity and integrity are positive constraints, in the form "good things should happen".
More precisely, authenticity and integrity require that some desirable information flows hap-
pen. E.g., a message "I am Alice" is authentic if it originates from Alice. On the other
hand, confidentiality, secrecy and privacy require that some undesirable information flows
are prevented: Alice’s password should be secret, her address should be confidential, and her
health record should be private.

But what is the difference between privacy, secrecy and confidentiality? Let us first move
out of the way the difference between the latter two. In the present paper, we ignore
that difference. In the colloquial usage, the terms confidentiality and secrecy allow subtle
distinctions: e.g., when a report is confidential, we don’t know its contents; but when it
is secret, we don’t even know that it exists. Secrecy and confidentiality are both security
properties. We bundle them into one and use them interchangeably. (Restricting to just one
of them gets awkward.)

2

As for the difference between privacy and secrecy (or confidentiality), it comes in two flavors:

1) while secrecy is a property of information, privacy is a property of any asset or resource
that can be secured1; and

2) while secrecy is a local requirement, usually imposed on information flowing through a
given channel, privacy is a global requirement, usually imposed on all resource requests
and provisions, along any channel of a given network.

Let us have a look at some examples.

Ad (1), Alice’s password is secret, whereas her bank account is private. Bob’s health record
is private, and it remains private after he shares some of it with Alice. It consists of his
health information, but it may also contain some of his tissue samples for later analysis. On
the other hand, Bob’s criminal record is in principle not private, as criminal records often
need to be shared, to protect the public. Bob may try to keep his criminal record secret,
but even if he succeeds, it will not become private. Any resource can be made private if the
access to it can be secured. E.g., we speak of a private water well, private funds, a private
party if the public access is restricted. On the other hand, when we speak of a secret water
well, secret funds, or a secret party, we mean that the public does not have any information
about them. A water well can be secret but not private, or it can be private, but not secret;
or it can be both, or neither.

Ad (2), to attack Alice’s secret password, Bob eavesdrops at the channel where she uses
it; to attack her bank account, he can, of course, impersonate Alice using her password;
but he can also initiate a request through any of the channels of the banking network that
he can access; best of all, he can coordinate an attack through many channels. To attack
a secret, a cryptanalyst analyzes a given cipher. To attack privacy, a data analyst gathers
and analyzes data from as many surveillance points as he can access. To protect secrecy,
the cryptographer must assure that the plaintexts cannot be derived from the ciphertexts
without the key, for a given cipher. To protect privacy, the network operator must assure
that there are no covert channels anywhere in the network.

Defining privacy. Secrecy is formally defined in cryptography. The earliest definition, due
to Shannon [51], says that it is a property of a channel where the outputs are statistically
independent of the inputs. It is tempting, and seems natural, to define privacy in a similar
way. This was proposed by Dalenius back in the 1970s [15]. A database is private if the public
data that it discloses publicly say nothing about the private data that it does not disclose.
This desideratum, as Dalenius called it, persisted in research for a number of years, before it
became clear that it was generally impossible as a requirement. E.g., if everybody knows that
Alice eats a lot of chocolate, but there is an anonymized database that shows a statistical
correlation between eating a lot of chocolate and heart attacks, then this database discloses

1Information is, of course, a resource, so it can be private.

3

that Alice may be at a risk of heart attack, which should be Alice’s private information, and
thus breaches Dalenius’ desideratum. Notably, this database breaches Alice’s privacy even
if Alice’s record does not come about in it. Indeed, it is not necessary that Alice occurs in
the database either for establishing the correlation between chocolate and heart attack, or
for the public knowledge that Alice eats lots of chocolate; the two pieces of information can
arise independently. Alice’s privacy can be breached by linking two completely independent
pieces of information, one about Alice and chocolate, the other one about chocolate and heart
attacks. But since Alice’s record does not come about in the database, it cannot be removed
from it, or anonymized in it. Making sure that neither Alice nor any other record can be
identified closer than up to a set of k other records with the same attributes, as required
by the popular k-anonymity approach to privacy [56, 55], would not make any difference for
Alice’s privacy in this case either, since Alice cannot be identified at all in a database where
she does not come about. Since Alice’s privacy is not breached by identifying her, but by
linking her public attribute (chocolate) with the public statistic correlating that attribute
with a private attribute (heart disease), it follows that anonymity cannot assure privacy.

Notation.

It is convenient to view each natural number as the set of the numbers preceding it, i.e.
n = {0, 1, 2, . . . , n− 1}.

2 Resources and their fusion

2.1 Concepts

Definition 2.1. A source element of a set Y is a function β : Y −→ [0, 1] such that

• the set β# = {y ∈ Y | β(y) 6= 0} is finite, and
• the sum Σβ =

∑
y∈Y β(y) is not greater than 1.

The set of all source elements of Y is denoted by DY. The set β# is called the support of β,
and its number of elements #β is called the size of β. The number Σβ is the total weight
of β. The values β(y) are weights (or probabilities) of y ∈ Y.

Ordinary elements y ∈ Y correspond to the source elements χy : Y −→ [0, 1] where χy(y) = 1
and χy(z) = 0 for all z 6= y. A source element β that happens to be total, in the sense
that

∑
y∈Y β(y) = 1, corresponds to what would normally be called a finitely supported

probability distribution over Y . The set of all total source elements of Y is ∆Y . They are
often viewed geometrically, as points of the convex polytope spanned by y ∈ Y as vertices.
If we adjoin to Y a fresh element ∗, and thus form the set Y ′ = Y ∪ {∗}, then each source
element β of Y (not necessarily total) can be mapped into a total source element β ′ of Y ′,

4

defined

β ′(y) =

{
β(y) if y ∈ Y

1− Σβ if y = ∗

It is easy to see that this gives a bijection

DY ∼= ∆Y ′

so that the source elements of Y can be viewed as the points of the convex polytope over Y ′.
Extended along this bijection, the inclusion ∆Y ⊆ DY becomes the retraction ∆Y ֌և∆Y ′,
which projects the polytope ∆Y ′ to the face where the weight of ∗ is 0.

This geometric view of source elements of Y , as convex combinations from Y ′, supports the
intuition that they are ’incomplete’ probability distributions, which don’t add up to 1. The
probability deficiency 1 − Σβ can be thought of as the chance that sampling the source
element β does not yield any output.

Definition 2.2. A resource is a function ϕ : X −→ DY whose support ϕ# = {x ∈ X | ϕx 6=
0} is finite. The number of elements of ϕ# is called the size of ϕ again, and its total size is
the number

##ϕ =
∑

x∈ϕ#

#ϕx

A resource that takes as its values the ordinary elements, i.e. the source elements which take
a value 1, is just a partial function from X to Y . A resource that takes only total source
elements as its values can be viewed as a stochastic matrix, i.e. a matrix of numbers from
the interval [0, 1] where columns add up to 1. Any resource ϕ : X −→ DY can be viewed as
a X × Y-matrix of numbers ϕx(y) ∈ [0, 1]. Although the sets X and Y can be infinite, the
finiteness of #ϕ and of all #ϕx implies that only ##ϕ many entries of this infinite matrix
are different from 0. Any given resources ϕ : X −→ DY and ψ : Y −→ DZ can thus be
composed into a resource ψϕ : X −→ DZ, obtained by matrix composition

(ψϕ)x(z) =
∑

y∈ψ#

ϕx(y) · ψy(z)

Notation. Since we will most of the time look at the functions in the form X −→ DY , let

us omit the D, and write such functions as X Y , denoting by the arrow with full head
a function whose outputs are source elements. Such functions are our resources.

2.2 Examples

While the notion of resource is very general, we begin with some very special cases, to ground
the intuitions.

5

Example 0: Simple communication channels are the most basic examples of resources. More
precisely, a memoryless channel, as defined in any information theory textbook, is a resource
ϕ : X Y , where X and Y are finite alphabets, and all source elements ϕx are total. E.g.,
the binary symmetric channel is such a resource over the alphabets X = Y = {0, 1}, and
with the elements distributed by

ϕx(y) = Pr (y|x) =

{
1− p if x = y

p otherwise

A channel that depends on state, but with no feedback, can also be viewed as a resource,
at least at each finite step, since its outputs always depend on finite histories, and are thus
finitely supported. Asynchronous channels can be modeled using source elements that may
not be total. However, our path in this paper leads in a different direction.

Example 1: A database is a function ϕ : R× C Y , where

• R is a set of rows, or records, or items,
• C is a set of columns, or attributes,
• Y is a set of values or outputs.

The "row-column" terminology suggests that we think of a database as an R× C-matrix of
entries from DY . When the attributes c ∈ C are expressed using different sets of values Yc,
we take Y =

⋃
c∈C Yc. For ordinary databases, the entries are ordinary elements ϕrc ∈ Y ,

or they may be empty, and the resource ϕ is an ordinary map, or a partial map. For online
databases, it can be uncertain what will be returned in response to a query, since the data
are updated dynamically, often concurrently; so the entries are stochastic, and we model
them as source elements ϕrc ∈ DY .

In fact, the whole web can be viewed as a large, dynamic, stochastic database.

Example 2: The web is a resource ω : X Y where

• X is the set of URLs (or more precisely of all possible HTTP requests),
• Y is the set of HTML documents (embedded in the HTTP responses, often extended

with JavaScript executables, JSON or XML object references, etc.)

The web is, of course, a very complex, very dynamic environment, and when you input a
URL x ∈ X into your browser, the process that determines what output will the random
variable ωx return to your browser is ongoing nonlocally, and there is a lot of uncertainty and
chaos in it, like in any complex natural process, such as the weather. The web is a typical
source showing why privacy is so hard: it combines politics and thermodynamics.

Example 3: A search engine γ : X Y (e.g. Google) is an attempt at a map of the
web:

• X is the index of keywords and search terms built from them,
• Y is the set of indexed web pages.

6

The distribution of γx ∈ DY over the set of the hits for the search term x ∈ X captures the
web page ranking [40, 41]: higher ranked pages are assigned higher probabilities in γx.

Example 4: A social engine ζ : X Y (e.g. Facebook) is a shared resource for social
networking through posting messages, media, and gestures, and distributing them according
to some specified privacy policies along the social channels provided by the platform. In the
most basic model,

• X is the set of identifiers of all users’ postings,
• Y are the contents of the postings, i.e. the set of the posted messages, media, and

gestures.

For simplicity, we assume that the identifiers x ∈ X contain all needed references to their
sources, and that the contents of the postings are either equal (i.e., they can be repeated) or
different, but have no intrinsic structure or correlations. A social engine can thus be viewed
as an ordinary mapping ζ : X −→ Y of identifiers as ordinary elements x ∈ X into the
postings as ordinary elements ζx ∈ Y . The randomness will emerge from sharing: who sees
whose postings. And sharing is determined by running privacy protocols.

2.3 Resource fusion

Data sources are naturally ordered by the amount of information that they provide: e.g.,
a database ϕ may provide Alice’s IP address, say 98.151.86.153; a database ψ may provide
just the first block: 98. The amount of information is usually quantified by the entropy
of its source: e.g., Alice’s record ϕA would contain 32 bits of information, whereas Alice’s
record ψA would contain only 8 bits. However, if the IP prefix given by ψA is different from
the IP prefix given by ϕA, and if we are interested in the actual address, then counting the
bits does not suffice. Data analysts do not just quantify the amounts of information in the
available data, they also qualify them, and compare their information contents. To model
that practice, we need an ordering ≺ where ψA ≺ ϕA only if the information provided by
ψA is really contained in ϕA, not just more uncertain; and moreover, we need an operation
ψAĝϕA for information fusion, which will join together the parts of ψA and ϕA where they
are consistent with each other, and discard the parts where they contradict each other. This
may sound like a tall order in theory, but that is what data analysts do in practice.

The problems of ordering information sources turn out to have been studied, albeit implic-
itly, in the theory of majorization [2, 30]. The basic techniques go back to [27], where a
host of inequalities from different parts of mathematics were derived using majorization, as
if by magic. In the meantime, it has been well understood that the power of magic was
due to ordering information sources, but the problem of conjoining and reconciling informa-
tion sources has not yet been been directly addressed, although some technical results and
conceptual expositions came close to it [3, 38].

7

2.3.1 Preferences and consistency

Definition 2.3. Every source element β ∈ DY induces the following binary relations:

• strict preference: u
β

⊳ v ⇐⇒ β(u) < β(v);

• preference: u
β

E v ⇐⇒ β(u) ≤ β(v);

• indifference: u
β

♦ v ⇐⇒ β(u) = β(v).

Clearly,
β

⊳ is transitive,
β

E is also reflexive; and
β

♦ is moreover symmetric, and thus an

equivalence relation. The preference relation
β

E is thus a preorder on Y and a partial order

on the set of
β

♦ -equivalence classes Y/
β

♦ . For U, V ⊆ Y we thus write

U
β

⊳ V ⇐⇒ ∀uu′ ∈ U ∀v′v ∈ V. u
β

♦ u′ ∧ u′
β

⊳ v′ ∧ v′
β

♦ v

and ditto for U
β

E V .

Definition 2.4. For a finite set of source elements B ⊂ DY, we define

u
B

E v ⇐⇒ u
β0

E w1

β1

E w2

β2

E · · ·wn
βn

E v

for some β0, β1, . . . , βn ∈ B and w1, . . . , wn ∈ Y

u
B

♦ v ⇐⇒ u
B

E v and v
B

E u

Then we say that the set B is consistent if

u
β

⊳ v for some β ∈ B =⇒ u
δ

E v for all δ ∈ B

In addition, we define a ⊳-cycle in B as u0
δ1
⊳ u1

δ2
⊳ . . . un−1

δn
⊳ un where ui ∈ Y and δi ∈ B.

Comment. Inconsistency means that taking the transitive closure of the relations
β

E for
β ∈ B creates new ⊳-cycles of preferences. For instance, if B = {β, δ} are such that

• a
β

⊳ b and c
β

⊳ d, but

• b
δ
⊳ c and d

δ
⊳ a,

then
B

E contains the ⊳-cycle a
β

⊳ b
δ
⊳ c

β

⊳ d
δ
⊳ a. This ⊳-cycle makes a, b, c and d all

β,δ

♦ -equivalent, while it is easy to assign the weights in β and δ in such a way that no pair of

elements is either
β

♦ -equivalent or
δ

♦ -equivalent.

8

Example. Let β, γ, δ ∈ DY be sources with support {w, x, y, z} ⊂ Y . Let their values on
the support be defined in the table below.

w x y z
β 0.1 0.2 0.2 0.3
γ 0.1 0.1 0.3 0.5
δ 0.6 0.1 0.1 0.2

To illustrate consistency, we display the strict preference order on equivalence classes below.

{w}
β

⊳ {x, y}
β

⊳ {z}

{w, x}
γ

⊳ {y}
γ

⊳ {z}

{x, y}
δ
⊳ {z}

δ
⊳ {w}

Let B = {β, γ}, then the transitive closure results in the total order

{w, x, y}
B
⊳ {z}

Observe z
δ
⊳ w, yet w

β

⊳ z and w
γ

⊳ z. Thus δ is not consistent with neither β nor γ, and
therefore not B.

Definition 2.5. An ordering ϑ of a source element β : Y −→ [0, 1] is a pair of functions

N Y
ϑ

ϑ̃

such that

• N > #β;
• for all i ∈ N = {0, 1, . . . , N − 1} holds ϑ̃ϑ(i) = i ;

• for all y ∈ β# holds ϑϑ̃(y) = y,
• βϑ(0) ≥ βϑ(1) ≥ · · · ≥ βϑ(#β − 1) > βϑ(#β) = · · · = βϑ(N − 1) = 0.

The set of all orderings of β ∈ DY is denoted by Θ(β).

We hope that this formal definition does not conceal the idea of ordering a source element,
which is as simple as it sounds: an ordering ϑ of β : Y −→ [0, 1] enumerates the support
β# by the indices from the set N = {0, 1, . . . ,#β − 1,#β, . . . , N − 1} in such a way that
u ∈ β# are ordered by weight, with those with the highest weights β(u) coming first. All
u ∈ Y for which β(u) = 0, and thus u 6∈ β#, are mapped to ϑ(u) ≥ #β. Any indifferent

pair u, v ∈ Y , i.e. such that β(u) = β(v) and thus u
β

♦ v, allows 2 different orderings. Any
indifference class with k elements allows k! different orderings. On the other hand, a source
element β where for any pair u 6= v ∈ β# holds β(u) 6= β(v) induces a unique ordering of
its support β#. Indeed, it is easy to show that in that case, all orderings ϑ, ξ ∈ Θ(β) must
satisfy βϑ(i) = βξ(i) for all i < #β, and thus induce the same ordered sequence βϑ = βξ.

9

This unique ordered version of β is usually written β↓, but we will write βϑ when an explicit
ordering is needed, as it will be the case in Prop. 2.10. Identifying the set β# ⊆ Y with the set
of numbers #β = {0, 1, . . . ,#β − 1} ⊂ N allows writing the source element β : Y −→ [0, 1]
as the descending sequence

β↓ = βϑ =
〈
βϑ(0), βϑ(1), . . . , βϑ(#β − 1), 0, 0, 0, . . .

〉

Note that "un-ordering" βϑ by ϑ̃ restores β, because for all y ∈ β# holds βϑϑ̃(y) = β(y).
We can also consider β↓ as a source over the natural numbers, β↓ : N → [0, 1]. Given a
set B ⊂ DY and the unique ordered version of the source elements, we may construct a set
B↓ = {β↓|β ∈ B} ⊂ DN. Observe, given any finite set of source elements the above set will
always have a common ordering. Let N > #B. Then an example of a common ordering is
ϑ(i) = i for all i ∈ N , ϑ̃(i) = i for i < N , and ϑ̃(i) = N − 1 for i > N .

Example. Let Y be the set of URLs and β : Y −→ [0, 1], a source element. Let β represent
the probability of visiting a URL first for a certain user when they open a web browser.

URL β
http://www.google.com 1/4

https://www.amazon.com 1/4
https://en.wikipedia.org 1/4

https://stackoverflow.com/ 1/8

Let β be zero for all other URLs. Observe that the probabilities do not add up to one.
The intent is to capture what happens if they immediately close the browser, or say the
computer crashes and the user is unable to visit a URL. Given the above ordering we may
define ϑ(0), ϑ(1), ϑ(2), ϑ(3), ϑ(4) accordingly. Thus we have β↓ =

〈
1
4
, 1
4
, 1
4
, 1
8
, 0
〉
. The

resulting total order is

{ϑ(3)}
β

⊳ {ϑ(0), ϑ(1), ϑ(2)}

The orderings of β that are extended to N > β# just add more indices than there are in
#β, and thus cover by the enumeration ϑ not only the support β#, but also some y ∈ Y
for which β(y) = 0. Such extensions are needed when we look for common orderings of
Y induced by different source elements β, γ : Y −→ [0, 1]. Two such source elements may
have different supports β# and γ#, but their orderings may be consistent, in the sense that
they both may extend to the same ordering of β# ∪ γ#. Such an extended ordering ϑ with
N enumerating β# ∪ γ# would belong both to Θ(β) and to Θ(γ), and would thus be an
element of the intersection Θ(β) ∩Θ(γ). It will turn out that this intersection characterizes
the situation when β and γ are consistent, and can be conjoined into a single source: see
Prop. 2.10 below.

10

2.3.2 Majorization preorder

Sequence differentials and integrals. To define joins and meets of source elements, we
borrow the following operations from [45]. Let R

∗ be the set of sequences of reals. The
operations

∫
, ∂ : R

∗ −→ R
∗ map any sequence

〈
α(0), α(1), . . . , α(n − 1)

〉
to its integral

version
〈∫
α(0), . . . ,

∫
α(n− 1)

〉
and its differential version

〈
∂α(0), . . . , ∂α(n− 1)

〉
defined

∫
α(k) =

k∑

i=0

α(i) ∂α(k) = α(k)− α(k − 1)

for 0 ≤ k < n. We assume α(−1) = 0. Note that
∫
∂(α) = α = ∂

∫
(α).

Proposition 2.6. For any β, γ ∈ DY, and n = max(#β,#γ) the following conditions are
equivalent:

a) β = Dγ, where D is a doubly substochastic matrix2;

b) β =
∑n−1

i=0 λiPiγ where λi ∈ [0, 1],
∑n−1

i=0 λi ≤ 1, and Pi are partial permutations, i.e.,
a submatrix of a permutation matrix;

c)
∫
β↓(k) ≤

∫
γ↓(k) for all k < n.

Definition 2.7. When source elements β and γ satisfy any of the equivalent conditions of
Thm. 2.6, we say that β is majorized3 by γ and write β ≺ γ.

2.3.3 Meets, joins, and fusions

Since all
β

E are total preorders, in the sense that any two elements of Y are comparable, and
since each of them thus induces a strict total order on its indifference equivalence classes,

it follows that the total preorder
B

♦ is the least common refinement of all partitions of Y
induced by β ∈ B, in the sense that it induces a strict total order on its own of equivalence

classes, which are the least common refinement of
β

♦ for β ∈ B. The task is now to lift

the least common refinement
B

E of the preference preorders
β

E induced by source elements
β ∈ B ⊂ DY to a least lower bound gB with respect to a suitable information preorder ≺.

2A Y × Y-matrix with finitely many nonzero, nonnegative entries is doubly stochastic if the sums of the
entries in each nonzero row and in each nonzero column are 1. Already Garrett Birkhoff considered infinite
doubly stochastic matrices, asking for the infinitary generalization of his doubly stochastic decomposition in
the problem 111 of his Lattice Theory.

3This is also referred to as weak majorization, see for example [31].

11

Proposition 2.8. Let B ⊂ DY be a finite set of source elements such that
⋂
β∈B

Θ(β) is not

empty. Let M Y
ϑ

ϑ̃

be any one of the common orderings in the intersection. The meet

and join of B with respect to the majorization preorder are respectively

k
B =

(
∂
∧

β∈B

∫
βϑ
)
ϑ̃

j
B =

(
∂
∨

β∈B

∫
βϑ
)
ϑ̃

where
∧

and
∨

are pointwise.

Corollary 2.9. Let B ⊂ DY be a finite set of source elements. There exists at least one

common ordering M Y
ϑ

ϑ̃

in
⋂

β↓∈B↓

Θ(β↓). Their meet and join with respect to the ma-

jorization preorder are respectively

k
B↓ = ∂

∧

β↓∈B↓

∫
β↓

j
B↓ = ∂

∨

β↓∈B↓

∫
β↓

where
∧

and
∨

are pointwise and
c
B↓,

b
B↓ ∈ DN

Corollary 2.9 states that given any finite set of source elements, the meet and join always exist
for the unique order. Furthermore, this meet and join will help quantify the inconsistency
of a finite set of source elements.

Relating majorization to fusion. The fact that majorization is a reflexive and transitive
relation, i.e. a preorder on DY , is just a slight refinement of the classical results of [27] and
[11]. In the meantime, the role of majorization as information preorder has also been well
established in several research communities [38]. Our main interest here is to understand
and model the operation of fusion of resources, used in the practices of data analysis, and
in the attacks on private resources. The usual scenario is that an analyst acquires two or
more resources, and fuses them together, in order to extract as much information or value
as possible. Intuitively, this corresponds to finding a least upper bound (usually called
supremum, or join) with respect to the majorization preorder of the acquired resources. But
a pair of sources may not have any upper bounds with respect to majorization, and therefore
cannot always be conjoined together. The following proposition characterizes that situation
as inconsistency. Prop. 2.12, coming right after, describes what can be done to make a set
of sources consistent.

Proposition 2.10. The following conditions on a finite set B ⊂ DY are equivalent:

a) B is consistent (in the sense of Def. 2.4);

b) there is a common ordering ϑ ∈
⋂
β∈B Θ(β) of B (in the sense of Def. 2.5);

12

c) ∃ θ : N → Y, such that,
∫ c

B↓ =
∧
β∈B

∫
βθ;

d) ∃ θ : N → Y, such that,
∫ b

B↓ =
∨
β∈B

∫
βθ.

Given a finite set of sources, what can we do if they are inconsistent? Suppose we are
predicting a hurricane path, and several models each predict fundamentally different paths.
How do we extract the information that is consistent between all models? Given B ⊂ DY is
finite, our first step is to partition the source Y , so that we may find the common information
on the partition elements. Each set in the partition is defined in a minimal way so that sources
in B must be made constant on them to fuse the consistent information. Given y ∈ Y we
define the consistency class of B at y as the set

By = {y} ∪ {u ∈ Y | u is in a ⊳ -cycle with y in B}

Lemma 2.11. Given B ⊂ DY is finite, the consistency classes of B, {By}y∈Y , are a partition

of Y. Furthermore, if Bu ∩Bv = ∅, then either Bu

δ

E Bv or Bv

δ

E Bu for all δ ∈ B.

The following proposition captures how to make a set of sources consistent while not increas-
ing the individual probabilities of any element. Furthermore, the fixed points will correspond
to consistent sets.

Proposition 2.12. Let B ⊂ DY be a finite set. Given β ∈ B define the function β̂ : Y −→
[0, 1] by

β̂(y) =
∧

u∈By

β(u)

Then β̂ is the greatest among all source elements α ≺ β which are consistent with the

elements of B. Moreover, the set B̂ =
{
β̂ | β ∈ B

}
is consistent.

Corollary 2.13. Any finite set of source elements B ⊂ DY has a majorization meet
c
B =c

B̂, whereas its meet is constructed as in Prop. 2.8.

Definition 2.14. The source fusion of a finite set B ⊂ DY is the source element
b̂
B ∈ DY

defined by

ĵ
B =

j
B̂

where B̂ is the consistent set constructed as in Prop. 2.12.

A concrete and familiar example of this operation will be described in Sec. 5.2.

13

Definition 2.15. The resource fusion
b̂
Φ : X Y of a finite set of resources Φ ⊂ X Y

is defined pointwise along x ∈ X by
(ĵ

Φ

)

x

=
ĵ

Φx

where the source fusion on the right-hand side is from Def. 2.14.

Inconsistent sources generate a higher-order source. Another view of the above def-
inition is that the set of resources Φ is the pointwise join of the set of resources Φ̂, where for
each x ∈ X , the set of sources Φ̂x is the greatest consistent set under Φx. The notion of con-
sistency of sources, as imposed in Def. 2.4 requires a consensus of all sources, wherever they
declare their preferences by assigning different weights. This is a very restrictive notion of
consistency. Different domains require different notions of fusion. Through centuries, many
different forms of preference aggregation have been proposed and are nowadays systematized
and analyzed in theories of voting and social choice [49, 53, 12]. An important aspect not
analyzed within that tradition are the higher-order source aggregations. While with the
preference aggregations and the source fusion operations like the one presented above, in-
consistent sources are conjoined into a less informative source, any inconsistencies observed
in hypothesis testing are the source of new information within a higher-order source [46].
See Sec. 5.2 for an example.

The only point of even mentioning this vast conceptual area in this constrained space is in
support of our claim that the rapidly evolving practices of information gathering and analysis
require a theory of information that takes into account the information content and quality,
and not just the transmission rate measures, and quantity.

3 Privacy protocols for private channels

3.1 Concepts

Interactions, communication, and resource sharing are usually modeled using networks. A
network structure is based on a graph, here consisting of

• a set S = {A,B,C,D, . . . , S, . . .} of nodes, representing subjects or users, often called
Alice, Bob, Carol, Dave. . . ; and

• a set of links A −→ B, representing the channels between Alice and Bob.

In most examples, there will be at most one channel between any pair of subjects, so the
network structure boils down to a binary relation on the set S. In any case, channels allow us
to model local interactions: Alice can interact with Bob only if there is a channel A −→ B, in
which case we say that Bob is Alice’s neighbor. A network is often assumed to provide routing
services, whereby Alice can send a message or object to Dave, who is not her neighbor, from

14

neighbor to neighbor: A −→ B −→ C −→ D. The Internet is, of course, a network with routing
services.

A network can be viewed as infrastructure for sharing some private resources. The node
Alice has a private resource JAK : XA YA, but she can achieve more if she cooperates
with Bob, who has a resource JBK : XB YB, and can share some of it with Alice, often
in exchange for some of hers. Privacy protocols are abstract models of such transactions.
Optimizing utility of their private resources, all rational agents engage in such transactions
at all network levels. The obvious examples are market transactions, where Alice and Bob
trade goods, money, labor; also health care, insurance, rescue missions, regulatory control,
search, education. At lower levels of interaction, many basic social phenomena arise from
privacy protocols. But in a data-driven society, certain data privacy protocols take a life of
their own, while other privacy protocols become invisible, and private.

The basic building block of private interactions is a 2-message protocol pattern, depicted in
Fig. 1, where Alice submits to Bob a request r

AB for some of his private resource JBK, and
Bob responds according to his policy p

AB, and shares with Alice the part of his resource that
results from composing her request and his policy, i.e. JABK = p

ABJBKrAB. Our claim is that
all privacy protocols are obtained by composing suitable instances of this pattern. The idea
is that these Request-Policy (RP)-components are atoms of privacy, just like the Challenge-
Response (CR)-components are atoms of authentication [19, 14, 42, 44, 43]. The incremental
approach to protocol design, analysis, taxonomy, and to security proofs [17, 22, 35] seems to
extend naturally from authentication and key establishment protocols to privacy protocols.

3.2 Basic privacy protocols

Bob’s private resource JBK : XB YB accepts Bob’s private inputs from XB and produces
Bob’s private outputs in YB. In order to be able to request access to some of Bob’s private
resource, Alice must be able to reference some of his private inputs, and to observe and utilize
some of his private outputs. To allow subjects to refer to each other’s private resources, we
distinguish

• sets X and Y of global identifiers; and
• sets XS and YS of local identifiers, owned by each S ∈ S, and accessed by the owner

using the functions

XS X
πS

πS

YS Y
ρ
S

ρS

(1)

such that πSπS(x) = x and ρSρS(y) = y.

The last two equations make πS and ρ
S

total, but πS and ρS can be genuinely partial, in
which case the composites πS = πSπS and ρS = ρ

S
ρS are also partial. It is easy to see that

they are also idempotent, i.e. satisfy πSπS = πS and ρSρS = ρS . The following definition
puts together all of the above.

15

Definition 3.1. A resource network consists of

• a network S = {A,B,C, . . . , S, . . .};
• global identifiers X = {x, x′, . . .} for inputs and Y = {y, y′, . . .} for outputs;
• for each network node S ∈ S, the local castings like in (1), which induce

– the projector πS : X X determining the local input identifiers XS = {x ∈
X | πS(x) = x}, and

– the projector ρS : Y Y determining the local output identifiers YS = {y ∈
Y | ρS(y) = y},

– a resource JSK : X Y.

Remark. Alice’s resource JAK provides her with the output ρAJAKx on input x ∈ XA, and
in many cases it satisfies JSK = ρSJSKπS , or equivalently ρSJSK = JSK = JSKπS. However,
it may happen that x, x′ ∈ X are indistinguishable for Alice as inputs, i.e. πA(x) = πA(x

′),
but that they give her different outputs i.e. ρAJAK(x) 6= ρAJAK(x′). Intuitively, this means
that the global identifiers may interfere with the environment in ways that are for Alice not
directly observable, but that she may be able to observe such interferences indirectly, from
the outputs of her resource. This will be discussed in Sec. 4.

Definition 3.2. A Request-Policy (RP) protocol between Alice and Bob in a resource network
S is a pair of partial functions Φ =

〈
r
AB
Φ ,pABΦ

〉
, where

• r
AB
Φ : X X is Alice’s request for Bob’s private resource, and

• p
AB
Φ : Y Y is Bob’s privacy policy towards Alice.

The outcome of a run of the privacy protocol is that the part of Bob’s private resource that
is approved by Bob’s policy and referenced by Alice’s request is released to her, providing her
with the resource:

JABK =
(
X

r
AB
Φ X JBK Y

p
AB
Φ Y

)
(2)

which is then conjoined with Alice’s own resource X JAK Y, thus providing Alice with the

total resource JAK
b̂

JABK, as displayed in Fig. 1.

Alice Bob

r

p

JBKJAK JABK

X

Y Y

X

b̂

Figure 1: Basic privacy protocol: Request-Policy (RP)

16

Privacy protocols can be driven by demand, or by supply. The two interactions
displayed in Fig. 1, corresponding to the request r and the policy p may happen in time
in either order: some RP-protocols are initiated by the requester Alice, whereas other are
initiated by the provider Bob. Fig. 2 displays the two directions of in which the protocols
can be executed as the hollow arrows. E.g., a seller Bob may advertise his goods, provide

r

p

X

Y Y

X

⇓

r

p

X

Y Y

X

⇑

Figure 2: Demand-driven protocols vs supply-driven protocols

samples, and influence the buyer Alice to request to buy more. In a demand-based economy,
the buyers stroll the market place and request to buy the good that the sellers display, in
a supply-based economy, the buyers are passive, and the sellers supply their goods, and try
to create the demand, e.g. by presenting to the buyers previously unknown goods. But
even in the traditional market place, neither side is passive, and the demand and supply are
actively balanced to maximize profits on each side: the sellers look for buyers, the buyers
shop around, they all haggle, they try to outsmart each other, which gives rise to deception.

3.3 Examples of basic protocols

Example 1: Let ϕ : R×C Y be the database of a credit rating agency Exavier, presented
as a resource in the following format:

• R = S, i.e. the database rows correspond to the network nodes;
• C = {T0, T1, . . . , Tn} are the types of financial and other relevant transactions;
• X = S×C, i.e. the public identifiers x ∈ X are in the form x = 〈A, Ti〉, or TAi , denoting

a type of Alice’s transactions;
• XS = {T S0 , T

S
1 , . . . , T

S
n }, i.e. πS(T

A
i) = TAi if S = A or S = E, otherwise it is undefined,

meaning that by JAK = JAKπA Alice can see her own record, and Exavier can see all
records;

• Y =
∐n

i=0 T
∗
i are the transaction history listings, unencrypted, and

• YS = Y , i.e. ρS(y) = y for all y ∈ Y makes any released transaction listing readable to
anyone.

If Alice is a lender and Bob has requested a loan, then Alice may request access to some
of his credit history by r

AB : X X with r
AB(x) = x if x ∈ XB, otherwise undefined.

Bob’s privacy policy p
AB : Y Y will then determine which transaction types Ti will be

released to Alice by setting p
AB(t) = t when t ∈ T ∗

i for some chosen values of i, otherwise

17

undefined; or he may set his policy to release just some partial information about some
of the transaction types. To prevent that Bob tampers with this information, this privacy
protocol for obtaining loan applicants’ credit rating information is in practice combined with
an authentication protocol, where Bob’s transaction record t ∈ T ∗

i is released to Alice not
by Bob, but by the credit rating agency Exavier himself, upon Bob’s approval. Exavier then
uses the opportunity to record Alice’s request in Bob’s credit rating, and thus expands his
shared database.

In any case, Alice the lender is provided the resource JABK = ρABJBKπAB, controlled by
Bob and Exavier. If Bob has joint accounts with Carol, Alice may request and Bob and
Exavier may provide some information about Carol. Alice will then conjoin the obtained
information with her own information and resource JAK and use the compiled information

JAK
b̂

JABK, or maybe JAK
b̂

JABK
b̂

JABCK, to make her lending decision. Note that the
described Request-Policy protocol is thus embedded within another RP-protocol, where Bob
requests from Alice a loan, and Alice requests from Bob some private data, and uses the

obtained information resources JAK
b̂

JABK
b̂

JABCK as the input into her loan policy, which
outputs the loan decision. The privacy protocol for credit rating is thus composed with
an authentication protocol for data release, and embedded into a privacy protocol for loan
provision.

Example 2: The web as a resource ω : X Y is controlled by Bob through πB : X X ,
which filters the set of URLs XB under Bob’s control, locating his web site. The projector
ρB : Y Y determines what is published on his web site JBK = ρBωπB. If Alice surfs
or navigates to Bob’s web site, she submits a request r

AB : X X for some of Bob’s
URLs. Bob may then request some of her identifiers, and maybe some of her private data
to authenticate her, and input the obtained information into his policy p

AB : Y Y which
generates and outputs Bob’s web content JABK = p

ABJBKrAB in response to Alice’s request.
Alice can now add what she got from Bob to her own resource JAK = ρAωπA, and use

JAKb̂JABK to serve instances of her own web site, when requested in other runs of the web
protocol.

Example 3: If Bob owns the search engine γ : X Y , then his private resource is simply
JBK = γ. If anyone can submit any search term from X , and if all pages indexed in Y are
publicly accessible, then XS = X and YS = Y for all subects S on the network S. A session of
the RP-protocol thus consists of a query, represented as the partial function r

AB : X X ,
undefined everywhere except on some search term x = r

AB(x); and a reply according to a
policy p

AB : Y Y . In modern search engines, the search results are personalized, in the
sense that our search engine Bob tailors his response especially for Alice. This may mean
that Bob’s policy p

AB is to display just what is of interest for Alice, or what she wants to
hear. To achieve this, pAB skews the sample of the source element ωx ∈ DY , output by the
search engine ω : X Y in response to the query x; or it modifies the induced preference

ordering
ωx

⊳ of the web pages in Y , according to which the search results are displayed to
Alice. This preference ordering is based on the ranking of the web content according to

18

relevance and quality of the provided information [40, 41].

3.4 Composing privacy protocols

Security protocols are often composed [36, 43, 44]. The goal of security protocol composition
is to preserve and conjoin the security properties of the protocol components [14, 16, 18]. The
problem is that security properties are usually not compositional [17, 22]. The problem with
privacy protocols is even more subtle, and in fact intentionally mind-boggling. The goal of
privacy protocol composition is often to combine the low-level privacy protocol components
in such a way that their privacy properties are subverted, and sublimated into different
privacy properties. Alice’s privacy goals of the low-level protocol components are replaced
by Eve’s privacy goals of high-level composite protocols. We spell out some examples, and
make a first couple of steps towards analyzing this protocol knot.

Example 3 continued: In general, Bob does not own the search engine, but only his
own web pages: his resource JBK : X Y is just a map from XB ⊆ X (which can be
thought of as the content menu of his web site, filtered by πB : X X from the universe
of keywords X) to Y , containing the actual content of the pages that he runs. When Alice
visits Bob’s web page and submits request r

AB for some content from his site, he responds
according to his policy p

AB, and displays JABK = p
ABJBKrAB. Moreover, in addition to

providing the content that Alice explicitly requested, Bob can also try to sell a fragment
of Alice’s expressed interest to advertisers, and provide her with some content that she did
not explicitly request, but may be related. The search for the advertisers willing to buy a
fragment of Alice’s interest is a second use that the owner of the search engine, whom we
call Gogol4, will find for his web index γ : X Y . He will thus extract from γ two different
resources:

• the search index JGseK : X Y , assigning to each search term from X a source element
of web contents from Y , but this time not informative but advertising contents; and
on the other hand

• the advertising index JGadK : Z X , assigning to each advertising opportunity5 a
source element of related search terms.

These two resources are used as follows. Gogol initiates pooling of his and Bob’s resources by
offering in r

GB some advertising opportunities from Z. Bob creates some advertising space
JBadK : Z X , ready to be inserted into his web site JBK : X Y , and accepts Gogol’s
collaboration proposal by p

GB. Gogol processes the provided part JGBK = p
GBJBadKrGB of

Bob’s resource, and uses JGBKb̂JGadK to determine which of the advertising opportunities
from Z will best suit Bob’s site. When Bob receives Alice’s request r

AB, he forwards it to

4Nikolai Vasilievich Gogol was a XIX century Russian writer. Gogols are also the ape-like enemies in the
video game Xenoblade Chronicles.

5Gogol receives advertising requests in a separate privacy protocol. It will be briefly discussed in the next
section.

19

Alice Bob

r
AB

p
AB

JBK
JAK JABK

b̂
JABGK

X

Y Y

X

b̂

X

Y

b̂

Gogol

ZZ

p
GB

p
BG

r
BG

r
GB

JGseK

JGadK
b̂

JBadK JGBK

JABGK

Figure 3: Composite privacy protocol: Targeted Advertising (TAd)

Gogol as his request rGB = r
BG

r
AB for the ad content. Using the current search index JGseK

of advertising contents and the index JGBKb̂JGadK of advertising topics suitable for Bob’s
site, Gogol provides Bob with the targeted web ad JABGK = p

AB
p
BGJGKrBGrAB, deemed

to be of interest for Alice because of her interest in Bob’s web content. Bob then displays

JBK
b̂

JABGK, and Alice receives JABK
b̂

JABGK. This composite protocol is displayed in the
bottom row of Fig. 3. The protocol component where Gogol pays Bob for displaying the ad
is omitted, as is the component where the advertiser pays Gogol, and the one where Alice
requests to purchase the advertised goods, and the one where she remits the payment to
the merchant, etc. We shall see some such protocols in the next section, but the mosaic of
protocols for sharing and trading private resources always spreads beyond the horizon.

Example 4: While Gogol the search engine builds ranked indices of the content existing on
the web, and shares these resources with Alice, Bob, and Carol, Zuck the social engine elicits
the content from Alice, Bob, and Carol, builds an index of that, and shares their content
with them as their social interactions. A bird’s eye view of a fragment of this process is
displayed in Fig. 4. Zuck’s requests rZS to all S ∈ S offer to index and distribute everyone’s
media and contents. In response he receives JZSK = p

ZSJSKrZS from all S ∈ S, which are
some of their private media and content that they want to share with their social network.
To better distribute them, Zuck conjoins the shared resources into his main resource, the
social engine index

ζ = JZseK =
ĵ

S∈S
JZSK =

ĵ
S∈S

p
ZSJSKrZS

and shares a part of it with Alice

JAZK = p
AZJZseKrAZ = p

AZ

(ĵ
S∈S

p
ZSJSKrZS

)
r
AZ

20

Alice Bob

JAK

JCZK

Carol

JCK
b̂

JBK

Y

X

Y

X

Y

X

Y

X

p
CZ

b̂

Zuck

r
CZ

JZBKJZAK

r
ZB

r
ZA

p
ZA

p
ZB

Figure 4: Composite privacy protocol: Social Networking (SNet)

The idea is that Zuck’s resource JAZK shared with Alice consists of Alice’s friends’ private
contents processed by Zuck. As a participant who only relays messages, Zuck plays the role
of a legitimate Man-in-the-Middle in this privacy protocol. The Man-in-the-Middle pattern
is usually an attack strategy, and not a protocol role. Protocols sometimes use a Trusted
Third Party for a particular functionality. However, Zuck is here more than a Trusted
Third Party (TTP), because he does not provide a particular functionality, but processes
all protocol content; he is also less than a TTP, because he does not originate any content.
Most importantly, he fuses all protocol content into his private resource ζ = JZseK : X Y .
Like in a search engine, the weights of the source elements ζx ∈ DY determine a preference
ranking of the content.

Zuck’s privacy policy for Carol pCZ determines which of Alice’s, Bob’s and Dave’s postings
Carol will see, and in which order. Carol’s request rCZ can filter out what she does not want
to see; but Carol cannot use r

CZ to request what she will see, because Zuck’s index is not
available to her.

Zuck’s resource JZseK and all of his policies p
SZ also take into account Alice’s and Bob’s

privacy policies p
ZA and p

ZB, which may specify whether Carol should have access to their
content. However, the existing social engines provide policy languages for p

ZS at the ex-
pressiveness level of 1960s operating systems, before the concepts of access control were
introduced, where only a small number of fixed access control policies are available. The

21

users are usually offered to either make their postings available to general public, or to all
of their private contacts ("friends"), and sometimes also to all of their contacts’ contacts
("friends’ friends"). The option of establishing subgroups and hierarchies of private contacts
is not offered. The option of sharing content with specific subgroups is offered as a separate
functionality, but the recipients must be reentered with each message, or kept in an address
book, which is separate from privacy policies.

While more expressive access control systems, allowing refined privacy policies, would surely
vastly enhance usability of the social engine for Alice and Bob, allowing them to manage
their content using the access control mechanisms that they got used to while using their
computers, this would leave Zuck with narrower choices of his policies. And Zuck, of course,
monetizes his services by manipulating the weight biases in his social engine index JZseK :
X Y , and by selling the choices what to display to each user. These choices are expressed
by his policy p

SZ : Y Y for each user S ∈ S. The more privacy choices are made by
Alice and Bob as content originators, the fewer privacy choices are left to Zuck as the content
aggregator and monetizer.

4 Local privacy failures: Covert channels

4.1 Privacy protocol failures

A privacy protocol establishes an overt private channel to distribute private resources. In
the basic RP-protocol in Fig. 1, Bob releases some of his private resource to Alice. In
the composite privacy protocols, multiple resources can be shared or exchanged between
multiple subjects along multiple overt channels. Privacy protocol failures occur when, in
addition to the overt channels, some covert channels are also established. In the simplest
case, a covert channel from Bob to Alice arises when Bob intends to release to Alice the
part JABK = p

ABJBKrAB of his resource JBK, but Alice manages to extract in JAKĝJABK
a bigger part of JBK. Bob’s privacy problem with respect to Alice is thus to constrain his
policy p

AB to assure that JABK = p
ABJBKrAB satisfies the requirement

(
JAKĝJABK

)
f JBK ≺ JABK (3)

Note that (3) does not require that Alice is prevented from extracting some of Carol’s resource
from the interaction with Bob, which she could achieve by cross-referencing JABK with some
information about JCK previously stored in JAK. Requirement (3) also does not require
that Dave is prevented from extracting some of Bob’s resource from a later interaction with
Alice, who may make some of JABK available to him. Requirement (3) just expresses Bob’s
local privacy goal, concerning the present channel between him and Alice. The stronger
requirement

JAKĝJABK ≺ JABK (4)

22

would, of course, be more socially responsible; but Bob only has access to JBK, no direct
access to JAK, and he has therefore no way to observe or preclude any crossreferences that
Alice might be able establish between JAK and JABK, except those that he observes in JBK.
If Bob could enforce (4), then he could realizing the Dalenius’ desideratum, discussed in
Sec. 1. The non-local privacy protocol failures, resulting from non-local covert channels, will
be discussed in the next section. In this section, our considerations are limited to local covert
channels that may arise from Bob to Alice, in parallel with the overt channel set up by an
RP-protocol like in Fig. 1.

But even for this, there is more to the story than (3). A covert channel may arise even if
there is no overt channel at all. Take the trivial case, where Bob’s policy is to not share
anything with Alice, which is expressed by the everywhere undefined function p

AB = ∅ giving
JABK = ∅. Requirement (3) thus boils down to

JAK f JBK ≺ ∅

This is easily assured by YA ∩ YB = ∅ and XA ∩ XB = ∅. But if a resource is shared, then
the users may submit their inputs in turns, get their outputs in turns, yet there will be
interferences.

Example of interference. Suppose that Alice, Bob and Carol live in the same highrise
building and share an elevator. Each of them inputs an elevator call, and then each of them
receives the elevator service. During the service, the elevator is not available. After each
service, the elevator cabin may be left at a different floor. By observing the state of the
elevator (its location, whether it is currently moving, etc.), Alice can obtain information
about Bob’s and Carol’s interactions with the elevator; by interfering with its state, she
can make it unavailable for them. The elevator can thus provide a covert channel between
Alice, Bob and Carol just by the virtue of being shared, without providing an overt channel
between them.

Covert channels. Even if Alice’s, Bob’s and Carol’s private inputs come from disjoint sets
XA, XB and XC (which is the case if the elevator authenticates calls, say by requiring room
cards in a hotel, or biometric checks in an appartment building), the state of the elevator in
general depends on a whole history of private inputs. Suppose that each user S ∈ S has a
devoted set of actions ΣS, so that only Alice can call the elevator to her penthouse, because
only ΣA contains that action. If ΣA ∩ ΣB = ∅, then it follows that there is no overt channel
between Alice and Bob, because all sequences of inputs that Alice alone or Bob alone may
enter are also disjoint, i.e. XA ∩ XB = ∅ also holds for

XS = Σ∗
S

But the actual inputs that the elevator receives are usually not from any user alone, but
they are shuffled in

X =

(∐

S∈S

ΣS

)∗

23

The projections are thus in the form

XA = Σ∗
A

(∐
S∈S ΣS

)∗
= X

πA

πA

where

• πA(x) =





〈〉 if x = 〈〉

σ :: πA(x
′) if x = σ :: x′ and σ ∈ ΣA

πA(x
′) if x = σ :: x′ and σ 6∈ ΣA

• πA = ι∗A lifts the inclusion ιA : ΣA
∐

S∈S ΣS to the sequences.

An interference of Alice’s use of the elevator with Bob’s and Carol’s use occurs if Alice
observes two situations x, x′ ∈ X such that

• πA(x) = πA(x
′) — her own inputs are the same, but

• ρAJAK(x) 6= ρAJAK(x′) — the elevator produces different outputs,

where ρA = ρ
A
ρA : Y Y is the projector from (1). The difference must be caused by

Bob’s or Carol’s different inputs within the strings x and x′. Their inputs are not directly
observable for Alice, and she may not know what they are, or who has entered them; but the
fact that they are different gives Alice a single bit of information about Bob’s and Carol’s
actions. Hence the covert channel.

Noninterference. The task of recognizing such covert channels and the methods to elim-
inate them have been extensively studied in system security, and led to the requirement of
noninterference, and a whole range of related properties [25, 32, 33, 34, 48, 52]. A simple
way to state the noninterference requirement is in terms of the equivalence relations

x ⌊A⌋ x′ ⇐⇒ πA(x) = πA(x
′) and

x ⌈A⌉ x′ ⇐⇒ ρAJAK(x) = ρAJAK(x′)

The noninterference requirement is then simply

x ⌊A⌋ x′ =⇒ x ⌈A⌉ x′ (5)

This is a very strong requirement: that JAK does not interfere with anyone else’s inputs or
outputs, except Alice’s. The version localized to Alice and Bob is obtained by defining

x ⌊AB⌋ x′ ⇐⇒ ρAJABK(x) = ρAJABK(x′)
x ⌈AB⌉ x′ ⇐⇒ ρA

((
JAKĝJABK

)
f JBK

)
(x) = ρA

((
JAKĝJABK

)
f JBK

)
(x′)

and requiring

x ⌊AB⌋ x′ =⇒ x ⌈AB⌉ x′

24

For deterministic resources, i.e. when JAK, JABK etc. are partial functions X Y , it is easy

to see that e.g. requirement (5) is equivalent to the existence of a function JAK that makes
the diagram on the left-hand side of (1) commute.

X Y

XA YA

πA

JAK

ρA

JAK

X Y

X Y

πA

JAK

JAK ρA

JAK

(6)

Recalling the projections from (1), it is clear that the commutativity of the diagram on the
right-hand side of (6) also provides an equivalent form of the noninterference requirement.
Yet another equivalent form is that JAK = ρAJAKπA.

For general resources from Def. 2.2, the requirements from (6) can still be imposed, but
validating that the probability distributions of source elements are equal on the nose is
almost never feasible in practice. Requiring that diagrams (6) commute up to ε takes us in
the direction of differential privacy [23], which is a popular and practical tool for dealing
with covert channels. In the context of privacy protocols, its effectiveness, at least in the
original form, seems to be limited to local covert channels. — But what are non-local covert
channels?

5 Nonlocal privacy failures: Covert protocols

The rapid transformation of the socio-technical context of privacy is an acute socio-political
problem, which has been described from many angles [1, 5, 8, 20, 59]. The idea of this
research is to shed some light on the problem of privacy by analyzing privacy protocol
problems. In this section, we attempt to outline the unusual shape of some of the typical
privacy protocol problems. They are unusual in that their vulnerabilities are not design
flaws that open some attack vectors for outside attackers, as they do in security protocols.
Typical privacy protocol vulnerabilities seem inherent to protocols themselves. Not that the
protocols always have back doors; but they have transparent roofs. They are not vulnerable
to subversions, or level-below attacks, but to sublimations, or level-above applications.

5.1 Man-in-the-Middle protocols

We have seen that Zuck was an MitM in the SNet protocol on Fig. 4, where his private
resource JZseK is inserted in-between everybody else’s private resources, as their fusion; and
that Bob is an MitM in the TAd-protocol on Fig. 3, where he is inserted in-between Gogol
and Alice, and serves Gogol’s targeted ads to Alice. A level above SNet and TAd, both Zuck

25

and Gogol are MitMs in the privacy protocols where they monetize their services (social
networking and web search, respectively) by inserting themselves in-between the advertisers
and their targets (usually voters or consumers). Zuck’s protocol for monetizing his social
engine through Social Influencing (SInf) is displayed in Fig. 5. This is a level-above protocol
in the sense that it is built on top of the SNet protocol, which it uses as an encapsulated
procedure. In Fig. 5, we only display a single RP-component of SNet: the rectangle on
the left, where Zuck provides Carol her friends’ postings. We represent SNet by its single
component only because we do not have a good diagrammatic notation to encapsulate a low-
level protocol as an atom of a high-level protocol. SInf uses SNet on the left to leverage its

JZseK

r
CZ

p
CZ

JTadKJCK

r
TZ

p
TZ , rZT

Carol Zuck Tizer

b̂ b̂

Y Y

X X

Z Z

$ $

Z Z

+

JTZK

JZadK

JZbuK

JZ$K JT$KJZTK

p
ZT

Figure 5: Level-above privacy protocol: Social Influencing (SInf)

business process on the right. Tizer is an advertising campaign manager, and his resource
JTadK : Z Z is a campaign strategy, presented as a Markov chain over the a set of
campaign messages Z. Tizer initiates an SInf protocol run with r

TZ , requesting that Zuck
places the campaign messages of interest for Tizer at that moment. Zuck runs the request
through his advertising index JZadK : Z X , assigning to each campaign message from Z
a suitable context of recipients and their postings in X , and his social engine JZseK : X Y
then inserts the campaign messages among Carol’s friends’ postings. Zuck’s business engine
JZbuK : Y Z then generates the service report p

TZ and the invoice r
ZT for Tizer, who

26

responds with the payment p
ZT from his advertising budget JT$K. The payment JZT K is

added to Zuck’s budget JZ$K.

5.2 Resource inflation, privacy deflation

Dave would like to make pancakes, but he does not have either milk or eggs, so he needs to
borrow from Alice, who is his neighbor. But he is shy by nature, and he already borrowed
many things. So to avoid intruding into Alice’s privacy even more, Dave asks Carol to ask
Alice for milk, and he asks Bob to ask her for eggs. If Dave is also short of flour and oil, he
can also ask Elizabeth and Frank to knock on Alice’s door and ask for that. Then he collects
it all, and makes pancakes. This cross-sharing privacy protocol is displayed in Fig. 6. Dave

X

Y Y

X

b̂

AliceBob

r
BA

p
BA

JAKJBAK

X

Y Y

X

CarolDave

JDK JD(BC)AK JCAK

r
DB
A

p
DB
A

r
DC
A

p
DC
A

r
DC
A

p
DC
A

Figure 6: Resource inflation: Cross-referencing and cross-sharing

developed this protocol when he worked as a police detective. Alice was often a suspect in
his investigations, so whenever he needed to check the details of Alice’s alibi, it turned out
to be better to ask Alice’s friends, than to ask her directly. By conjoining the information
obtained from others, he would not only get more details, without drawing attention with
too many requests at once, but he could also cross-reference the different details that Alice
provided to different people. If she tells one person one thing, and another person another
thing, then Dave would detect an inconsistency in Alice’s alibi. While a fusion of inconsistent
sources eliminates the inconsistent parts, and thus contains less information than either of the
original sources, the inconsistency itself becomes a higher-order information, as mentioned
at the end of Sec. 2. Level-above attacks and protocols sublimate entire low-level protocol
sessions as higher-order information, and manipulate it towards some privacy goals. The loss
of a private resource for Alice is a gain of a private resource for Dave. Having detected an
inconsistency in Alice’s alibi by asking around in a cross-referencing protocol, like the alibi
check interpretation of Fig. 6, Dave confronts Alice himself in a level-above protocol, and
requests more higher-order information, to eliminate the inconsistencies from the acquired

27

resources. An analogous level-above sublimation of the cross-sharing protocol in the pancake
sources interpretation of Fig. 6 would be that Dave asks Bob, Carol, Elizabeth and Frank
to leave the milk, egg, flour and oil that they got for him from Alice — to leave if all for
him with Alice. Then he could collect it all simply by asking Alice if the neighbors by any
chance left anything for him.

The problem of cross-referencing is a well-studied privacy problem, because it arises in sta-
tistical databases [29, 37, 54]. Statistical databases anonymize their records, and make them
publicly available for statistical analyses. The problem is that Alice’s data may be recorded
in several statistical databases, one owned by Bob, another one by Carol, another one by
Elizabeth, and Frank; and Alice’s data may be anonymized differently in each case: Bob
may omit Alice’s address, Carol her date of birth, Elizabeth her phone number. Now Dave
may link Alice’s records in Bob’s and Carol’s databases by the phone number, in Carol’s
and Elizabeth’s databases by the address, etc. He may then rearrange data according to
a common ordering, and align the anonymized records so that the gap on each of them is
filled by the date in another one. This is a special case of the fusion operation operation
described in Sec. 2.3. On the other hand, the attack is clearly an instance of the privacy
protocol in Fig. 6. Re-identifying someone from statistical databases is similar to borrowing
the pancake ingredients from a neighbor, and to checking an alibi.

Large-scale versions of the cross-sharing protocol are nowadays routinely launched as level-
above attacks over many services and applications. E.g. the SNet protocol from Fig. 4 is
often sublimated into an instance of a cross-sharing attack from Fig. 6: providers leverage
requests for ongoing access to private channels against users’ requests for a single service.
In a much publicized incident, a psychology lecturer from Cambridge University, let us call
him Dave, designed a Facebook app to collect user data for research purposes [28, 24], which
offered a simple personality quiz, in exchange for full access to users’ contact lists. The quiz
was taken by 270,000 users, some of them called Bob or Carol, who unwittingly delivered
the profiles of 87,000,000 of their contacts, some of them called Alice. The harvested profiles
were sold to a political consultancy, Cambridge Analytica [58], and were used to a great
effect in a level-above instance of the SInf protocol from Fig. 5.

6 From security protocol analysis

to privacy protocol analysis

Security is a useful property. Security requirements are usually publicly declared, with a
clear utility. Security protocols implement explicit security requirements. Security protocol
failures are unintended protocol runs missed by the protocol designers, usually because of the
complexities of the underlying distributed algorithms. The goal of security protocol analysis
is to outrun the attackers in detecting and eliminating the unintended runs.

Privacy is a right. But my right to privacy may counter your right to privacy. Private rights

28

need to be balanced against one another, and the privacy requirements are not always agreed
upon, or publicly declared. Privacy protocols often implement implicit privacy requirements,
sublimated to their level-above deployments. In the realm of privacy, the task of protocol
analysis is not any more just to detect the unintended failures with respect to declared
requirements. In the realm of protocols that implement private utility, the task of protocol
analysis is also to detect the intended sublimated protocol runs that arise from undeclared
protocol requirements. Privacy protocol analysis thus provides a technical underpinning for
the process of balancing information and value distributions in network society [9, 21, 59].

Given a security protocol, we strive to prove that its declared security requirements are
enforced, or to uncover any attacks that may exist. Given a privacy protocol, the task is to
establish whose privacy requirements it implements. Alice’s and Bob’s privacy requirements
often clash, and the boundary between protocols and attacks is blurred. At the level above,
though, instead of attacks, there are now deceptions to be uncovered and analyzed.

References

[1] Alessandro Acquisti, Stefanos Gritzalis, Costas Lambrinoudakis, and Sabrina di Vimer-
cati. Digital Privacy: Theory, Technologies, and Practices. CRC Press, 2007.

[2] Peter M. Alberti and Armin Uhlmann. Stochasticity and partial order: double stochastic
maps and unitary mixing. Mathematics and its applications. Deutscher Verlag der
Wissenschaften, 1981.

[3] Tsuyoshi Ando. Majorization, doubly stochastic matrices, and comparison of eigenval-
ues. Linear Algebra and its Applications, 118:163 – 248, 1989.

[4] A. Angela and G. Conti. A Day in the Life of Ancient Rome. Europa Editions, 2009.

[5] Julia Angwin. Dragnet Nation: A Quest for Privacy, Security, and Freedom in a World
of Relentless Surveillance. Henry Holt and Company, 2014.

[6] Hannah Arendt. The Human Condition. Charles R. Walgreen Foundation lectures.
University of Chicago Press, second edition, 1998.

[7] Joe Bailey. From public to private: The development of the concept of "private". Social
Research, 69(1):15–31, 2002.

[8] Kirstie Ball, Kevin Haggerty, and David Lyon. Routledge Handbook of Surveillance
Studies. Routledge International Handbooks. Taylor & Francis, 2012.

[9] Yochai Benkler. The Wealth of Networks: How Social Production Transforms Markets
and Freedom. Yale University Press, 2006.

29

[10] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser.
A, 5:147–151, 1946.

[11] Garrett Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuma?n Rev.
Ser. A, 5:147–151, 1946.

[12] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia.
Handbook of Computational Social Choice. Cambridge University Press, 2016.

[13] S. Burke. Delos: Investigating the Notion of Privacy Within the Ancient Greek House.
PhD thesis, University of Leicester, 2000.

[14] Iliano Cervesato, Catherine Meadows, and Dusko Pavlovic. An encapsulated authenti-
cation logic for reasoning about key distribution protocols. In Joshua Guttman, editor,
Proceedings of CSFW 2005, pages 48–61. IEEE, 2005.

[15] Tore Dalenius. Towards a methodology for statistical disclosure control. Statistik Tid-
skrift, 15:429–444, 1977.

[16] Anupam Datta, Ante Derek, John Mitchell, and Dusko Pavlovic. Secure protocol com-
position. E. Notes in Theor. Comp. Sci., pages 87–114, 2003.

[17] Anupam Datta, Ante Derek, John Mitchell, and Dusko Pavlovic. A derivation system
and compositional logic for security protocols. J. of Comp. Security, 13:423–482, 2005.

[18] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A derivation sys-
tem for security protocols and its logical formalization. In Dennis Volpano, editor,
Proceedings of CSFW 2003, pages 109–125. IEEE, 2003.

[19] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. Abstraction and
refinement in protocol derivation. In Riccardo Focardi, editor, Proceedings of CSFW
2004, pages 30–47. IEEE, 2004.

[20] Whitfield Diffie and Susan Landau. Privacy on the Line: The Politics of Wiretapping
and Encryption. MIT Press, 2010.

[21] Jan van Dijk. The Network Society. SAGE Publications, 2012.

[22] Nancy Durgin, John Mitchell, and Dusko Pavlovic. A compositional logic for proving
security properties of protocols. J. of Comp. Security, 11(4):677–721, 2004.

[23] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[24] Maurice H. Yearwood et al. On wealth and the diversity of friendships: High social class
people around the world have fewer international friends. Personality and Individual
Differences, 87:224 – 229, 2015.

30

[25] Joseph A. Goguen and Jose Meseguer. Security policies and security models. In Proc.
of IEEE Symposium on Security and Privacy, Oakland, CA, pages 11–20. IEEE, 1982.

[26] Jürgen Habermas. The Structural Transformation of the Public Sphere: An Inquiry
Into a Category of Bourgeois Society. Studies in contemporary German social thought.
MIT Press, 1991.

[27] Godfrey H. Hardy, John E. Littlewood, and George Pólya. Inequalities. The University
Press, 1934.

[28] Michal Kosinski, David Stillwell, and Thore Graepel. Private traits and attributes
are predictable from digital records of human behavior. Proceedings of the National
Academy of Sciences, 110(15):5802–5805, 2013.

[29] Bradley Malin and Latanya Sweeney. Re-identification of DNA through an automated
linkage process. In AMIA 2001, American Medical Informatics Association Annual
Symposium, Washington, DC, USA, November 3-7, 2001. AMIA, 2001.

[30] Albert W. Marshall and Ingram Olkin. Inequalities: Theory of Majorization and Its
Applications, volume 143 of Mathematics in Science and Engineering. Academic Press,
1979.

[31] Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: Theory of Ma-
jorization and Its Applications. Springer-Verlag New York, 2011.

[32] Daryl McCullough. Covert channels and degrees of insecurity. In First IEEE Computer
Security Foundations Workshop - CSFW’88, Franconia, New Hampshire, USA, June
12-15, 1988, Proceedings, pages 1–33. MITRE Corporation Press, 1988.

[33] John McLean. Security models and information flow. In IEEE Symposium on Security
and Privacy, pages 180–189, 1990.

[34] John McLean. Security models. In Encyclopedia of Software Engineering, page 85.
Wiley, 1994.

[35] Catherine Meadows and Dusko Pavlovic. Deriving, attacking and defending the GDOI
protocol. In Peter Ryan, Pierangela Samarati, Dieter Gollmann, and Refik Molva,
editors, Proceedings of ESORICS 2004, volume 3193 of Lecture Notes in Computer
Science, pages 53–72. Springer Verlag, 2004.

[36] Catherine Meadows, Radha Poovendran, Dusko Pavlovic, LiWu Chang, and Paul Syver-
son. Distance bounding protocols: authentication logic analysis and collusion attacks.
In R. Poovendran, C. Wang, and S. Roy, editors, Secure Localization and Time Syn-
chronization in Wireless Ad Hoc and Sensor Networks. Springer Verlag, 2006.

31

[37] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP ’08,
pages 111–125, Washington, DC, USA, 2008. IEEE Computer Society.

[38] Michael A. Nielsen. Characterizing mixing and measurement in quantum mechanics.
Physical Review A, 63(2):022114, February 2001.

[39] Lena C. Orlin. Locating Privacy in Tudor London. Oxford University Press, 2009.

[40] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: Bringing order to the Web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[41] Dusko Pavlovic. Network as a computer: ranking paths to find flows. In Alexan-
der Razborov and Anatol Slissenko, editors, Proceedings of CSR 2008, volume
5010 of Lecture Notes in Computer Science, pages 384–397. Springer Verlag, 2008.
arxiv.org:0802.1306.

[42] Dusko Pavlovic and Catherine Meadows. Deriving authentication for pervasive security.
In John McLean, editor, Proceedings of the ISTPS 2008. ACM, 2008. 15 pp.

[43] Dusko Pavlovic and Catherine Meadows. Actor Network Procedures. In Ram Ra-
manujam and Srini Ramaswamy, editors, Proceedings of International Conference on
Distributed Computing and Internet Technologies 2012, volume 7154 of Lecture Notes
in Computer Science, pages 7–26. Springer Verlag, 2012. arxiv.org:1106.0706.

[44] Dusko Pavlovic and Catherine Meadows. Deriving ephemeral authentication using chan-
nel axioms. In Bruce Christianson et al, editor, Security Protocols XVII, volume 7028
of Lecture Notes in Computer Science, pages 240–268. Springer Verlag, 2013.

[45] Duško Pavlović and Martín Escardó. Calculus in coinductive form. In Vaughan Pratt,
editor, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science,
pages 408–417. IEEE Computer Society, 1998.

[46] Karl R. Popper. Conjectures and Refutations: The Growth of Scientific Knowledge.
Classics Series. Routledge, 2002.

[47] Phillip Rogaway. The moral character of cryptographic work. IACR Cryptology ePrint
Archive, 2015:1162, 2015.

[48] John Rushby. Noninterference, transitivity, and channel-control security policies, 1992.
Technical report.

[49] Donald G. Saari. Basic Geometry of Voting. Basic Geometry of Voting Series. Springer
Berlin Heidelberg, 1995.

32

[50] Ferdinand D. Schoeman. Philosophical Dimensions of Privacy: An Anthology. Cam-
bridge University Press, 1984.

[51] Claude E. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 28(4):656–715, 1949.

[52] David Sutherland. A model of information. In Proc. of the 9th National Computer
Security Conference, pages 175–183, 1986.

[53] Kotaro Suzumura. Rational Choice, Collective Decisions, and Social Welfare. Cam-
bridge University Press, 2009.

[54] Latanya Sweeney. Weaving technology and policy together to maintain confidentiality.
Journal of Law, Medicine and Ethics, 25:98–110, 1997.

[55] Latanya Sweeney. Achieving k-anonymity privacy protection using generalization and
suppression. International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, 10(5):571–588, 2002.

[56] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[57] Samuel D. Warren and Louis D. Brandeis. The right to privacy. Harvard Law Review,
4(5):193–220, 1890.

[58] Wikipedia. Cambridge Analytica. wikipedia.org/wiki/Cambridge_Analytica.

[59] Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for a Human Future
at the New Frontier of Power. PublicAffairs, 2019.

Appendix: Proofs

Proof of Prop. 2.6. Given a doubly substochastic matrix M , form the doubly stochastic
matrix M̃ as follows. For any x = (x1 · · ·xn), let diag(x) be the square matrix with x along
its main diagonal, and zeros elsewhere. Let 1̄ denote the all 1’s vector. Then we may define
a doubly stochastic matrix.

M̃ =

[
M I − diag(M 1̄)

I − diag(M⊺1̄) M⊺

]

(a) ⇒ (b) Suppose β = Dγ, where β, γ ∈ DY , and D is a n×n doubly substochastic matrix

with n = max(#β,#γ) . Then as above we form D̃ which is a 2n × 2n doubly stochastic
matrix. We apply Birkhoff’s Theorem [10], which states that the set of doubly stochastic

matrices is the convex hull of the permutation matrices, to D̃. Thus we write D̃ =
∑m

i=0 λiP
′
i ,

33

where m < (2n)!, λi ∈ [0, 1],
∑m

i=0 λi ≤ 1, and P ′
i are 2n × 2n permutation matrices. We

may extract the upper left n × n matrices from each P ′
i and denote them by Pi. Then we

have β = Dγ =
∑m

i=0 λiPiγ, and we are done.

(b) ⇒ (a) In a similar manner as above, suppose β =
∑m

i=0 λiPiγ, where the Pi are partial

permutations and λi and m satisfy the conditions above. Then for each Pi we form P̃i which
are permutation matrices since they are doubly stochastic with only 1’s and 0’s as entries.
By Birkhoff’s Theorem,

∑m
i=0 λiP̃i is a doubly stochastic matrix, say D′, since it is a convex

combination of permutation matrices. Extract the upper left n × n submatrix of D′ and
label it D. Then we have

β =
m∑

i=0

λiPiγ = Dγ.

Thus we have (b) ⇔ (a).

(a) ⇒ (c) As above, suppose β = Dγ, and let di,j denote the entry in row i, column j.
We follow the proof of theorem A.4 in [31]. Let P,Q be any permutation matrices such
that Pβ = β↓ and Qγ = γ↓, i.e., they are reordered in decreasing order. Since P and Q
are invertible, β = Dγ if and only if Pβ = PDQ−1Qγ. In addition, PDQ−1 is a doubly
substochastic matrix since we may simply multiply on the right (left) by 1̄ (1̄⊺) respectively
and observe the entries of the resulting vector are in [0, 1]. Thus we may assume for simplicity
that β and γ are in decreasing order. Then we have

∫
β(k) =

k∑

i=0

β(i) =

k∑

i=0

n−1∑

j=0

γ(j)di,j =

n−1∑

j=0

γ(j)

k∑

i=0

di,j.

Let tj =
∑k

i=0 di,j and ǫ = k+1−
∑n−1

j=0 tj. Since D is substochastic, it follows that 0 ≤ ǫ ≤ k.
Now we show β ≺ γ.

k∑

i=0

β(i)−
k∑

i=0

γ(i) =

n−1∑

j=0

γ(j)

k∑

i=0

di,j −
k∑

i=0

γ(i)

=

n−1∑

j=0

γ(j)tj −
k∑

i=0

γ(j) + γ(k)

(
k + 1− ǫ−

n−1∑

j=0

tj

)

=

k∑

i=0

(γ(i)− γ(k)) (ti − 1) +

n−1∑

i=k+1

(γ(i)− γ(k)) ti − γ(k)ǫ

≤0

The last inequality follows since γ(i)− γ(k) is ≥ 0 for i ≤ k and ≤ 0 otherwise. In addition,
0 ≤ ti ≤ 1. Thus β ≺ γ.

(c) ⇒ (a) As before, we may assume β and γ are in descending order. We now will find
where they differ and transform γ to β by a series of substochastic transformations and
permutations.

34

We now perform the first step. Let j be the greatest index where β(j) < γ(j), and if j does
not exist then we are done since they are equal. Let k > j be the smallest index such that
β(k) > γ(k). If k does not exist, i.e., β is less than γ component-wise, then form

D = diag(
β(0)

γ(0)
,
β(1)

γ(1)
, . . . ,

β(m− 1)

γ(m− 1)
, 0, . . . , 0)

where γ(m) = 0 and γ(i) > 0 for i < m. Clearly D is substochastic and β = Dγ. Let
us assume k exists. We now define a T-transformation as follows. Let λ ∈ [0, 1] and Q a
permutation matrix. Then a T -transformation has the form

T = λI + (1− λ)Q.

Observe that
γ(j) > β(j) ≥ β(k) > γ(k).

Now define

λ = 1−
min(γ(j)− β(j), β(k)− γ(k))

γ(j)− γ(k)
.

Let Q be the permutation matrix switching out the j and k coordinates, and let T as above.
Then let γ′ = Tγ. Observe that β ≺ γ′ since the total sum is preserved up to j since∫
γ′(i) =

∫
γ(i) ≥

∫
β(i) for i < j. At j, if

γ(j)− β(j) ≤ β(k)− γ(k),

then
γ′(j) = β(j),

otherwise
γ′(j) = γ(k) + γ(j)− β(k).

In either case we have γ′(j) ≥ β(j). Thus
∫
γ′(j) ≥

∫
β(j). For j < i < k, by choice of i, j

we have γ′(i) = γ(i) = β(i), and hence
∫
γ′(i) ≥

∫
β(i). Finally for i ≥ k, by definition of

the transformation, T ,
∫
γ′(i) =

∫
γ(i) =

∫
β(i). Thus we have β ≺ γ′.

Note that each time we perform this step, since either the γ′(j) = β(j) or γ′(k) = β(k), we
convert one point a γ′ to a point of β. Thus within n steps we will finish, and we are done.

�

Proof of Prop. 2.8. We show that there is a common ordering for
c
B. It follows that

c
B

is then majorized by the elements of B.

35

Let us first show
c
B is ordered by ϑ. The essential condition we must show is thatc

Bϑ(j) ≥
c
Bϑ(j + 1). For ease of notation let βj denote the element of B that mini-

mizes the sum
∑j

i=0 βϑ(i).

k
Bϑ(j) =

(
∂
∧

β∈B

∫
βϑ
)
(j)

= min
β∈B

j∑

i=0

βϑ(i)−min
β∈B

j−1∑

i=0

βϑ(i)

≥

j∑

i=0

βjϑ(i)−

j−1∑

i=0

βjϑ(i)

= βjϑ(j)

≥ βjϑ(j + 1)

=

j+1∑

i=0

βjϑ(i)−

j∑

i=0

βjϑ(i)

≥ min
β∈B

j+1∑

i=0

βϑ(i)−min
β∈B

j∑

i=0

βϑ(i)

=
k

Bϑ(j + 1)

Thus
c
B is ordered by ϑ, and we now show that it is majorized by all γ ∈ B.

∫ k
B↓(k) =

∫ k
Bϑ(k)

=
∫ (
∂
∧

β∈B

∫
βϑ
)
(k)

=min
β∈B

k∑

i=0

βϑ(i)

≤
k∑

i=0

γϑ(i)

=
∫
γ↓(k)

Observe by definition the bound is tight, since for every k there is a β ∈ B such that∫ c
B↓(k) =

∫
β↓(k). �

Proof of Lemma 2.11. By definition, we have
⋃
y∈Y

By = Y . Now we show, given u, v ∈ Y

that Bu ∩ Bv is either empty or Bu = Bv. If u 6= v and |Bv| = 1 or |Bu| = 1 then
Bu ∩ Bv = ∅ since a consistency class with only one element implies that the element can

36

not be in any ⊳-cycles. Let us assume both Bu and Bv have more than one element and
∃ w ∈ Bu ∩ Bv. The previous statements imply ∃ δ0, δ1, . . . , δm, γ0, γ1, . . . , γn ∈ B and
u1, u2, . . . , um, v1, v2, . . . , vn ∈ Y such that we have the two following ⊳-cycles

w
δ0
⊳ u1 . . . um

δm
⊳ w

w
γ0
⊳ v1 . . . vn

δn
⊳ w

where there are i, j so that ui = u and vj = v. Without loss of generality, let x ∈ Bu. We
will show x ∈ Bv. Then as above, x is in a ⊳-cycle

x
α0

⊳ u′1 . . . u
′
p

αp

⊳ x

where we there is a k so that u′k = u. Then we may construct the following ⊳-cycle

x
α0

⊳ u′1 . . .
αk

⊳ u′k = ui . . . um
δm
⊳ w

γ0
⊳ v1 . . . vn

δn
⊳ w

δ0
⊳ u1 . . . ui = u′k . . . u

′
p

αp

⊳ x

Thus we have shown that x ∈ Bv. For the second part of the lemma, we must show that

if Bu ∩ Bv = ∅ then Bu

δ

E Bv or Bv

δ

E Bu for all δ ∈ B. If there exists δ, γ ∈ B and

x ∈ Bu, y ∈ Bv so that x
δ
⊳ y and y

γ

⊳ x, then it follows x ∈ Bv and y ∈ Bu resulting in a
contradiction. �

Proof of Prop. 2.12. We first show β̂ is consistent with all elements of B. Let γ ∈ B.

Suppose u
γ

⊳ v. Then either Bu ∩ Bv = ∅ or Bu = Bv. If the intersection is empty, then by

lemma 2.11 it follows Bu

β

E Bv. Hence u
β̂

E v. It the intersection is nonempty, it follows

Bu = Bv and trivially u
β̂

♦ v.

Conversely, suppose u
β̂

⊳ v. Then Bu 6= Bv and by lemma 2.11 the intersection is empty. In

addition, since w
β

⊳ x for some w ∈ Bu and x ∈ Bv it follows u
γ

E v. Thus β̂ is consistent
with the elements of B.

Now we show β̂ is maximal with regards to all sources consistent with the elements of B
and majorized by β. Note trivially that β̂ ≺ β since by definition β̂(u) ≤ β(u) for all
u ∈ Y . Suppose α ∈ DY is consistent with the elements of B. We first make a quick
observation, which is that any source consistent with each element of B, will be constant on

the consistency classes of B, i.e., Bu for u ∈ Y . Let w, x ∈ Bu and suppose w
α
⊳ x. Then

since α is consistent with B, we have w
δ

E x for all δ ∈ B. This is a contradiction, since

there must exist a γ such that x
γ

⊳ w, otherwise x, w /∈ Bu. From here it is immediate that β̂
was chosen maximally. This follows since both α and β̂ are constant on consistency classes
of B. Furthermore since α ≺ β, it follows for any u that

α(u) ≤
∧

y∈Bu

β(y) = β̂(u)

37

. Thus β̂ is maximal with regards to the majorization preorder.

The final part of the proposition is to show that the set B̂ =
{
β̂ | β ∈ B

}
is consistent.

It follows from lemma 2.11 and the previous remark, that any source consistent with each
element of B will be constant on the consistency classes. In particular, the lemma implies

that the consistency classes are ordered under
B

E. The previous remark implies that we may
find a common ordering based upon the ordering of the consistency classes. Then since we
have a common ordering for B̂, by prop. 2.10 it is consistent. �

38

	1 Introduction: What is privacy?
	2 Resources and their fusion
	2.1 Concepts
	2.2 Examples
	2.3 Resource fusion
	2.3.1 Preferences and consistency
	2.3.2 Majorization preorder
	2.3.3 Meets, joins, and fusions

	3 Privacy protocols for private channels
	3.1 Concepts
	3.2 Basic privacy protocols
	3.3 Examples of basic protocols
	3.4 Composing privacy protocols

	4 Local privacy failures: Covert channels
	4.1 Privacy protocol failures

	5 Nonlocal privacy failures: Covert protocols
	5.1 Man-in-the-Middle protocols
	5.2 Resource inflation, privacy deflation

	6 From security protocol analysis to privacy protocol analysis

