
A Multiset Rewriting Model for Specifying and
Verifying Timing Aspects of Security Protocols

Musab A. Alturki1,2 Tajana Ban Kirigin3 Max Kanovich4,8 Vivek Nigam5,6

Andre Scedrov7,8 and Carolyn Talcott9

1 KFUPM, Dhahran, Saudi Arabia, musab@kfupm.edu.sa
2 Runtime Verification Inc., USA

3 University of Rijeka, Department of Mathematics, HR, bank@math.uniri.hr
4 University College, London, UK, m.kanovich@ucl.ac.uk

5 Federal University of Paraíba, João Pessoa, Brazil, vivek@ci.ufpb.br
6 fortiss, Germany, nigam@fortiss.org

7 University of Pennsylvania, Philadelphia, USA, scedrov@math.upenn.edu
8 National Research University Higher School of Economics, Moscow, Russia

9 SRI International, USA, clt@csl.sri.com

Abstract. Catherine Meadows has played an important role in the ad-
vancement of formal methods for protocol security verification. Her in-
sights on the use of, for example, narrowing and rewriting logic has made
possible the automated discovery of new attacks and the shaping of new
protocols. Meadows has also investigated other security aspects, such
as, distance bounding protocols and denial of service attacks. We have
been greatly inspired by her work. This paper describes the use of Mul-
tiset Rewriting for the specification and verification of timing aspects of
protocols, such as network delays, timeouts, timed intruder models and
distance bounding properties. We detail these timed features with a num-
ber of examples and describe decidable fragments of related verification
problems.

1 Introduction

Protocol security verification is one of the best success stories of formal methods.
Indeed a number of attacks and corrections have been discovered since Lowe
found an attack on the Needham-Schroeder protocol [25,29]. Catherine Meadows’
work, particularly her work on the NRL protocol analyzer [26] and Maude-
NPA [11], has played a great role in this success story. She has used formal
models, such as Rewriting Logic and Narrowing, to advance the use of formal
methods in protocol security verification.

However, much of the use of formal methods does not consider the protocols
timing aspects. An exception is Meadows’ work on Distance Bounding (DB)
Protocols [28,31], which has been an inspiration to our previous work,10 and her
cost-based framework for analyzing DoS attacks [27]. In a sequence of papers [1,

10Indeed, it was Cathy that suggested us to investigate DB protocols.

19, 22, 23], we have developed a number of models based on Multiset Rewriting
that investigate different timing aspects of protocols.

A key aspect of Meadows’ work is her careful and insightful formalization of
important aspects of the assumptions and actions of a protocol. In this spirit,
here we describe general Timed Multiset Rewriting (MSR) theories of networks,
protocols, and intruders, and show how these theories support representation of
diverse timing aspects of protocol execution. We illustrate these aspects with
examples. In particular, we model the following timing aspects:

– Network and processing delays, important, e.g., in DB protocol specification
and verification;

– Protocol timeouts that have specific applications in a variety of protocols;
– Timed Dolev-Yao intruder, which is similar to the standard Dolev-Yao in-

truder model in that he can create fresh nonces, compose and decompose
messages, for which he possesses the decryption key. However, timed intruder
is amended with time features in order to make the physical properties of the
system relevant. For example, in contrast to the Dolev-Yao intruder, timed
intruder is not able to learn messages immediately, instead, he must obey
the restrictions imposed by the physical transmission channel used and wait
for a message to reach him.

We illustrate these aspects by specifying DB protocols and protocols with time-
outs. The specifications presented here are more general than the ones appearing
in our previous work by including all the timing aspects described above.

As an added benefit, we specify verification problems for timed protocol and
intruder theories, and obtain some complexity results including the PSPACE-
completeness of the secrecy problem. This builds on our past work in which we
have developed a rich complexity theory for problems formulated in terms of
(Timed) MSR [23].

The paper starts with the description of some timing aspects of security pro-
tocols in Section 2. In Section 3, we present the Timed MSR of [23]. In Sections 4
and 5 we define timed protocol and intruder theories. Section 6 introduces rel-
evant verification problems with examples. We present the related complexity
results in Section 7. Finally, in Section 8 we conclude by discussing related work
and pointing to future work.

2 Timing Aspects of Security Protocols

We illustrate timing aspects of protocols with two examples. The first one is on
distance bounding protocols and the second is on the use of timeouts.

2.1 Distance-bounding Protocols

Distance-bounding protocols (DB) [4, 14] aim to enhance traditional authenti-
cation with additional assurance of users’ physical proximity. The goal of a DB
protocol is to provide access to some resource only to valid provers that are

2

within a specified distance bound, and, at the same time, reject access to intrud-
ers and to provers that are located outside of the distance bound perimeter. By
measuring the round trip time of a challenge-response bit exchange, the verifier
deduces the upper bound on the distance of a prover.

Attacks on communication protocols, such as relay attacks on DB proto-
cols, can only be analyzed using models with high-resolution timing information
representing physical properties of the communication medium. In order to ac-
commodate such requirements, our models for the formalization and verification
of timed protocols include explicit real time and specific time aspects involving,
e.g., comparisons of time variables.

Vulnerabilities of DB protocols, besides cryptographic properties, exploit not
only the timing aspects, but also the presence of other honest and dishonest
provers, the presence of other verifiers, and colluding intruders, see e.g., [7]. Our
model can accommodate such aspects as well. For example, rules of protocol
theories (as specified later in Section 4) represent the behavior of verifiers and
honest provers. Dishonest provers may be represented through intruder theories
(as specified later in Section 5) with specific initial knowledge. Alternatively,
theories representing specific behaviors of dishonest provers can be specified,
modeling e.g., early responses and guessing. Consequently, verification of DB
protocols using our model can reveal various known types of attacks, includ-
ing in-between-ticks attack [23], distance hijacking [7], among others, including
vulnerabilities in multi-protocol environments.

2.2 Timeouts

Protocol Session Timeouts become relevant when considering timing aspects,
such as, network communication delays. Http/Https protocols use timeouts to
limit waiting time in multiple situations: idle connections, client waiting for
server responce, server waiting for client to complete a request. The Session Ini-
tiation Protocol (used by VOIP and other communication protocols) uses timers
to limit the waiting time during different steps of the protocol. For example if
the called party is not available the initialization should not ring forever! The
ability to reset such timers provides readily available attack surfaces.

Lifetime/time-to-live is another important time related concept. Networking
protocols (for example, TLS, Kerberos) often use tickets to control access. These
tickets typically have a lifetime after which they are no longer valid. Packets
traveling through the network (for example TCP/IP) often have a time-to-live
to avoid loops and problems delaying delivery.

As an illustration of the use of timeouts, consider the protocol shown in
Figure 1a. It is a version of the Needham-Schroeder protocol [29] with timeouts.
In particular, Alice starts the communication with Bob as in the original NS, by
creating a fresh nonce NA, at time t0, reaching Bob at time t1. Bob answers by
creating a fresh nonce NB and sending it at time t2, reaching Alice at time t3.
Then Alice responds at time t4 reaching Bob at time t5. The difference is that
Alice waits for Bob’s response for a given period, Timeout. If expected message
is not received within this period, the protocol session is terminated.

3

t = t0

t′ = t3

t1

t2

t4 t5

{NA, A}KB

{NA, NB}KA

{NB}KB

t′ − t ≤ Timeout

Alice Bob

(a) Needham-Schroeder Protocol
with Timeout.

t = t0 t1

t2

{NA, A}KM

{NA, NB}KA

Alice Mallory Bob

t3
{NA, A}KB

t4
t5

t6
t′ = t7

t8

{NA, NB}KA

t9

t10

{NB}KM

{NB}KB

t11

t′ − t ≤ Timeout

(b) Timed Version of Lowe Attack.

Fig. 1: Adding Timeouts to Needham-Schroeder Protocol.

The use of timeouts has implications to an intruder, as shown in the timed
version of the Lowe Attack [25] in Figure 1b. In particular, the intruder has to
be able to send the response {NA, NB}KA

to Alice within the period Timeout.
That is, for that attack to succeed, t7 − t0 ≤ Timeout has to hold.11

For the traditional Dolev-Yao intruder, this is not a problem as he imper-
sonates the network. Thus he can forward messages instantaneously. This may
lead to false positives, as it is not physically possible to forward messages in-
stantaneously. We propose in Section 5, therefore, a refinement of the Dolev-Yao
intruder which takes timing aspects, such communication and processing delays,
into account.

3 Timed Multiset Rewriting

We review Timed Multiset Rewriting of [23] which is the language we use to
specify timed protocol and intruder theories. Assume a finite first-order typed
alphabet, Σ, with variables, constants, function and predicate symbols. Terms
and facts are constructed as usual by applying symbols with correct type [10].
For instance, if P is a predicate of type τ1×τ2×· · ·×τn → o, where o is the type
for propositions, and u1, . . . , un are terms of types τ1, . . . , τn, respectively, then
P (u1, . . . , un) is a fact. A fact is grounded if it does not contain any variables.

Timestamped facts are used to specify systems that explicitly mention time.
Timestamped facts have the form F@T , where F is a fact and T is its times-
tamp, which can be a variable or a non-negative real number. There is a special
predicate Time with arity zero, used to represent the global time. A configu-
ration is a multiset of ground timestamped facts, {Time@t, F1@t1, . . . , Fn@tn},
with a single occurrence of a Time fact.

11For simplicity, we ammended only the initiator role, Alice, with a timeout. Since
Lowe attack is an attack against both Alice and Bob, the protocol could similary be
enhanced with another timeout in the reponder role that would additionally enable
Bob to detect that something is wrong.

4

Actions Actions are multiset rewrite rules and are either time advancement or
instantaneous actions. The Tick action, Time@T −→ Time@(T + ε), where
ε can be instantiated by any positive real number, represents the advancement
of time. We also write Tickε when we refer to the Tick rule for a specific ε.
Applying the Tickε rule to the configuration {Time@t, F1@t1, . . . , Fn@tn} yields
the configuration {Time@(t+ ε),F1@t1, . . .,Fn@tn} where time advances by ε.

The remaining actions are the Instantaneous Actions, which do not affect the
global time, but may rewrite the remaining facts. They have the following form:

Time@T,W1@T1, . . . ,Wk@Tk, F1@T
′
1, . . . , Fn@T

′
n | C −→

∃X.[Time@T,W1@T1, . . . ,Wk@Tk, Q1@(T +D1), . . . , Qm@(T +Dm)],
where D1, . . . , Dm are natural numbers and C is the guard of the action which is
a set of constraints involving the time variables appearing in the pre-condition,
i.e. the variables T, T1, . . . , Tk, T ′

1, . . . , T
′
n. Facts W1@T1, . . . , Wk@Tk are pre-

served by the rule, while F1@T
′
1, . . . , Fn@T

′
n are replaced by Q1@(T +D1),. . .,

Qm@(T +Dm). All free variables appearing in the post-condition shall appear
in the pre-condition. Time constraints are of the form:

T ≥ T ′ ±D, T > T ′ ±D and T = T ′ ±D
where T and T ′ are time variables, and D is a natural number. In the above rules
we omit the time constraints whenever the set C of time constraints is empty.

An instantaneous rule of the form P | C −→ ∃X.P ′ can be applied to a
configuration S if there is a subset S0 ⊆ S and a matching substitution θ, such
that S0 = Pθ and Cθ evaluates to true. The resulting configuration from the
application of this rule is (S \S0)∪((P ′σ)θ), where σ is a substitution that maps
the existentially quantified variables X to fresh constants, that is, constants not
appearing in S. These fresh values are also called nonces in protocol security
literature [5, 9].12 For example, the action

T ime@T, F1(X,Y)@T1 | T1 ≥ T + 1 −→ ∃N.[T ime@T, F2(X,Y,N)@(T + 3)]

can be applied to configuration {Time@5.1, F1(a, b)@7.5} resulting in configu-
ration {Time@5.1, F2(a, b, n1)@8.1}, where the fact F1(a, b)@7.5 is replaced by
F2(a, b, n1)@8.1 with n1 being a fresh constant. Notice that instantaneous ac-
tions do not change the global time. Moreover, the timestamps of the facts that
are created by instantaneous actions are in the present or the future.

A trace of timed MSR rules R from a given initial configuration S0 is a
sequence of configurations S0 −→r1 S1 −→r2 · · · −→rn Sn, such that for all
0 ≤ i ≤ n− 1, Si+1 is a configuration obtained by applying ri+1 ∈ R to Si.
Goal Configurations Among all the possible traces we will be interested in
traces that reach some goal. A goal configuration is specified by a goal GS which
is a set of pairs { 〈S1, C1〉, . . . , 〈Sn, Cn〉 }. Each pair 〈Sj , Cj〉 is of the form:
〈 {F1@T1, . . . , Fp@Tp}, Cj 〉, where T1, . . . , Tp are time variables, F1, . . . , Fp are
facts and Cj is a set of time constraints involving only variables T1, . . . , Tp. A
configuration S is a goal configuration w.r.t. GS if for some 1 ≤ i ≤ n, there is
a grounding substitution, σ, such that Siσ ⊆ S and Ciσ evaluates to true.

12Substitution application (Sθ) is defined as usual [10], i.e., by mapping time vari-
ables in S to non-negative real numbers, nonce names to nonce names (renaming of
nonces) and term variables to terms.

5

For example, the configuration {Time@10.5, F@12.3, G(a)@0.1} is a goal
configuration w.r.t. the goal { 〈 {Time@T, F@T1}, {T1 ≥ T }〉 }.

Reachablity is one of the main verification problems for MSR systems.

Definition 1. [Reachability problem] Given a timed MSR T , a goal GS and
an initial configuration S0, is there a trace, P, that leads from S0 to a goal
configuration?

Balanced Rules Balanced rules were introduced in [32]. Systems containing only
balanced rules represent an important class of systems for which several reach-
ability problems have been shown to be decidable [16,21,23].

A rule is balanced if the number of facts appearing in its pre-condition is the
same as the number of facts appearing in its post-condition. An MSR system is
balanced if all its rules are balanced.

As described in [16], any unbalanced rule can be made balanced by using
so-called empty facts. For example, the unbalanced rule: Time@T, F1@T1 −→
Time@T, F1@T1, F2@T2 can be turned into a balanced rule by adding an empty
fact to its pre-condition, Time@T, F1@T1, P@T3 −→ Time@T, F1@T1, F2@T2.

Balanced systems have the following important property: All the configu-
rations in a trace of a balanced system have the same number of facts. Hence,
balanced systems are suitable e.g., for modeling scenarios with a fixed amount of
memory. As in [16], empty facts represent available free memory slots. In order
to model systems and intruders with bounded memory, we will consider empty
facts related to the system including agents, servers and the network, D facts,
and additionally consider empty facts related to each specific intruder s, P (s).

For some of our complexity results (in Section 7), we will assume an upper-
bound on the size of facts. The size, |F@t|, of a timed fact F@t is the total
number of symbols in F . For example, |M(a, {a, b}k)@t| = 5.

4 Timed Protocol Theories

In the traditional “Alice and Bob” protocol notation and specification (such as
the one used in Figure 1, Section 2.2) timing aspects of protocols are not formally
specified. Neccessary assumptions about time, such as the time requirements
for the fulfillment of a protocol session, are not included. For example, in the
description of distance-bounding protocols it is only informally described that
the verifier remembers the time of sending a challenge bit and the time when
receiving the response bit, which are then used to make a decision whether of
not to grant access. Moreover, from the traditional protocol description, it is not
clear which assumptions about the network are used, such as the transmission
medium used by the participants. Furthermore, it is not formally specified which
properties does the above protocol ensure, in which conditions, and against which
intruders. Security verification should include such specifications when checking
whether a system is vulnerable to an attack.

Given a timed MSR model and an initial configuration representing the
knowledge of participating agents and intruders, their capabilities and behavior

6

(including protocol rules), we look for a trace representing an attack. For that
purpose, a goal configuration will denote that a protocol has suffered an attack.

For protocol and intruder theories that obey the physical laws involving time,
it is, in particular, important to consider network delays and processing time.
Non-zero processing time can be formalized by adding time constraints to rules,
e.g., Time@T, M(m)@T ′ | {T > T ′ } −→ Time@T, M(m)@T ′, NS(m

′)@T.
Similarly, faithful timing of message transmission for a given network topology
between agents can be obtained by adding to transmission rules constraints that
involve relevant distances, e.g.:

Time@T,NS(A,X)@T ′ | {T ≥ T ′ +D(A,B) } −→ Time@T,NR(B,X)@T,
where D(A,B) denotes the time required for messages to travel the distance
from agent A to agent B.

4.1 Network Theory

We enhance the traditional network models used for protocol execution. A suit-
able network model used for communication during protocol execution should
take care of distances between agents. More specifically, it should not only take
care of physical distances between protocol participants, but also represent var-
ious available transmission media and the corresponding network distances, i.e.,
transmission speed, as well as availability of some transmission channel to a
particular agent for sending or receiving messages.

We assume that a topology of participating agents, including intruders, repre-
senting communicating distances (network distances) between agents, is given.
We also assume that agents’ and intruder’s capabilities of using transmission
channels, are given.13 We model capabilities of agents of sending and receiving
messages on some particular transmission media and the corresponding time dis-
tances between agents per specific media. Hence, network distances are specified
per pair of participants on a specific transmission channel.

We assume that agents do not move. This is also suitable for scenarios where
agents may move at a speed that is negligible w.r.t. transmission speed.

Our signature is based on the signature used to model protocols and the
Dolev-Yao intruder model in [8, 9] and timed Dolev-Yao intruders in [23, 30]. In
order to provide a finer formalization of the network that supports the timing
aspects, we add the following predicate and constant symbols to the signature:
D(A,B,C), natural number denoting the network delay time in communication

from agent A to agent B when using transmission media C;
NS(A,C,m)@t, denoting that message m was sent by agent A on transmission

medium C at moment t;
NR(A,C,m)@t, denoting that message m may be received by agent A on

transmission medium C;
CapS(A,C), denoting that the agent A is capable of sending messages on

transmission medium C;
13Instead of such fixed connections of agents to particular channels it is possible to

represent agents establishing or dropping connections by additional rules in the model.

7

NET-1: T ime@T,CapS(A,C)@T1, CapR(B,C, 1)@T2,NS(A,C,X)@T3

| T ≥ T3 +D(A,B,C) −→
T ime@T,CapS(A,C)@T1, CapR(B,C, 1)@T2,NR(B,C,X)@T

NET-2: T ime@T,CapS(A,C)@T1, CapR(B,C, 2)@T2,NS(A,C,X)@T3

| T ≥ T3 +D(A, I, C) −→
T ime@T,CapS(A,C)@T1, CapR(B,C, 2)@T2,NS(A,C,X)@T3,NR(B,C,X)@T

Fig. 2: Network Theory

CapR(A,C, k), denoting that the agent A is capable of receiving messages on
transmission medium C, where for k = 1 the message is removed
from the network, while for k = 2 reading does not remove
messages from the network.

Network rules are shown in Figure 2. Transmission of messages is encoded as
the transformation of NS facts to NR facts, i.e., network delivers sent messages
according to the receipt capabilities and time distances between participants.

Network theory rules ensure that a message may be received, only after the
corresponding message transmission time, so-called “time of flight”, has passed.
These rules also ensure that agents and intruders only send and receive messages
on communication channels they are connected to, i.e., for which they have
capabilities of sending or receiving messages. Rule NET-1 models message receipt
that removes messages from the network, while NET-2 models non-consumption
message receipt, so that the same message X may additionally be received by
other agents without re-sending (as in e.g., radio transmission). Which of the
two rules is used depends on the nature of the transmission media modeled,
which is specified through CapR(X,Y, k) facts by having k = 1 or k = 2.

4.2 Protocol Theories

In the verification of protocols for which time plays a prominent role, such as
distance-bounding protocols and cyber-physical systems in general, explicit real
time is needed for representation of continuity of time in the real physical world.

Our timed MSR model presented in Section 3 is suitable for this purpose. In
addition, our model is also suitable for expressing protocols with timeouts.

Since the execution and verification of security protocols may be affected by
processing time, we add duration to the rules specified by dur function. The
arguments and the value of this function are specific to each rule. For example,
the length of the plaintext and the key may effect the duration of the encryption.
Duration of a rule execution, i.e., dur function, may be used when suitable,
e.g., in verification of attacks that involve the variance of execution time, such
as passport traceability attacks in [6]. Rules for which the dur function is not
explicitly mentioned, have zero execution time.

Similarly, protocol states may or may not have timeouts. Once a timeout of
a protocol state has passed, the protocol session changes its state.

8

A general theory of security protocols involving time is specified below. It
includes the following predicate symbols:

E@t, denoting empty memory slots available for the network and the agents
(different from intruders) from the moment t;

SAi (n,X), denoting the protocol state predicate of the role A in the session
with identifier n;

TA
i (n)@t, denoting that the protocol state SAi (n,X) times out at moment t.

A protocol state Si associated with a timeout will be accompanied by the corre-
sponding Ti fact, created by the rule leading to that protocol state.

In protocol theories related to traditional security protocols formalized in
[9], a protocol execution rule represents an event of a message being received,
followed by an immediate message reply. In order to model a variety of protocols,
we allow protocol theories where at some protocol state, sending of a message
may not be necessarily triggered by a message receipt. Similarly, a receipt of
a message at some protocol state, may not be immediately followed by a reply
message being sent. As in [9,16] protocols involve a number of roles that can be
played by the participants, such as initiator, responder, client or server role.

Definition 2 (Protocol Theory). A protocol theory P is specified by a number
of roles, A1, . . . , Am, and a set of state predicates, SAi

0 , . . . ,SAi
ni
, and rules of the

following form for each role Ai:

– protocol initialization rule:
Time@T,W −→
∃Sid.[Time@T, S

A1
0 (Sid,X1)@(T + ti), . . . ,S

Am
0 (Sid,Xm)@(T + ti),W ′],

where Sid is a fresh protocol session identification token, SAi
0 is the initial

state of role Ai, ti = durINIT is a natural number specifying the time it
takes to initialize a protocol session, W is an arbitrary multiset of facts,
W ′ =W ∪{ TAk

0 (Sid)@(T + bk) | if SAk
0 timeouts in bk time units}, and Xi

are variables from W;
– protocol execution rules for protocol states SAk

i with no timeout:
Time@T, SAk

i (S,X)@T1,W1, W | T1 ≤ T,−→
∃N .[Time@T, SAk

j (S,Y)@(T + t),W2,W]

and for protocol states SAk
i with associated timeout:

Time@T, SAk
i (S,X)@T1,T

Ak
i (S)@T2,W1, W | T1 ≤ T, T2 ≥ T −→

∃N .[Time@T, SAk
j (S,Y)@(T + t),W2,W],

where for i, j ∈ {0, . . . , k}14 t = duri,j(X) is a natural number specifying
the processing time needed when moving from protocol state SAk

i to protocol
state SAk

j , N are fresh values, X and Y are variables, where variables in
Y either appear in facts on the left side of the rule or are freshly generated
variables from N , and W,W1,W2 are arbitrary multisets of facts, possibly
containing facts NS or NR denoting messages being sent and received, where

14In our generalization of protocol theories we might omit the condition i ≤ j that
was the condition in [9] forcing that protocols proceed in execution.

9

in particular W2 contains the fact TAk
j (S)@(T + bj) if the protocol state SAk

j

has the associated timeout (set to expire at moment T + bj);
– protocol timeout rules for a protocol state SAk

j with associated timeout:

Time@T, SAk
j (S,X)@T1,T

Ak
j (S)@T2 | T2 = T −→

Time@T, SAk
i (S,X)@(T + t),

where SAk
i is a protocol state of the role Ak with no associated timeout, or

Time@T, SAk
j (S,X)@T1,T

Ak
j (S)@T2 | T2 = T −→

Time@T, SAk
i (S,X)@(T + t),TAk

i (S)@(T + t),

where SAk
i is a protocol state of the role Ak associated with a timeout, and

in both cases t = durtimeout
i,j is a natural number specifying transition from

state SAk
j to state SAk

i due to a timeout;
– protocol finalization rule:

Time@T, SAk
nk

(X)@T1 | T1 ≤ T −→ Time@T,
where nk is natural number specifying the final protocol state SAk

nk
or role Ak.

All rules of a protocol session are initialized with the same session identifier.
Protocol execution rules involve execution time and may also relate to a timeout
and network communication. Timeout rules force protocol state change once a
timeout has passed, which may result, e.g., in a retry or session termination.
Finished sessions are removed by the finalization rule.

For our complexity results we will consider balanced versions of protocol
theories that are obtained by adding empty facts on left or right side of the
rule, where needed. Such empty facts have timestamps denoting availability or
execution time. For example, the balanced version of the protocol finalization
rule: Time@T, SAk

nk
(X)@T1 | T1 ≥ T −→ Time@T,E@(T + t),

involves the value t given by the durFIN function denoting duration of the
finalization rule. Such empty memory slots, E@(T + t), are available only when
the global time reaches moment T + t.

5 Timed Intruder Models

The standard Dolev-Yao intruder (DY) [8] is able to intercept and send messages
anywhere at anytime, appearing, hence, faster than the speed of light. For the
verification of timed protocols we, therefore, introduce a more adequate, less
powerful intruder theories. Our timed intruders still share the capabilities of the
standard DY intruder related to composition and decomposition of messages,
including encryption and generation of nonces, but in doing so, they respect the
physical laws related to time. As in [16], we will also consider intruders with
bounded memory.

In order to model the presence of multiple intruders, we associate an identi-
fication id to each of the intruders. This id is used to model the knowledge and
the memory of a particular intruder through facts M(id,X) and P (id) where:

M(id, x)@t denotes that term x is known to intruder id from the moment t;

10

I/O Rules:
REC: T ime@T,NR(I, C,X)@T1, P (I)@T2 | T2 ≤ T −→

T ime@T,M(I,X)@(T + t), E@(T + t), where durREC(X, I) = t

SND: T ime@T,M(I,X)@T1, E@T2 | T1 ≤ T, T2 ≤ T −→
T ime@T,NS(I, C,X)@(T + t), P (I)@(T + t), where durSND(X, I) = t

Message Composition and Decomposition Rules:
COMP: T ime@T,M(I,X)@T1,M(I, Y)@T2 | T1 ≤ T, T2 ≤ T −→

T ime@T,M(I, 〈X,Y 〉)@(T + t), P (I)@(T + t′), where durCOMP (X,Y, I) = 〈t, t′〉
DCMP: T ime@T,M(I, 〈X,Y 〉)@T1, P (I)@T2 | T1 ≤ T, T2 ≤ T −→

T ime@T,M(I,X)@(T + t),M(I, Y)@(T + t), where durDCMP (〈X,Y 〉, I) = t

USE: T ime@T,M(I,X)@T1, P (I)@T2 | T1 ≤ T, T2 ≤ T −→
T ime@T,M(I,X)@T1,M(I,X)@(T + t), where durUSE(X, I) = t

ENC: T ime@T,M(I,K)@T1,M(I,X)@T2, P (I)@T3 | T1 ≤ T, T2 ≤ T, T3 ≤ T −→
T ime@T,M(I,K)@T1,M(I,X)@T2,M(I, {X}K)@(T + t),

where durENC(K,X, I) = t

DEC: T ime@T,M(I,K−1)@T1,M(I, {X}K)@T2, P (I)@T3 | T1 ≤ T, T2 ≤ T, T3 ≤ T −→
T ime@T,M(I,K−1)@T1,M(I, {X}K)@T2,M(I,X)@(T + t),

where durDEC(K
−1, {X}K , I) = t

GEN: T ime@T, P (I)@T1 | T1 ≤ T −→ ∃N.T ime@T,M(I,N)@(T + t),
where durGEN (I) = t

Memory Maintenance Rule:
DELM: T ime@T,M(I,X)@T1 | T1 ≤ T −→ T ime@T, P@(T + t),

where durDEL(X, I) = t

Fig. 3: Bounded Memory Timed DY Intruder Theory I

P (id)@t denotes that a memory slot (empty fact) is available to the bounded
memory intruder id from the moment t.

As already mentioned, in order to model processing time, each of the intruder
rules has an associated time cost. This is specified by the associated function
dur, returning the time needed to carry out the action (as detailed below). This
allows us to model the standard message processing time where e.g., encryption
takes much more time than composition of a pair of messages.

5.1 Bounded Memory Timed Dolev-Yao Intruder

Intruder rules of a Bounded Memory Timed DY Intruder are balanced and con-
tain empty facts representing memory available to the intruder, see Figure 3.

The general timed DY intruder theory with unbounded memory is obtained
by dropping the empty facts and the memory management rule from the theory
in Figure 3.

At the time T intruder I can access only known terms, M(I,X)@T ′, and
empty memory slots, P (I)@T ′, only if T ′ ≤ T . All empty facts, P (I)@T ′, that

11

appear on the left side of a rule have the associated time constraint, T ′ ≤ T , to
ensure that a memory slot is available at current time, Time@T .

Deleting facts from the memory (denoted by the DELM rule) may also take
time. The COMP rule has two associated time constants through dur function,
one denoting the time it takes to produce a pair of messages, and the other
denoting the time it takes to make an empty fact available. The REC and SND
rules are related to receiving and sending messages on transmission media that
is available to some intruder. Notice that intruders obey physical laws related to
message delivery and transmission media availability, which are enforced through
network theory, given in Figure 2, for all agents, including intruders. Notice as
well that send and receive rules maintain the total memory of intruder and the
total memory of the system, by consuming or creating P and E facts.

An adversary can also jam a channel by sending a large number of messages,
exhausting the system’s network by consuming E facts through the SND rule. For
the representation of specific channel capacities, special empty facts representing
the network bandwidth could be added and associated to each channel.

For specific scenarios, other intruder capabilities may be relevant, such as
intruder capabilities of message manipulation on the wireless channels, modeled,
e.g., in [7]. This includes overshadowing parts of a message, as well as flipping
some bits of a message. Such capabilities, we believe, could be formalized in our
model as well, by adding the Xor function to the signature and by adding the
corresponding intruder rules.

6 Verification Problems

Reachability and the related problems for MSR are undecidable in general [21].
By imposing some restrictions, such as using only balanced rules and bounding
the size of facts, these problems become decidable, even in timed models with
fresh values [17,23]. Balanced systems used for protocol verification, as the ones
in [16,23], implicitly bound the number of protocol sessions that can be executed
concurrently. However, the number of sessions in a trace is unbounded.

Various problems can be considered in the verification of security protocols.
Here we state some of them.

Definition 3 (Secrecy Problem). Given a protocol theory P, network theory
N , intruder theories I1, . . . Ik and an initial configuration S0 denoting the initial
protocol setting including key distribution, communication capabilities, network
distances and a constant s known only to some agent, the secrecy problem of a
protocol theory P is the problem of determining whether or not a configuration
containing the fact M(I, s), for some intruder identifier I, is reachable from S0
using rules in N , I1, . . . , Ik and P.

In other words, the secrecy problem is the problem of determining whether
or not an intruder can learn the secret s, initially known to some honest agent.

A more general version of the secrecy problem involving several different
protocol theories, P1, . . . ,Pk, suitable for verification of multi-protocol environ-
ments, is analogously defined.

12

Next, we define verification problems related to DB protocols.

Definition 4 (False Acceptance Problem). Given a DB protocol theory P
with a distance bound R, network theory N , intruder theories I1, . . . Ik and an
initial configuration S0 denoting the initial protocol setting including key dis-
tribution, communication capabilities etc., the false acceptance problem is the
problem of determining whether or not a configuration denoting that a verifier
has granted access to an intruder or to a prover that is outside the perimeter R,
is reachable from S0 using rules in N , I1, . . . , Ik and P.

A dual problem related to decision errors for DB protocols, is the following.

Definition 5 (False Rejection Problem). Given a DB protocol theory P with
a distance bound R, network theory N , intruder theories I1, . . . Ik and an initial
configuration S0 denoting the initial protocol setting including key distribution,
communication capabilities etc., the false rejection problem is the problem of
determining whether or not a configuration denoting that a verifier has denied
access to an honest prover that is within the perimeter R, is reachable from S0
using rules in N , I1, . . . , Ik and P.

By including several DB protocol theories, multi-protocol environments, as
in [7], can be verified. In our recent work [1] on DB protocols we have also
investigated Attack Detection Problem. We believe other problems such as De-
nial of Service, as well as other classes of problems involving e.g., privacy and
traceability could also be formulated in our model. We leave this for future work.

6.1 Example: The Hancke-Khun Protocol Theory

We now illustrate the expressiveness of timed protocol theories introduced in
Section 4 by formalizing the Hancke-Khun (HK) distance-bounding protocol [14].

The HK protocol, shown in Figure 4, aims to ensure that the prover, P , is
in the vicinity of the verifier, V . It is assumed that the prover and the verifier
share a long-term secret key, K, and a public hash function, h.

In the initial phase of the protocol the verifier and the prover generate nonces
NV and NP which are used to calculate a sequence of 2n bits using K and h: h =
h(K,NV , NP) = R0

1, . . . , R
0
n||R1

1, . . . , R
1
n, R

j
i ∈ {0, 1}. Let s = 〈K,h,NV , NP 〉

denote data that, together with h, is known to both participants after the initial
phase of a particular protocol session.

The setup phase of HK protocol is followed by a series of n single-bit ex-
changes, defined by the following procedure: To a random challenge bit Ci sent
by the verifier in the ith round, the prover instantly replies with either R0

i , in
case Ci = 0, or R1

i , in case Ci = 1. We formalize verifier’s random bit generation
of challenge bits using nonce generation and a function b that returns a bit, i.e.,
b(x) ∈ {0, 1}. Comparison of received responses with the correct bits in h, pre-
calculated in the initial phase of the protocol, is obtained using a function r that
returns the bit RCi

i based on bit Ci and h for ith round, as per H-K protocol

specification, i.e., r(i,h, x) =

{
hi, x = 0,
hn+i, x = 1.

.

13

Fig. 4: The Hancke-Kuhn Protocol (taken from [14])

For each round, the verifier marks the time when a challenge bit is sent, and
the time the response is received. In the last phase of the protocol, the verifier
computes his distance from the prover and checks that the responses are correct.

The verifier grants access to the prover if all time tests for bit exchanges are
successful, i.e., do not exceed the predefined distance bound, R, and if all n bits
are correctly exchanged. Keeping in mind potential errors, due to e.g., noise, the
verifier’s decision can be parametrised so that access is granted if the time-test is
satisfied in a number of rounds, k1 out of n, e.g., in a simple majority of rounds,
and if a certain number of response bits, k2 out of n, are correct.

For illustration purposes we only formalize the bit exchange phase of the HK
protocol with n challenge-response rounds, see Figure 5. The initial phase of
the HK protocol could be similarly formalized. Here, we assume that the initial
phase of HK protocol session S has already been completed, denoted by the
facts SV0 (S, s,h, 1) and SP0 (S, s,h, 1), representing the initial protocol states for
the verifier and the prover roles, respectively. Completion of n rounds of bit
exchanges is denoted by the fact SV4 (S, s,h).

Besides agents’ capabilities of using transmission media, keys etc., the initial
configuration additionally includes the following auxiliary facts: Bits(S, 0)@0
denoting the number of rounds with correct bit responses, Test(S, 0) denoting
the number of rounds successfully passing the time-test.

Since this distance measuring phase of the protocol is technically performed
with negligible processing time related to reading and responding with bits, we
set the related processing time to zero.

However, in order to model actual verifiers that are usually not very powerful
processors operating at some clock rate, the formalization distinguishes between
the actual time of sending challenge bits or receiving response bits and the
recorded time. This is accomplished using time constraints of the form T > T1,
where T is the global time and T1 the actual time of sending or receiving the
bit. Alternatively, function dur could be used for specific time delays.

14

Verifier role
Send challenge bit for round j :
T ime@T,SV

0 (S,A,C, s,h, j)@T1, E@T2, E@T3 | { T ≥ T2, T ≥ T3 } −→
∃x.T ime@T,SV

1 (S,A,C, s,h,pending, b(x), j)@T,NS(A,C, b(x))@T,Start(S, j)@T

Mark the time of sending the challenge bit in round j :
T ime@T,SV

1 (S,A,C, s,h, pending, Bj , j)@T1, E@T2 | { T > T1, T ≥ T2 } −→
T ime@T,SV

1 (S,A,C, s,h, start, Bj , j)@T,StartV (S, j)@T

Receive the response bit in round j :
T ime@T,SV

1 (S,A,C, s,h, start, Bj , j)@T1,NR(A,C,X)@T2 −→
T ime@T,SV

2 (S,A,C, s,h, pending, Bj , j,X)@T1,Stop(S, j)@T

Mark the time of receiving the response bit in round j :
T ime@T,SV

2 (S,A,C, s,h, pending, Bj , j,X)@T1, E@T2 | { T > T1 } −→
T ime@T,SV

2 (S,A,C, s,h, stop, Bj , j,X)@T1,StopV (S, j)@T

Check the round trip time for round j :
T ime@T,StartV (S, j)@T1,StopV (S, j)@T2, S

V
2 (S,A,C, s,h, stop, Bj , j,X)@T3,

T est(S,m)@T4 | { T2 − T1 ≤ 2R} −→
T ime@T,SV

2 (S,A,C, s,h,bit, Bj , j,X)@T, T imeCheck(S, j, ok)@T, Test(S,m+ 1)@T,E@T

T ime@T,StartV (S, j)@T1,StopV (S, j)@T2, S
V
2 (S,A,C, s,h, stop, Bj , j,X)@T3,

T est(S,m)@T4 | { T2 − T1 > 2R} −→
T ime@T,SV

2 (S,A,C, s,h,bit, Bj , j,X)@T, T imeCheck(S, j, not-ok)@T, Test(S,m)@T4, E@T

Check the bit correctness in round j :
T ime@T,SV

2 (S,A,C, s,h, bit, Bj , j, r(j,h, Bj))@T1, Bit(m)@T2, E@T3 | {T3 ≤ T }
−→ T ime@T,SV

3 (S,A,C, s,h)@T,Bit(m+ 1)@T,BitCheck(S, j, ok)@T

T ime@T,SV
2 (S,A,C, s,h, bit, Bj , j, y 6= r(j,h, Bj))@T1, Bit(m)@T2, E@T3 | {T3 ≤ T }
−→ T ime@T,SV

3 (S,A,C, s,h, j)@T,Bit(m)@T2, BitCheck(S, j, not-ok)@T
Starting a new round or finishing the last round :
T ime@T,SV

3 (S,A,C, s,h, j 6= n)@T1 −→ T ime@T,SV
0 (S,A,C, s,h, j + 1)@T

T ime@T,SV
3 (S,A, s,h, n)@T1 −→ T ime@T,SV

4 (S,A,C, s,h)@T

Allowing or rejecting the access :
T ime@T,SV

4 (S,A,C, s,h)@T1, T est(S,X ≥ k1)@T2, Bit(S, Y ≥ k2)@T3 −→
T ime@T,SV

5 (S,A,C, s,h)@T,Decision(S, ok)@T,E@T

T ime@T,SV
4 (S,A,C, s,h)@T1, T est(S,X < k1)@T2, Bit(S, Y < k2)@T3 −→

T ime@T,SV
5 (S,A,C, s,h)@T,Decision(S, reject)@T,E@T

Prover role
Responding to a challenge bit in round j :
T ime@T,SP

0 (S,A,C, s,h, j 6= n)@T1,NR(A,C,X)@T2 −→
T ime@T,S0(S,A,C, s,h, j + 1)@T,NS(A,C, r(i,h, X))@T

Responding to a challenge bit in the last round :
T ime@T,SP

0 (S,A,C, s,h, n)@T1,NR(A,C,X)@T2 −→
T ime@T,S1(S,A,C, s,h)@T,NS(A,C, r(i,h, X))@T

Receiving the decision :
T ime@T,Decision(S,X)@T1, S

P
1 (S,Y)@T2 −→ T ime@T,Decision(S,X)@T1,S

P
2 (S,Y)@T

Fig. 5: Protocol Theories for bit exchange phase of Hancke-Kuhn protocol with n rounds

15

Checking whether a sufficient number of rounds have passed the time-test
and the bit correctness test is part of the final phase of HK protocol. In our
formalization we have included these rules in each round, but with no time cost.

For the HK protocol specification given in Figure 5, with the the protocol dis-
tance bound R, the false acceptance problem representing an attack-in-between
ticks is specified as a reachability problem with the following goal configuration:
{ Start(S,X1)@T

1
1 ,Stop(S,X1)@T

1
2 , . . . ,Start(S,Xk1

)@T k1
1 ,Stop (S,Xk1

)@T k1
2 ,

Decision(S, ok)@T, } | { T 1
2 − T 1

1 > R, . . . T k1
2 − T k1

1 > R },
for some protocol session S and k1 rounds Xi. Similarly, a more general false
acceptance can be formalized with the goal configuration:

SV5 (S,A,C,X)@T, SP2 (S,B,C,Y)@T1, Decision(S, ok)@T2,
where D(A,B,C) > R. This goal denotes a false positive of the time test, i.e.,
the verifier allows access to a prover that is outside the perimeter R.

False rejction can similarly be represented with the following goal:
SV5 (S,A,C,X)@T, SP2 (S,B,C,Y)@T1, Decision(S, reject)@T2,

where D(A,B,C) ≤ R, for the protocol distance bound R.
Guessing ahead attacks could also be captured by checking whether response

bits are received before the necessary traversal time, as specified by the goal:
Decision(S, ok)@T, SV5 (S,A,C,X)@T, SP2 (S,B,C,Y)@T1,
Start(S, i)@T2,Stop (S, i)@T3 | T3 − T2 < 2D(A,B,C).

This indicates that the response bit has been sent in advance, before the receipt
of the challenge bit, representing, hence, guessing in advance, i.e., involvement
of a dishonest prover or an intruder.

6.2 Example: The Needham-Schroeder Protocol with Timeouts

We specify the Needham-Schroeder (NS) protocol with timeouts detailed in Sec-
tion 2.2. Initiator role A has the associated timeout. Only if the expected reply
message is received within the timeout time bound, the final protocol message
is sent. Otherwise, the session ends.

A balanced timed protocol theory of NS with timeouts is given in Figure 6.
The protocol state SA0 has the associated timeout. Here, ∗ denotes a dummy
constant, di are constants denoting action duration and b0 is the constant de-
noting the timeout. For simplicity, we use public keys to denote names of agents,
where Agent predicate is used to specify public keys, while key pairs of public
and private keys that belong to an honest participant are denoted by Guy facts.

Protocol security is considered in the usual sense, i.e., if the “accepted” nonces
NA and NB are never revealed to anybody else except Alice and Bob executing
the protocol. The protocol is still vulnerable to the timed version of Lowe attack
[25], see Figure 1b, but a well-chosen timeout may enhance protocol security.

For illustration, let d0 = d1 = d2 = d3 = d4 = 1, i.e., all actions take one
time unit to be executed. Let b0 = 10, i.e., state SA0 timeouts after 10 time
units. Let D(kA, kB , c) = D(kB , kA, c) = 3. In this setting, execution of rules
ROLES, A1, B1 and network rules takes at least (1+1+3+1+3=9) 9 time units,
i.e., Alice can expect to receive the reply within the set timeout and proceed
protocol execution with rule A2.

16

ROLES : T ime@T,Guy(Ke,Kd)@T1, Guy(K
′
e,K

′
d)@T2, E@T3, E@T4 | T3 ≤ T, T4 ≤ T

→ ∃X.T ime@T,Guy(Ke,Kd)@T1, Guy(K
′
e,K

′
d)@T2,

SA
0 (X,Ke)@(T + d0),T

A
0 (X)@(T + b0),S

B
0 (X,K

′
e)@(T + d0)

FINA : T ime@T,SA
2 (X)@T1 → T ime@T,E@T

FINB : T ime@T,SB
2 (X)@T1 → T ime@T,E@T

A1 : T ime@T,SA
0 (S,Ke)@T1,T

A
0 (S)@T2, Agent(K

′
e)@T3 | T2 ≥ T, T1 ≤ T

→ ∃X.T ime@T,SA
1 (S,Ke,K

′
e, X)@(T + d1), Agent(K

′
e)@T3,

NS(Ke, C, enc(K
′
e, 〈X,Ke〉))@(T@d1)

A2 : T ime@T,SA
1 (S,Ke,K

′
e, X)@T1,NR(Ke, C, enc(Ke, 〈X,Y 〉))@T2 | T1 ≤ T

→ T ime@T,SA
2 (S,Ke,K

′
e, X, Y)@(T + d2),NS(Ke, C

′, enc(K′e, Y))@(T + d2)
AT : T ime@T,SA

0 (S,X)@T1,T
A
0 (S)@T2 | T2 = T −→ T ime@T,SA

2 (S,X, ∗, ∗, ∗)@T1

B1 : T ime@T,SB
0 (S,Ke)@T1, Agent(K

′
e)@T2,NR(Ke, C, enc(Ke, 〈X,K′e〉))@T3 | T1 ≤ T

→ ∃Y.T ime@T,SB
1 (S,Ke,K

′
e, X, Y)@(T + d3), Agent(K

′
e)@T2,

NS(Ke, C
′, enc(K′e, 〈X,Y 〉))@(T + d3)

B2 : T ime@T,SB
1 (S,Ke,K

′
e, X, Y)@T1,NR(Ke, C, enc(Ke, Y))@T2 | T1 ≤ T

→ T ime@T,SB
2 (S,Ke,K

′
e, X, Y)@(T + d4), E@T

Fig. 6: Timed protocol theory of Needham-Schroeder Protocol with Timeouts.

Consider now the setting with Mallory positioned optimally, inbetween Alice
and Bob, as illustrated in Figure 1b, with D(kA, kM , c) = D(kM , kA, c) = 2 and
D(kB , kM , c) = D(kM , kB , c) = 1. Let Mallory intruder rules also have associated
time cost of one time unit, for simplicity. Mallory will need to intercept, decrypt,
encrypt and send messages which will take some additional time. Now, protocol,
intruder and network execution of rules from ROLES up to A2 rule take at least
15 time units (Mallory has to use the sequence of REC, DEC, ENC, SND rules,
and later REC and SND rules), by which time the protocol session timeouts and,
hence, Lowe type attack fails. In case the timeout is set to a high enough value,
e.g., b0 = 20, there is a trace in the model representing the Lowe attack.

7 Complexity Results

Timed MSR theories containing network, protocol and intruder theories defined
in Sections 4 and 5 represent a segment of general timed MSR for specification
and verification of security protocols. By relying on our previous complexity re-
sults for the secrecy problem and for the reachability problem for timed MSR,
we obtain the complexity result for the timed version of secrecy problem de-
scribed in Section 6. We point out that this verification relates to traces with a
bounded number of concurrent protocol sessions, but to an unbounded number
of protocol sessions in total.

Theorem 1. The secrecy problem with respect to the memory bounded timed
DY intruders, balanced network and protocol theories is PSPACE-complete when
assuming a bound on the size of facts.

17

Proof. For the upper bound we rely on the PSPACE-completeness of the reach-
ability problem for general MSR with real time [23], since the secrecy problem
is an instance of the reachability problem. The rules of the timed MSR contain
network, protocol and intruder theories. The goal of the reachability problem is
specified as a configuration containingM(I, s)@T , for some intruder identifier I,
with no time constraints attached. Therefore, it follows from [23] that the secrecy
problem is in PSPACE when considering balanced timed network, protocol and
intruder theories with a bound on the size of facts.

The lower bound follows from PSPACE-completeness of the secrecy problem
for untimed version of bounded memory intruder and balanced MSR protocol
theories [16]. It can be encoded as timed secrecy simply by adding timestamps to
facts, by adding time constraints to the rules of protocol and intruder theories,
as per Definition 2 and Figure 3, and by considering some arbitrary network
topology and a single transmission channel, accessible to all agents and intrud-
ers both for sending and receiving messages. In particular, the protocol states of
timed protocol theories have no timeouts attached. Exact values of timestamps,
duration of rules, just like the message traversal time (specified by the topology)
have no impact to the encoding. Indeed, the goal involves the secret being discov-
ered by an intruder, taking any amount of time, as the goal involves no related
time constraints, and all constraints attached to rules of network, intruder and
protocol theories (since no timeouts are present) are of the form T ′ ≤ T , i.e.,
require only advancement of global time T , which is always applicable.

False acceptance and false rejection problems could also be formalized as
reachability problems, as in Section 6.1, hence the PSPACE membership of these
problems can also be deduced.

Theorem 2. The false acceptance and the false rejection problems with respect
to the memory bounded timed DY intruders, balanced network and distance-
bounding protocol theories is in PSPACE when the size of facts is bounded.

Similarly to the bounded-time problems introduced in [20], we could consider
bounded time version of the secrecy problem, e.g., by bounding the total time
in a trace or bounding the total number of protocol sessions. We expect that
such restrictions would improve the complexity of the problem. We leave this
investigation for future work.

8 Conclusions and Related Work

This paper builds on [1,19,22,23] and introduces a uniform and extensible frame-
work for expressing a wide range of timing properties of protocols enabling the
investigation of the complexity of different verification problems. Thus, this work
is complementary to the related works that focus on more limited languages in
order to automate analyses.

The first full-scale formal representation and analysis of a distance bounding
protocol is the work of Meadows and collaborators [28] formalizing distance

18

bounding protocols in Protocol Derivation Logic (PDL). This work provided
the basis for practical improvements, new insights, and inspirations for other
researchers including ourselves. Like our work that is founded on an existing
general model (Timed MSR), the formalization started with an existing formal
logic, PDL.

The paper [30] introduces a timed protocol language and addresses the issue
of timed intruder models, showing that one DY intruder per honest player is
sufficient. This formal system is implemented in Maude to automate analysis.
This work built on earlier formalizations in Timed MSR [18,22] and in turn has
suggested new modeling challenges addressed in the present paper.

A number of other frameworks have been developed for the verification of
timing properties of systems. Early examples include [3,12,13,15]. Basin et.al [2]
and Cramers et.al [7] present a formalism for representing and analyzing cyber-
physical security protocols that is implemented in Isabel/HOL. They model
physical properties of communicaiton, location, and time. Similar to our ap-
proach both honest players and intruders are subject to physical constraints. A
benefit of formalization in our Timed MSR is the abiltiy to leverage a variety of
complexity results developed for different fragments as illustrated in the previous
section.

Verification in this paper assumes that a concrete topology of agents and
intruders is specified. We believe it may be possible to consider verification of
general topologies by combining our models with SMT solvers, similarly to [30].

For a close formalization of DB protcols probabilities involving various guess-
ing strategies as given in [1], we intend to investigate ways of extending our
models with probabilities. One of the ways of such probabilistic extensions of
our models might involve branching actions introduced in [24].
Acknowledgments: We thank Cathy for her inspiring work, insightful and motivating
discussions and for her friendship.

References

1. M. A. Alturki, M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and C. Talcott.
Statistical model checking of distance fraud attacks on the Hancke-Kuhn family of
protocols. In Proceedings of the 2018 Workshop on Cyber-Physical Systems Security
and PrivaCy, pages 60–71. ACM, 2018.

2. D. A. Basin, S. Capkun, P. Schaller, and B. Schmidt. Formal reasoning about
physical properties of security protocols. ACM Trans. Inf. Syst. Secur., 14(2):16,
2011.

3. G. Bella and L. C. Paulson. Kerberos version 4: Inductive analysis of the secrecy
goals. In Computer Security - ESORICS 98, 5th European Symposium on Re-
search in Computer Security, Louvain-la-Neuve, Belgium, September 16-18, 1998,
Proceedings, pages 361–375, 1998.

4. S. Brands and D. Chaum. Distance-bounding protocols. In T. Helleseth, edi-
tor, Advances in Cryptology — EUROCRYPT ’93: Workshop on the Theory and
Application of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Pro-
ceedings, pages 344–359, Berlin, Heidelberg, 1994. Springer.

19

5. I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In CSFW, pages 55–69, 1999.

6. T. Chothia and V. Smirnov. A traceability attack against e-passports. In Inter-
national Conference on Financial Cryptography and Data Security, pages 20–34.
Springer, 2010.

7. C. Cremers, K. B. Rasmussen, B. Schmidt, and S. Capkun. Distance hijacking
attacks on distance bounding protocols. In 2012 IEEE Symposium on Security
and Privacy, pages 113–127, May 2012.

8. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

9. N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting
and the complexity of bounded security protocols. Journal of Computer Security,
12(2):247–311, 2004.

10. H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.
11. S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic Protocol

Analysis Modulo Equational Properties, pages 1–50. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

12. N. Evans and S. Schneider. Analysing time dependent security properties in CSP
using PVS. In Computer Security - ESORICS 2000, 6th European Symposium on
Research in Computer Security, Toulouse, France, October 4-6, 2000, Proceedings,
pages 222–237, 2000.

13. R. Gorrieri, E. Locatelli, and F. Martinelli. A simple language for real-time cryp-
tographic protocol analysis. In Proceedings of the 12th European Conference on
Programming, ESOP’03, pages 114–128, Berlin, Heidelberg, 2003. Springer-Verlag.

14. G. P. Hancke and M. G. Kuhn. An RFID distance bounding protocol. In First
International Conference on Security and Privacy for Emerging Areas in Commu-
nications Networks (SECURECOMM’05), pages 67–73, Sept 2005.

15. G. Jakubowska and W. Penczek. Modelling and checking timed authentication of
security protocols. Fundam. Inf., 79(3-4):363–378, Aug. 2007.

16. M. Kanovich, T. Ban Kirigin, V. Nigam, and A. Scedrov. Bounded memory Dolev-
Yao adversaries in collaborative systems. Inf. Comput., 2014.

17. M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and C. Talcott. Compliance in
real time multiset rewriting models. Available at https://arxiv.org/abs/1811.
04826.

18. M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and C. Talcott. Discrete vs.
dense times in the analysis of cyber-physical security protocols. In Principles of
Security and Trust - 4th International Conference, POST, pages 259–279, 2015.

19. M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and C. Talcott. Can we
mitigate the attacks on distance-bounding protocols by using challenge-response
rounds repeatedly? In FCS, 2016.

20. M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and C. Talcott. Timed
multiset rewriting and the verification of time-sensitive distributed systems. In
14th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS), 2016.

21. M. Kanovich, P. Rowe, and A. Scedrov. Policy compliance in collaborative systems.
In CSF ’09: Proceedings of the 2009 22nd IEEE Computer Security Foundations
Symposium, pages 218–233, Washington, DC, USA, 2009. IEEE Computer Society.

22. M. I. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and C. L. Talcott. Towards
timed models for cyber-physical security protocols. Available in Nigam’s homepage,
2014.

20

 https://arxiv.org/abs/1811.04826
 https://arxiv.org/abs/1811.04826

23. M. I. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, and C. L. Talcott. Time,
computational complexity, and probability in the analysis of distance-bounding
protocols. Journal of Computer Security, 25(6):585–630, 2017.

24. M. I. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. L. Talcott, and R. Per-
ovic. A rewriting framework and logic for activities subject to regulations. Math-
ematical Structures in Computer Science, 27(3):332–375, 2017.

25. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In TACAS, pages 147–166, 1996.

26. C. Meadows. The nrl protocol analyzer: An overview. The Journal of Logic Pro-
gramming, 26(2):113 – 131, 1996.

27. C. Meadows. A cost-based framework for analysis of denial of service in networks.
J. Comput. Secur., 9(1-2):143–164, Jan. 2001.

28. C. A. Meadows, R. Poovendran, D. Pavlovic, L. Chang, and P. F. Syverson. Dis-
tance bounding protocols: Authentication logic analysis and collusion attacks. In
Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc
Networks, pages 279–298. 2007.

29. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

30. V. Nigam, C. L. Talcott, and A. A. Urquiza. Towards the automated verification of
cyber-physical security protocols: Bounding the number of timed intruders. In 21st
European Symposium on Research in Computer Security. Part II, pages 450–470,
2016.

31. D. Pavlovic and C. Meadows. Bayesian authentication: Quantifying security of
the Hancke-Kuhn protocol. Electronic Notes in Theoretical Computer Science,
265:97–122, 2010.

32. P. Rowe. Policy compliance, confidentiality and complexity in collaborative systems.
PhD thesis, University of Pennsylvania, 2009.

21

	A Multiset Rewriting Model for Specifying and Verifying Timing Aspects of Security Protocols
	Musab A. Alturki Tajana Ban Kirigin Max Kanovich Vivek Nigam Andre Scedrov and Carolyn Talcott

