Skip to main content

Computing Wasserstein Barycenters via Linear Programming

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11494))

Abstract

This paper presents a family of generative Linear Programming models that permit to compute the exact Wasserstein Barycenter of a large set of two-dimensional images. Wasserstein Barycenters were recently introduced to mathematically generalize the concept of averaging a set of points, to the concept of averaging a set of clouds of points, such as, for instance, two-dimensional images. In Machine Learning terms, the Wasserstein Barycenter problem is a generative constrained optimization problem, since the values of the decision variables of the optimal solution give a new image that represents the “average” of the input images. Unfortunately, in the recent literature, Linear Programming is repeatedly described as an inefficient method to compute Wasserstein Barycenters. In this paper, we aim at disproving such claim. Our family of Linear Programming models rely on different types of Kantorovich-Wasserstein distances used to compute a barycenter, and they are efficiently solved with a modern commercial Linear Programming solver. We numerically show the strength of the proposed models by computing and plotting the barycenters of all digits included in the classical MNIST dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. MNIST dataset. http://yann.lecun.com/exdb/mnist/. Accessed 29 Nov 2018

  2. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011)

    Article  MathSciNet  Google Scholar 

  3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Alfred P. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts (1988)

    Google Scholar 

  4. Anderes, E., Borgwardt, S., Miller, J.: Discrete Wasserstein Barycenters: optimal transport for discrete data. Math. Methods Oper. Res. 84(2), 389–409 (2016)

    Article  MathSciNet  Google Scholar 

  5. Auricchio, G., Bassetti, F., Gualandi, S., Veneroni, M.: Computing Kantorovich-Wasserstein distances on d-dimensional histograms using (d+1)-partite graphs. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  6. Bassetti, F., Gualandi, S., Veneroni, M.: On the computation of Kantorovich-Wasserstein distances between 2D-histograms by uncapacitated minimum cost flows (2018). arXiv preprint: arXiv:1804.00445

  7. Claici, S., Chien, E., Solomon, J.: Stochastic Wasserstein Barycenters (2018). arXiv preprint: arXiv:1802.05757

  8. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

    Google Scholar 

  9. Cuturi, M., Doucet, A.: Fast computation of Wasserstein Barycenters. In: International Conference on Machine Learning, pp. 685–693 (2014)

    Google Scholar 

  10. Flood, M.M.: On the Hitchcock distribution problem. Pac. J. Math. 3(2), 369–386 (1953)

    Article  MathSciNet  Google Scholar 

  11. Santambrogio, F.: Optimal Transport for Applied Mathematicians, pp. 99–102. Birkäuser, New York (2015)

    Book  Google Scholar 

  12. Schrijver, A.: On the history of the transportation and maximum flow problems. Math. Program. 91(3), 437–445 (2002)

    Article  MathSciNet  Google Scholar 

  13. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21(2), 343–348 (1967)

    Article  MathSciNet  Google Scholar 

  14. Solomon, J., et al.: Convolutional Wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans. Graph. (TOG) 34(4), 66 (2015)

    Article  Google Scholar 

  15. Staib, M., Claici, S., Solomon, J.M., Jegelka, S.: Parallel streaming Wasserstein Barycenters. In: Advances in Neural Information Processing Systems, pp. 2647–2658 (2017)

    Google Scholar 

  16. Vershik, A.M.: Long history of the Monge-Kantorovich transportation problem. Math. Intell. 35(4), 1–9 (2013)

    Article  MathSciNet  Google Scholar 

  17. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Gualandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Auricchio, G., Bassetti, F., Gualandi, S., Veneroni, M. (2019). Computing Wasserstein Barycenters via Linear Programming. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics