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Abstract. The recent emergence of novel computational devices, such
as adiabatic quantum computers, CMOS annealers, and optical para-
metric oscillators, present new opportunities for hybrid-optimization al-
gorithms that are hardware accelerated by these devices. In this work, we
propose the idea of an Ising processing unit as a computational abstrac-
tion for reasoning about these emerging devices. The challenges involved
in using and benchmarking these devices are presented and commercial
mixed integer programming solvers are proposed as a valuable tool for
the validation of these disparate hardware platforms. The proposed vali-
dation methodology is demonstrated on a D-Wave 2X adiabatic quantum
computer, one example of an Ising processing unit. The computational
results demonstrate that the D-Wave hardware consistently produces
high-quality solutions and suggests that as IPU technology matures it
could become a valuable co-processor in hybrid-optimization algorithms.
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1 Introduction

As the challenge of scaling traditional transistor-based Central Processing Unit
(CPU) technology continues to increase, experimental physicists and high-tech
companies have begun to explore radically different computational technologies,
such as adiabatic quantum computers (AQCs) [1], gate-based quantum comput-
ers [213/4], CMOS annealers [5l6]7], neuromorphic computers [S9/T0], memristive
circuits [I1I12], and optical parametric oscillators [I3JT4IT5]. The goal of all of
these technologies is to leverage the dynamical evolution of a physical system
to perform a computation that is challenging to emulate using traditional CPU
technology (e.g., the simulation of quantum physics) [16]. Despite their entirely
disparate physical implementations, AQCs, CMOS annealers, memristive cir-
cuits, and optical parametric oscillators are unified by a common mathematical
abstraction known as the Ising model, which has been widely adopted by the
physics community for the study of naturally occurring discrete optimization
processes [17]. Furthermore, this kind of “Ising machine” [I3J14] is already com-
mercially available with more than 2000 decision variables in the form of AQCs
developed by D-Wave Systems [18].



The emergence of physical devices that can quickly solve Ising models is par-
ticularly relevant to the constraint programming, artificial intelligence and op-
erations research communities, because the impetus for building these devices is
to perform discrete optimization. As this technology matures, it may be possible
for this specialized hardware to rapidly solve challenging combinatorial prob-
lems, such as Max-Cut [I9] or Max-Clique [20]. Preliminary studies have sug-
gested that some classes of Constraint Satisfaction Problems may be effectively
encoded in such devices because of their combinatorial structure [2IU22I23/24].
Furthermore, an Ising model coprocessor could have significant impacts on solu-
tion methods for a variety of fundamental combinatorial problem classes, such
as MAX-SAT [25l26/27] and integer programming [28]. At this time, however,
it remains unclear how established optimization algorithms should leverage this
emerging technology. This paper helps to address this gap by highlighting the
key concepts and hardware limitations that an algorithm designer needs to un-
derstand to engage in this emerging and exciting computational paradigm.

Similar to an arithmetic logic unit (ALU) or a graphics processing unit
(GPU), this work proposes the idea of an Ising processing unit (IPU) as the
computational abstraction for wide variety of physical devices that perform op-
timization of Ising models. This work begins with a brief introduction to the
IPU abstraction and its mathematical foundations in Section Pl Then the addi-
tional challenges of working with real-world hardware are discussed in Section
and an overview of previous benchmarking studies and solution methods are
presented in Section [4] Finally, a detailed benchmarking study of a D-Wave 2X
IPU is conducted in Section [5, which highlights the current capabilities of such
a device. The contributions of this work are as follows,

1. The first clear and concise introduction to the key concepts of Ising models
and the limitations of real-world IPU hardware, both of which are necessary
for optimization algorithm designers to effectively leverage these emerging
hardware platforms (Section [2| and Section .

2. Highlighting that integer programming has been overlooked by recent IPU
benchmarking studies (Section 7 and demonstrating the value of integer
programming for filtering easy test cases (Section [5.1)) and verifying the
quality of an IPU on challenging test cases (Section |5.2)).

Note that, due to the maturity and commercial availability of the D-Wave TPU,
this work often refers to that architecture as an illustrative example. However,
the methods and tools proposed herein are applicable to all emerging IPU hard-
ware realizations, to the best of our knowledge.

2 A Brief Introduction to Ising Models

This section introduces the notations of the paper and provides a brief intro-
duction to Ising models, the core mathematical abstraction of IPUs. The Ising
model refers to the class of graphical models where the nodes, N, represent spin
variables (i.e., o; € {—1,1} Vi € ) and the edges, £, represent interactions of



spin variables (i.e., o;0; Vi,j € £). A local field h; Yi € N is specified for each
node, and an interaction strength J;; Vi, j € £ is specified for each edge. Given
these data, the energy of the Ising model is defined as,

E(o) = Z Jijoio; + Z hioi (1)

i,j€E ieEN

Applications of the Ising model typically consider one of two tasks. First, some
applications focus on finding the lowest possible energy of the Ising model, known
as a ground state. That is, finding the globally optimal solution of the following
binary quadratic optimization problem:

min : E(o) (2)
stooe{-1,1}Vie N
Second, other applications are interested in sampling from the Boltzmann dis-
tribution of the Ising model’s states:

—E(o)

Pr(o) xe = (3)

where 7 is a parameter representing the effective temperature of the Boltzmann
distribution [29]. It is valuable to observe that in the Boltzmann distribution, the
lowest energy states have the highest probability. Therefore, the task of sampling
from a Boltzmann distribution is similar to the task of finding the lowest energy
of the Ising model. Indeed, as T approaches 0, the sampling task smoothly trans-
forms into the aforementioned optimization task. This paper focuses exclusively
on the mathematical program presented in , the optimization task.

Frustration: The notion of frustration is common in the study of Ising models
and refers to any instance of where the optimal solution, o*, satisfies the

property,
E(0®) > Y~y = > |hil (4)
1,j€E ieEN
A canonical example is the following three node problem:

hi=0, ho=0, h3 =0, Jio = —1, Jog = —1, Ji3 =1 (5)

Observe that, in this case, there are a number of optimal solutions such that
E(0*) = —2 but none such that E(c) =}, ;cc —[Ji;| = —3. Note that frustra-
tion has important algorithmic implications as greedy algorithms are sufficient
for optimizing Ising models without frustration.

Gauge Transformations: A valuable property of the Ising model is the gauge
transformation, which characterizes an equivalence class of Ising models. For



illustration, consider the optimal solution of Ising model S, **. One can con-
struct a new Ising model 7" where the optimal solution is the same, except that

ol* = —g$* for a particular node i € N is as follows:
t s -
h! = —h? (6b)

where £(4) indicates the neighboring edges of node i. This S-to-T" manipulation
is referred to as a gauge transformation. Given a complete source state o® and
a complete target state o, this transformation is generalized to all of o by,

t s s _t 1 -
Ji; =Joicioi0; Vi, j €€ (7a)
hi =hiciolVie N (7b)

=
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It is valuable to observe that by using this gauge transformation property, one
can consider the class of Ising models where the optimal solution is o] = -1V €
N or any arbitrary vector of —1, 1 values without loss of generality.

Bijection of Ising and Boolean Optimization: It is also useful to observe that
there is a bijection between Ising optimization (i.e., o € {—1,1}) and Boolean
optimization (i.e., z € {0,1}). The transformation of o-to-z is given by,

UZ:2$Z—1VZ€/\/‘ (8&)
003 :4$ixj 72337;723%' +1 VZ,] eé (8b)
and the inverse z-to-o is given by,
it 1.
2 =2 ;r Vie N (9a)
05+ 0 +1 ..
iBﬂL'jZUU]_FO‘ +0J+ VZ,]GS (gb)

4

Consequently, any results from solving Ising models are also immediately appli-
cable to the following class of Boolean optimization problems:

min : Z CijTix; + Z CiTi (10)
i,jEE ieN
stoz; €{0,1} Vie N

The Ising model provides a clean mathematical abstraction for understanding
the computation that IPUs perform. However, in practice, a number of hardware
implementation factors present additional challenges for computing with IPUs.

3 Features of Analog Ising Processing Units

The core inspiration for developing IPUs is to take advantage of the natural
evolution of a discrete physical system to find high-quality solutions to an Ising
model [TT3IG/TT]. Consequently, to the best of our knowledge, all IPUs developed
to date are analog machines, which present a number of challenges that the
optimization community is not accustomed to considering.



Fig.1. A 2-by-2 Chimera Graph Illustrating the Variable Product Limitations of a
D-Wave 2X IPU.

Effective Temperature: The ultimate goal of IPUs is to solve the optimization
problem and determine the globally optimal solution to the input Ising model.
In practice, however, a variety of analog factors preclude IPUs from reliably
finding globally optimal solutions. As a first-order approximation, current IPUs
behave like a Boltzmann sampler with some hardware-specific effective tem-
perature, 7 [30]. It has also been observed that the effective temperature of an
IPU can vary around a nominal value based on the Ising model that is being
executed [31]. This suggests that the IPU’s performance can change based on
the structure of the problem input.

Environmental Noise: One of the primary contributors to the sampling nature
of IPUs are the environmental factors. All analog machines are subject to faults
due to environmental noise; for example, even classical computers can be affected
by cosmic rays. However, given the relative novelty of IPUs, the effects of envi-
ronmental noise are noticeable in current hardware. The effects of environmental
noise contribute to the perceived effective temperature 7 of the IPU.

Coefficient Biases: Once an Ising model is input into an IPU, its coefficients
are subject to at least two sources of bias. The first source of bias is a model
programming error that occurs independently each time the IPU is configured
for a computation. This bias is often mitigated by programming the IPU multiple
times with an identical input and combining the results from all executions. The
second source of bias is a persistent coefficient error, which is an artifact of the
IPU manufacturing and calibration process. Because this bias is consistent across
multiple TPU executions, this source of bias is often mitigated by performing
multiple gauge transformations on the input and combining the results from all
executions.

Problem Coefficients: In traditional optimization applications, the problem coef-
ficients are often rescaled to best suit floating-point arithmetic. Similarly, IPUs
have digital-to-analog converters that can encode a limited number of values;
typically these values are represented as numbers in the range of -1 to 1. Some



IPUs allow for hundreds of steps within this range, [I6] whereas others support
only the discrete set of {-1, 0, 1} [I3]. In either case, the mathematical Ising
model must be rescaled into the IPU’s operating range. However, this mathe-
matically equivalent transformation can result in unexpected side effects because
the coefficients used in the IPU hardware are perturbed by a constant amount
of environmental noise and hardware bias, which can outweigh small rescaled
coefficient values.

Topological Limitations: Another significant feature of IPUs is a restricted set of
variable products. In classical optimization (e.g., (2)), it is assumed that every
variable can interact with every other variable, that is, an Ising model where
an edge connects every pair of variables. However, because of the hardware
implementation of an ITPU, it may not be possible for some variables to interact.
For example, the current D-Wave IPUs are restricted to the chimera topology,
which is a two-dimensional lattice of unit cells, each of which consist of a 4-by-4
bipartite graph (e.g., see Figure . In addition to these restrictions, fabrication
errors can also lead to random failures of nodes and edges in the IPU hardware.
Indeed, as a result of these minor imperfections, every D-Wave IPU developed to
date has a unique topology [32I3334]. Research and development of algorithms
for embedding various kinds of Ising models into a specific IPU topology is still
an active area of research [2TU35I3637].

3.1 Challenges of Benchmarking Ising Processing Units

These analog hardware features present unique challenges for benchmarking
IPUs that fall roughly into three categories: (1) comparing to established bench-
mark libraries; (2) developing Ising model instance generators for testing and;
(3) comparing with classical optimization methods.

Benchmark Libraries: Research and development in optimization algorithms has
benefited greatly from standardized benchmark libraries [38/39/40]. However,
direct application of these libraries to IPUs is out of scope in the near term
for the following reasons: (1) the Ising model is a binary quadratic program,
which is sufficiently restrictive to preclude the use of many standard problem
libraries; (2) even in cases where the problems of interest can be mapped directly
to the Ising model (e.g., Max-Cut, Max-Clique), the task of embedding given
problems onto the IPU’s hardware graph can be prohibitive [41]; and (3) even
if an embedding can be found, it is not obvious that the problem’s coefficients
will be amenable to the IPU’s operating range.

Instance Generation Algorithms: Due to these challenges, the standard practice
in the literature is to generate a collection of instances for a given IPU and
use these cases for the evaluation of that IPU [34/424333]. The hope being that
these instances provide a reasonable proxy for how real-world applications might
perform on such a device.



Comparison with Classical Algorithms: Because of the radically different hard-
ware of CPUs vs IPUs and the stochastic nature of the IPUs, conducting a fair
comparison of these two technologies is not immediately clear [44/45/43]. Indeed,
comparisons of D-Wave’s IPU with classical algorithms have resulted in vigor-
ous discussions about what algorithms and metrics should be used to make such
comparisons [46I34147]. It is widely accepted that IPUs do not provide optimal-
ity guarantees and are best compared to heuristic methods (e.g. local search)
in terms of runtime performance. This debate will most likely continue for sev-
eral years. In this work, our goal is not to answer these challenging questions
but rather to highlight that commercial mixed integer programming solvers are
valuable and important tools for exploring these questions.

4 A Review of Ising Processing Unit Benchmarking
Studies

Due to the challenges associated with mapping established optimization test
cases to specific IPU hardware [4I], the IPU benchmarking community has
adopted the practice of generating Ising model instances on a case-by-case basis
for specific IPUs [34142/43133] and evaluating these instances on a variety of solu-
tion methods. The following subsections provide a brief overview of the instance
generation algorithms and solution methods that have been used in various IPU
benchmarking studies. The goals of this review are to: (1) reveal the lack of
consistency across current benchmarking studies; (2) highlight the omission of
integer programming methods in all of the recent publications and; (3) motivate
the numerical study conducted in this work.

4.1 Instance Generation Algorithms

The task of IPU instance generation amounts to finding interesting values for
h and J in . In some cases the procedures for generating these values are
elaborate [33J48] and are designed to leverage theoretical results about Ising
models [42]. A brief survey reveals five primary problem classes in the literature,
each of which is briefly introduced. For a detailed description, please refer to the
source publication of the problem class.

Random (RAN-k and RANF-k): To the best of our knowledge, this general
class of problem was first proposed in [27] and was later refined into the RAN-k
problem in [34]. The RAN-k problem consists simply of assigning each value of
h to 0 and each value of J uniformly at random from the set

{~k,—k+1,...,-2,-1,1,2,... . k— 1.k} (11)

The RANF-k problem is a simple variant of RAN-k where the values of h are
also selected uniformly at random from . As we will later see, RAN-1 and
RANF-1, where h,J € {—1,1}, are an interesting subclass of this problem.



Frustrated Loops (FL-k and FCL-k): The frustrated loop problem was originally
proposed in [42] and then later refined to the FL-k problem in [48]. It consists
of generating a collection of random cycles in the IPU graph. In each cycle,
all of the edges are set to —1 except one random edge, which is set to 1 to
produce frustration. A scaling factor, «, is used to control how many random
cycles should be generated, and the parameter k£ determines how many cycles
each edge can participate in. A key property of the FL-k generation procedure
is that two globally optimal solutions are maintained at o; = —1 Vi € N and
o; = 1Vi € N [48]. However, to obfuscate this solution, a gauge transformation
is often applied to make the optimal solution a random assignment of o.

A variant of the frustrated loop problem is the frustrated cluster loop prob-
lem, FCL-k [43]. The FCL-k problem is inspired by the chimera network topology
(i.e., Figure . The core idea is that tightly coupled variables (e.g., 0¢...07 in
Figure |1)) should form a cluster where all of the variables take the same value.
This is achieved by setting all of the values of J within the cluster to —1. For
the remaining edges between clusters, the previously described frustrated cycles
generation scheme is used. Note that a polynomial time algorithm is known for
solving the FCL-k problem class on chimera graphs [45].

It is worthwhile to mention that the FL-k and FCL-k instance generators
are solving a cycle packing problem on the IPU graph. Hence, the randomized
algorithms proposed in [42[43] are not guaranteed to find a solution if one exists.
In practice, this algorithm fails for the highly constrained settings of o and k.

Weak-Strong Cluster Networks (WSCNs): The WSCN problem was proposed in
[33] and is highly specialized to the chimera network topology. The basic building
block of a WSCN is a pair of spin clusters in the chimera graph (e.g., 0g...07 and
og...015 in Figure . In the strong cluster the values of h are set to the strong
force parameter sf and in the weak cluster the values of h are set to the weak
force parameter wf. All of the values of J within and between this cluster pair
are set to —1. Once a number of weak-strong cluster pairs have been placed, the
strong clusters are connected to each other using random values of J € {1, 1}.
The values of sf= —1.0 and wf = 0.44 are recommended by [33]. The motivation
for the WSCN design is that the clusters create deep local minima that are
difficult for local search methods to escape.

4.2 Solution Methods

Once a collection of Ising model instances have been generated, the next step
in a typical benchmarking study is to evaluate those instances on a variety of
solution methods, including the TPU, and compare the results. A brief survey
reveals five primary solution methods in the literature, each of which is briefly
introduced. For a detailed description, please refer to the source publications of
the solution method.

Simulated Annealing: The most popular staw-man solution method for compar-
ison is Simulated Annealing [49]. Typically the implementation only considers a



neighborhood of single variable flips and the focus of these implementations is
on computational performance (e.g. using GPUs for acceleration). The search is
run until a specified time limit is reached.

Large Neighborhood Search: The state-of-the-art meta-heuristic for solving Ising
models on the chimera graphs is a Large Neighborhood Search (LNS) method
called the Hamze-Freitas-Selby (HFS) algorithm [50[51]. The core idea of this
algorithm is to extract low treewidth subgraphs of the given Ising model and
then use dynamic programming to compute the optimal configuration of these
subgraphs. This extract and optimize process is repeated until a specified time
limit is reached. A key to this method’s success is the availability of a highly
optimized open-source C implementation [52].

Integer Programming: Previous works first considered integer quadratic pro-
gramming [27] and quickly moved to integer linear programming [53/54] as a
solution method. The mathematical programming survey [55] provides a useful
overview of the advantages and dis-advantages of various integer programming
(IP) formulations.

Based on some preliminary experiments with different formulations, this work
focuses on the following integer linear programming formulation of the Ising
model, transformed into the Boolean variable space:

min : Z Cij%ij + Z CiTi +C (12a)
1,j€E ieN

s.t.:

Ty >+ x;— 1, xyy; <y, 2y Sy Vi g e (12b)

z; € {0,1} Vi € N, a;; € {0,1} Vi,j € €

where the application of leads to,

cij=» AJ;Vije& (13a)
i,jEE
ci= Y, 2T+ 2hVieN (13b)
1,jEE(1) ieEN
C = Z Jij — Z hZ (130)
i,je& ieN

In this formulation, the binary quadratic program defined in is converted
to a binary linear program by lifting the variable products z;z; into a new
variable z;; and adding linear constraints to capture the x;; = x; A x; Vi, j € £
conjunction constraints. Preliminary experiments of this work confirmed the
findings of [55], that this binary linear program formulation is best on sparse
graphs, such as the hardware graphs of current IPUs.



Problem Classes Solution Methods

Publication | RAN|RANF|FL|FCL|WSCN||IP|SA|LNS|QMC|AQC

27 v v v

53] v v

54 v v

42 v v v

48] v v v

60 v v vV

33 v v v v

[43] v VIvi]iv]vy
This Work | v | v [V V| v [V v v

Table 1. A Chronological Summary of IPU Benchmarking Studies

Adiabatic Quantum Computation: An adiabatic quantum computation (AQC)
[56] is a method for solving an Ising model via a quantum annealing process [57].
This solution method has two notable traits: (1) the AQC dynamical process
features quantum tunneling [58], which can help it to escape from local minima;
(2) it can be implemented in hardware (e.g. the D-Wave IPU).

Quantum Monte Carlo: Quantum Monte Carlo (QMC) is a probabilistic algo-
rithm that can be used for simulating large quantum systems. QMC is a very
computationally intensive method [59I33] and thus the primary use of QMC is
not to compare runtime performance but rather to quantify the possible value
of an adiabatic quantum computation that could be implemented in hardware
at some point in the future.

4.3 Overview

To briefly summarize a variety of benchmarking studies, Table [1| provides an
overview of the problems and solution methods previous works have consid-
ered. Although there was some initial interest in integer programming models
[27053154], more recent IPU benchmark studies have not considered these solu-
tion methods and have focused exclusively on heuristic methods. Furthermore,
there are notable inconsistencies in the type of problems being considered. As
indicated by the last row in Table [1} the goal of this work is revisit the use of
IP methods for benchmarking IPUs and to conduct a thorough and side-by-side
study of all problem classes and solution methods proposed in the literature.
Note that, because this paper focuses exclusively on the quality and runtime of
the Ising model optimization task , the study of SA and QMC are omitted as
they provide no additional insights over the LNS [48] and AQC [33] methods.

5 A Study of Established Methods

This section conducts an in-depth computational study of the established in-
stance generation algorithms and solution methods for IPUs. The first goal of



this study is to understand what classes of problems and parameters are the most
challenging, as such cases are preferable for benchmarking. The second goal is to
conduct a validation study of a D-Wave 2X TPU, to clearly quantify its solution
quality and runtime performance. This computational study is divided into two
phases. First, a broad parameter sweep of all possible instance generation algo-
rithms is conducted and a commercial mixed-integer programming solver is used
to filter out the easy problem classes and parameter settings. Second, after the
most challenging problems have been identified, a detailed study is conducted to
compare and contrast the three disparate solution methods IP, LNS, and AQC.

Throughout this section, the following notations are used to describe the
algorithm results: UB denotes the objective value of the best feasible solution
produced by the algorithm within the time limit, LB denotes the value of the
best lower bound produced by the algorithm within the time limit, T denotes the
algorithm runtime in secondsﬂ TO denotes that the algorithm hit a time limit
of 600 seconds, p(-) denotes the mean of a collection of values, sd(-) denotes the
standard deviation of a collection of values, and maz(-) denotes the maximum
of a collection of values.

Computation Environment: The classical computing algorithms are run on HPE
ProLiant XL170r servers with dual Intel 2.10GHz CPUs and 128GB memory.
After a preliminary comparison of CPLEX 12.7 [61] and Gurobi 7.0 [62], no
significant difference was observed. Thus, Gurobi was selected as the commercial
Mixed-Integer Programming (MIP) solver and was configured to use one thread.
The highly specialized and optimized HFS algorithm [52] is used as an LNS-
based heuristic and also uses one thread.

The TPU computation is conducted on a D-Wave 2X [63] adiabatic quantum
computer (AQC). This computer has a 12-by-12 chimera cell topology with
random omissions; in total, it has 1095 spins and 3061 couplers and an effective
temperature of 7 € (0.091,0.053) depending on the problem being solved [64]65].
Unless otherwise noted, the AQC is configured to produce 10,000 samples using
a b-microsecond annealing time per sample and a random gauge transformation
every 100 samples. The best sample is used in the computation of the upper
bound value. The reported runtime of the AQC reflects the amount of time used
on the TPU hardware; it does not include the overhead of communication or
scheduling of the computation, which adds an overhead of about three seconds.

All of the software used in this benchmarking study is available as open-
source via: BQPJSON, a language-independent JSON-based Ising model exchange
format designed for benchmarking IPU hardware; DWIG, algorithms for IPU
instance generation; BQPSOLVERS, tools for encoding BQPJSON data into various
optimization formulations and solversﬂ

! For MIP solvers, the runtime includes the computation of the optimally certificate.
2 The source code is available at https://github.com/lanl-ansi/| under the reposi-
tory names BQPJSON, DWIG and BQPSOLVERS.
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lProblem“First Param. [Second Param. ‘
RAN-k |ke (1..5:1) NA
RANF-k[[k € (1.5:1) NA
FLk ke (L.5:1) o€ (0.1:0.1)
FCLk ke (1.5:1) a€(0.1:0.1)
WSCN [[uf € (—1..1:0.2)[sf € (—1..1: 0.2)

Table 2. Parameter Settings of Various Problems.

lProblemHCases‘,uﬂ./\/D‘u(|€|)H,u(T)‘sd(T)‘maac(T)‘

RAN 1250{ 1095, 3061|| TO — TO
RANF 1250{ 1095, 3061|| TO — TO
FL 6944| 1008| 2126|| 1.82| 1.06| 16.80
FCL 8347|  888| 2282| 4.19| 2.81| 41.40
WSCN {30250 949| 2313|| 0.25| 0.87| 17.90

Table 3. MIP Runtime on Various IPU Benchmark Problems (seconds)

5.1 Identifying Challenging Cases

Broad Parameter Sweep: In this first experiment, we conduct a parameter sweep
of all the inputs to the problem generation algorithms described in Section A1}
Table [2| provides a summary of the input parameters for each problem class.
The values of each parameter are encoded with the following triple: (start..stop :
step size). When two parameters are required for a given problem class, the cross
product of all parameters is used. For each problem class and each combination
of parameter settings, 250 random problems are generated in order to produce
a reasonable estimate of the average difficulty of that configuration. Each prob-
lem is generated using all of the decision variables available on the TPU. The
computational results of this parameter sweep are summarized in Table

The results presented in Table [3|indicate that, at this problem size, all vari-
ants of the FL, FCL, and WSCN problems are easy for modern MIP solvers. This
is a stark contrast to [33], which reported runtimes around 10,000 seconds when
applying Simulated Annealing to the WSCN problem. Furthermore, this result
suggests that these problems classes are not ideal candidates for benchmarking
IPUs. In contrast, the RAN and RANTF cases consistently hit the runtime limit of
the MIP solver, suggesting that these problems are more useful for benchmark-
ing. This result is consistent with a similar observation in the SAT community,
where random SAT problems are known to be especially challenging [6667]. To
get a better understanding of these RAN problem classes, we next perform a
detailed study of these problems for various values of the parameter k.

The RAN and RANF Problems: In this second experiment, we focus on the
RAN-k and RANF-k problems and conduct a detailed parameter sweep of k €
(1..10 : 1). To accurately measure the runtime difficulty of the problem, we also
reduce the size of the problem from 1095 variables to 194 variables so that the



(% [Cases[u(ND]_aED] D sl [maz ()] (D) [sd(D) [ma(T)]

Problems of Increasing k RAN-k RANF-k

1| 250 194 528]|340.0| 195.0 TO(|14.10] 15.20| 82.70
2| 250 194 528 89.3| 64.3 481|| 2.97| 3.41] 22.70
3| 250, 194 528|| 64.8| 28.3 207|| 1.67| 1.48] 10.70
4| 250 194 528]| 58.0| 29.5 250(| 1.25| 0.83 6.10
5| 250 194 528 49.0| 23.0 131 1.12| 0.77 6.98
6] 250 194 528 49.0| 224 119|| 1.05| 0.59 4.47
7| 250/ 194 528|| 45.0/ 22.8 128|| 1.04| 0.75 7.60
8| 250 194 528|| 44.8| 23.7 121} 1.01| 0.62 5.43
9| 250/ 194 528|| 42.3| 22.3 110{| 0.98| 0.60 5.08
10| 250, 194 528]| 39.8| 22.1 107|| 0.91| 0.43 3.09

Table 4. MIP Runtime on RAN-k and RANF-k IPU Benchmark Problems (seconds)

MIP solver can reliably terminate within a 600 second time limit. The results of
this parameter sweep are summarized in Table

The results presented in Table |4|indicate that (1) as the value of k increases,
both the RAN and RANF problems become easier; and (2) the RANF problem is
easier than the RAN problem. The latter is not surprising because the additional
linear coefficients in the RANF problem break many of the symmetries that exist
in the RAN problem. These results suggest that it is sufficient to focus on the
RAN-1 and RANF-1 cases for a more detailed study of IPU performance. This
is a serendipitous outcome for IPU benchmarking because restricting the prob-
lem coefficients to {—1,0, 1} reduces artifacts caused by noise and the numeral
precision of the analog hardware.

5.2 An IPU Evaluation using RAN-1 and RANF-1

Now that the RAN-1 and RANF-1 problem classes have been identified as the
most interesting for IPU benchmarking, we perform two detailed studies on these
problems using all three algorithmic approaches (i.e., AQC, LNS, and MIP).
The first study focuses on the scalability trends of these solution methods as the
problem size increases, whereas the second study focuses on a runtime analysis
of the largest cases that can be evaluated on a D-Wave 2X IPU hardware.

Scalability Analysis: In this experiment, we increase the problem size gradually
to understand the scalability profile of each of the solution methods (AQC,
LNS, and MIP). The results are summarized in Table Focusing on the smaller
problems, where the MIP solver provides an optimality proof, we observe that
both the AQC and the LNS methods find the optimal solution in all of the
sampled test cases, suggesting that both heuristic solution methods are of high
quality. Focusing on the larger problems, we observe that, in just a few seconds,
both AQC and LNS find feasible solutions that are of higher quality than what
the MIP solver can find in 600 seconds. This suggests that both methods are
producing high-quality solutions at this scale. As the problem size grows, a slight
quality discrepancy emerges favoring LNS over AQC; however, this discrepancy
in average solution quality is less than 1% of the best known value.



AQC LNS MIP
Cases[u(INT) (€D (UB) [u(T) [ w(U B) |u(T) [ p(UB) [ LB)[ (T
RAN-1 Problems of Increasing Size
250 30 70 -44| 3.53 -44 10 -44 -44| 0.05
250 69| 176 -110] 3.57 -110| 10 -110| -110| 0.48
250 122| 321 -199| 3.60 -199| 10 -199| -199| 15.90
250 194| 528 -325| 3.64 -325 10 -325| -327/|340.00
250 275 751 -462| 3.68 -462| 10 -461| -483 TO
250 375 1030 -633| 3.73 -633| 10 -629| -673 TO
250 486| 1337 -821| 3.77 -822 10 -814| -881 TO
250 613| 1689|| -1038| 3.77| -1039| 10| -1021| -1116 TO
250 761| 2114 -1296| 3.76|| -1297| 10| -1262| -1401 TO
250 923| 2578|| -1574| 3.77|| -1576 10|| -1525| -1713 TO
250| 1095| 3061| -1870| 3.80| -1873| 10| -1806| -2045 TO

RANF-1 Problems of Increasing Size
250 30 70 -53| 3.53 -53| 10 -53 -53| 0.02
250 69| 176| -127|3.56| -127| 10| -127| -127| 0.13
250 122| 321 -229| 3.61 -229| 10 =229 -229| 0.67
250| 194 528|| -370| 3.66|| -370| 10| -370| -370| 14.10
250\ 275| 7h1|| -526| 3.71|| -526| 10| -526| -527[128.00
250\ 375| 1030|| -719| 3.76|| -719| 10| -719| -727]471.00
250 486| 1337 -934| 3.81 -934| 10 -933| -954|588.00
250 613| 1689|| -1179| 3.82| -1179| 10| -1178| -1211| TO
250 761| 2114|| -1472| 3.82| -1472| 10|l -1470| -1520 TO
250 923| 2578|| -1786| 3.82| -1787| 10|l -1778| -1856 TO
2501 1095| 3061 -2121| 3.86| -2122| 10| -2110| -2212 TO

Table 5. A Comparison of Solution Quality and Runtime as Problem Size Increases
on RAN-1 and RANF-1.

Detailed Runtime Analysis: Given that both the AQC and the LNS solution
methods have very similar solution qualities, it is prudent to perform a detailed
runtime study to understand the quality vs. runtime tradeoff. To develop a
runtime profile of the LNS algorithm, the solver’s runtime limit is set to values
ranging from 0.01 to 10.00 seconds. In the case of the AQC algorithm, the number
of requested samples is set to values ranging from 10 to 10,000, which has the
effect of scaling the runtime of the IPU process. The results of this study are
summarized in Figure 2| Note that the stochastic sampling nature of the IPU
results in some noise for small numbers of samples. However, the overall trend
is clear.

The results presented in Figure [2[ further illustrate that (1) the RAN prob-
lem class is more challenging than the RANF problem class, and (2) regardless
of the runtime configuration used, the LNS heuristic slightly outperforms the
AQC; however, the average solution quality is always within 1% of each other.
Combining all of the results from this section provides a strong validation that
even if the D-Wave 2X IPU cannot guarantee a globally optimal solution, it
produces high quality solutions reliably across a wide range of inputs.
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Fig. 2. Detailed Runtime Analysis of the AQC (D-Wave 2X) and LNS Heuristic (HFS)
on the RAN-1 (left) and RANF-1 (right) Problem Classes.

6 Conclusion

This work introduces the idea of Ising processing units (IPUs) as a computa-
tional abstraction for emerging physical devices that optimize Ising models. It
highlights a number of unexpected challenges in using such devices and pro-
poses commercial mixed-integer programming solvers as a tool to help improve
validation and benchmarking.

A baseline study of the D-Wave 2X IPU suggests that the hardware specific
instance generation is a reasonable strategy for benchmarking IPUs. However,
finding a class of challenging randomly generated test cases is non-trivial and an
open problem for future work. The study verified that at least one commercially
available IPU is already comparable to current state-of-the-art classical methods
on some classes of problems (e.g. RAN and RANF). Consequently, as this IPU’s
hardware increases in size, one would expect that it could outperform state-
of-the-art classical methods because of its parallel computational nature and
become a valuable co-processor in hybrid-optimization algorithms.

Overall, we find that the emergence of IPUs is an interesting development for
the optimization community and warrants continued study. Considerable work
remains to determine new challenging classes of test cases for validating and
benchmarking TPUs. We hope that the technology overview and the validation
study conducted in this work will assist the optimization research community
in exploring IPU hardware platforms and will accelerate the development of
hybrid-algorithms that can effectively leverage these emerging technologies.
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