Skip to main content

Investigating Constraint Programming for Real World Industrial Test Laboratory Scheduling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11494))

Abstract

In this paper we deal with a complex real world scheduling problem closely related to the well-known Resource-Constrained Project Scheduling Problem (RCPSP). The problem concerns industrial test laboratories in which a large number of tests has to be performed by qualified personnel using specialised equipment, while respecting deadlines and other constraints. We present different constraint programming models and search strategies for this problem. Our approaches are evaluated using CP solvers and a MIP solver on a set of generated instances of different sizes. With our best approach we could find feasible and several optimal solutions for instances that are generated based on real-world test laboratory problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In TLSP, these are derived from the tasks contained within a job. Since we assume the distribution of tasks into jobs to be fixed, they can be given directly as part of the input for TLSP-S.

References

  1. Bartels, J.H., Zimmermann, J.: Scheduling tests in automotive R&D projects. Eur. J. Oper. Res. 193(3), 805–819 (2009). https://doi.org/10.1016/j.ejor.2007.11.010

    Article  MATH  Google Scholar 

  2. Bellenguez, O., Néron, E.: Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills. In: Burke, E., Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 229–243. Springer, Heidelberg (2005). https://doi.org/10.1007/11593577_14

    Chapter  Google Scholar 

  3. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3–41 (1999). https://doi.org/10.1016/S0377-2217(98)00204-5

    Article  MATH  Google Scholar 

  4. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, University of Melbourne, Australia (2011). http://hdl.handle.net/11343/36679

  5. Dauzère-Pérès, S., Roux, W., Lasserre, J.: Multi-resource shop scheduling with resource flexibility. Eur. J. Oper. Res. 107(2), 289–305 (1998). https://doi.org/10.1016/S0377-2217(97)00341-X

    Article  MATH  Google Scholar 

  6. Drezet, L.E., Billaut, J.C.: A project scheduling problem with labour constraints and time-dependent activities requirements. Int. J. Prod. Econ. 112(1), 217–225 (2008). https://doi.org/10.1016/j.ijpe.2006.08.021. Special Section on Recent Developments in the Design, Control, Planning and Scheduling of Productive Systems

    Article  Google Scholar 

  7. Elmaghraby, S.E.: Activity Networks: Project Planning and Control by Network Models. Wiley, New York (1977)

    MATH  Google Scholar 

  8. Feydy, T., Goldwaser, A., Schutt, A., Stuckey, P.J., Young, K.D.: Priority search with MiniZinc. In: ModRef 2017: The Sixteenth International Workshop on Constraint Modelling and Reformulation at CP 2017 (2017)

    Google Scholar 

  9. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010). https://doi.org/10.1016/j.ejor.2009.11.005

    Article  MathSciNet  MATH  Google Scholar 

  10. IBM, CPLEX: 12.8.0 IBM ILOG CPLEX optimization studio CP optimizer user’s manual (2017). https://www.ibm.com/analytics/cplex-cp-optimizer

  11. IBM, CPLEX: 12.8.0 IBM ILOG CPLEX optimization studio CPLEX user’s manual (2017). https://www.ibm.com/analytics/cplex-optimizer

  12. Mika, M., Waligóra, G., Wȩglarz, J.: Overview and state of the art. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Management and Scheduling. International Handbooks on Information Systems, vol. 1, pp. 445–490. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-05443-8_21

    Chapter  Google Scholar 

  13. Mischek, F., Musliu, N.: A local search framework for industrial test laboratory scheduling. In: Proceedings of the 12th International Conference on the Practice and Theory of Automated Timetabling (PATAT-2018), Vienna, Austria, 28–31 August 2018, pp. 465–467 (2018)

    Google Scholar 

  14. Mischek, F., Musliu, N.: The test laboratory scheduling problem. Technical report, Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, TU Wien, CD-TR 2018/1 (2018)

    Google Scholar 

  15. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  16. Nudtasomboon, N., Randhawa, S.U.: Resource-constrained project scheduling with renewable and non-renewable resources and time-resource tradeoffs. Comput. Ind. Eng. 32(1), 227–242 (1997). https://doi.org/10.1016/S0360-8352(96)00212-4

    Article  Google Scholar 

  17. Pritsker, A.A.B., Waiters, L.J., Wolfe, P.M.: Multiproject scheduling with limited resources: a zero-one programming approach. Manage. Sci. 16(1), 93–108 (1969). https://doi.org/10.1287/mnsc.16.1.93

    Article  Google Scholar 

  18. Salewski, F., Schirmer, A., Drexl, A.: Project scheduling under resource and mode identity constraints: model, complexity, methods, and application. Eur. J. Oper. Res. 102(1), 88–110 (1997). https://doi.org/10.1016/S0377-2217(96)00219-6

    Article  MATH  Google Scholar 

  19. Schulte, C., Lagerkvist, M., Tack, G.: Gecode 6.10 reference documentation (2018). https://www.gecode.org

  20. Schwindt, C., Trautmann, N.: Batch scheduling in process industries: an application of resource-constrained project scheduling. OR-Spektrum 22(4), 501–524 (2000)

    Article  MathSciNet  Google Scholar 

  21. Szeredi, R., Schutt, A.: Modelling and solving multi-mode resource-constrained project scheduling. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 483–492. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_31

    Chapter  Google Scholar 

  22. Wȩglarz, J., Józefowska, J., Mika, M., Waligóra, G.: Project scheduling with finite or infinite number of activity processing modes–a survey. Eur. J. Oper. Re. 208(3), 177–205 (2011). https://doi.org/10.1016/j.ejor.2010.03.037

    Article  MathSciNet  MATH  Google Scholar 

  23. Young, K.D., Feydy, T., Schutt, A.: Constraint programming applied to the multi-skill project scheduling problem. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 308–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_20

    Chapter  Google Scholar 

Download references

Acknowledgments

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged. We would also like to thank the anonymous reviewers for their feedback, in particular regarding CP-modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Geibinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geibinger, T., Mischek, F., Musliu, N. (2019). Investigating Constraint Programming for Real World Industrial Test Laboratory Scheduling. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics