Skip to main content

Heat Exchanger Circuitry Design by Decision Diagrams

  • Conference paper
  • First Online:
  • 1889 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11494))

Abstract

The interconnection pattern between the tubes of a tube-fin heat exchanger, also referred to as its circuitry, has a significant impact on its performance. We can improve the performance of a heat exchanger by identifying optimized circuitry designs. This task is difficult because the number of possible circuitries is very large, and because the dependence of the heat exchanger performance on the input (i.e., a given circuitry) is highly discontinuous and nonlinear. In this paper, we propose a novel decision diagram formulation and present computational results using the mixed integer programming solver CPLEX. The results show that the proposed approach has a favorable scaling with respect to number of tubes in the heat exchanger size and produces configurations with 9% higher heat capacity, on average, than the baseline configuration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ploskas, N., Laughman, C., Raghunathan, A.U., Sahinidis, N.V.: Optimization of circuitry arrangements for heat exchangers using derivative-free optimization. Chem. Eng. Res. Des. 131, 16–28 (2018). https://doi.org/10.1016/j.cherd.2017.05.015

    Article  Google Scholar 

  2. Hewitt, G.F., Shires, G.L., Bott, T.R.: Process Heat Transfer, vol. 113. CRC Press, Boca Raton (1994)

    Google Scholar 

  3. Fax, D.H., Mills, R.R.: Generalized optimal heat exchanger design. ASME Trans. 79, 653–661 (1957)

    Google Scholar 

  4. Hedderich, C.P., Kelleher, M.D., Vanderplaats, G.N.: Design and optimization of air-cooled heat exchangers. J. Heat Transfer 104, 683–690 (1982)

    Article  Google Scholar 

  5. Liang, S.Y., Wong, T.N., Nathan, G.K.: Study on refrigerant circuitry of condenser coils with exergy destruction analysis. Appl. Therm. Eng. 20, 559–577 (2000). https://doi.org/10.1016/s1359-4311(99)00043-5

    Article  Google Scholar 

  6. Wang, C.C., Jang, J.Y., Lai, C.C., Chang, Y.J.: Effect of circuit arrangement on the performance of air-cooled condensers. Int. J. Refrig. 22, 275–282 (1999). https://doi.org/10.1016/s0140-7007(98)00065-6

    Article  Google Scholar 

  7. Yun, J.Y., Lee, K.S.: Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins. Int. J. Heat Mass Transf. 43, 2529–2539 (2000). https://doi.org/10.1016/s0017-9310(99)00342-7

    Article  MATH  Google Scholar 

  8. Liang, S.Y., Wong, T.N., Nathan, G.K.: Numerical and experimental studies of refrigerant circuitry of evaporator coils. Int. J. Refrig. 24, 823–833 (2001). https://doi.org/10.1016/s0140-7007(00)00050-5

    Article  Google Scholar 

  9. Matos, R.S., Laursen, T.A., Vargas, J.V.C., Bejan, A.: Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. Int. J. Therm. Sci. 43, 477–487 (2004). https://doi.org/10.1016/j.ijthermalsci.2003.10.003

    Article  MATH  Google Scholar 

  10. Domanski, P.A., Yashar, D., Kim, M.: Performance of a finned-tube evaporator optimized for different refrigerants and its effect on system efficiency. Int. J. Refrig. 28, 820–827 (2005). https://doi.org/10.1016/j.ijrefrig.2005.02.003

    Article  Google Scholar 

  11. Domanski, P.A., Yashar, D., Kaufman, K.A., Michalski, R.S.: An optimized design of finned-tube evaporators using the learnable evolution model. HVAC&R Res. 10, 201–211 (2004). https://doi.org/10.1080/10789669.2004.10391099

    Article  Google Scholar 

  12. Domanski, P.A., Yashar, D.: Optimization of finned-tube condensers using an intelligent system. Int. J. Refrig. 30, 482–488 (2007). https://doi.org/10.1016/j.ijrefrig.2006.08.013

    Article  Google Scholar 

  13. Wu, Z., Ding, G., Wang, K., Fukaya, M.: Application of a genetic algorithm to optimize the refrigerant circuit of fin-and-tube heat exchangers for maximum heat transfer or shortest tube. Int. J. Therm. Sci. 47, 985–997 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.08.005

    Article  Google Scholar 

  14. Bendaoud, A.L., Ouzzane, M., Aidoun, Z., Galanis, N.: A new modeling procedure for circuit design and performance prediction of evaporator coils using CO2 as refrigerant. Appl. Energy 87, 2974–2983 (2010). https://doi.org/10.1016/j.apenergy.2010.04.015

    Article  Google Scholar 

  15. Lee, W.J., Kim, H.J., Jeong, J.H.: Method for determining the optimum number of circuits for a fin-tube condenser in a heat pump. Int. J. Heat Mass Transf. 98, 462–471 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.094

    Article  Google Scholar 

  16. Yashar, D.A., Lee, S., Domanski, P.A.: Rooftop air-conditioning unit performance improvement using refrigerant circuitry optimization. Appl. Therm. Eng. 83, 81–87 (2015). https://doi.org/10.1016/j.applthermaleng.2015.03.012

    Article  Google Scholar 

  17. Cen, J., Hu, J., Jiang, F.: An automatic refrigerant circuit generation method for finned-tube heat exchangers. Can. J. Chem. Eng. (2018). https://doi.org/10.1002/cjce.23150

    Article  Google Scholar 

  18. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11

    Chapter  Google Scholar 

  19. Behle, M.: Binary decision diagrams and integer programming. Ph.D. thesis, Saarland University (2007)

    Google Scholar 

  20. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016). https://doi.org/10.1287/ijoc.2015.0648

    Article  MathSciNet  MATH  Google Scholar 

  21. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, 1st edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

    Book  MATH  Google Scholar 

  22. Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompositions. Manage. Sci. 64(10), 4700–4720 (2017). https://doi.org/10.1287/mnsc.2017.2849

    Article  Google Scholar 

  23. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61(6), 1411–1428 (2013). https://doi.org/10.1287/opre.2013.1221

    Article  MathSciNet  MATH  Google Scholar 

  24. Davarnia, D., van Hoeve, W.J.: Outer approximation for integer nonlinear programs via decision diagrams (2018). http://www.optimization-online.org/DB_HTML/2018/03/6512.html

  25. Haus, U.U., Michini, C., Laumanns, M.: Scenario aggregation using binary decision diagrams for stochastic programs with endogenous uncertainty. CoRR abs/1701.04055, https://arxiv.org/abs/1701.04055 (2017)

  26. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_7

    Chapter  Google Scholar 

  27. Lozano, L., Smith, J.C.: A binary decision diagram based algorithm for solving a class of binary two-stage stochastic programs. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1315-z

  28. Morrison, D.R., Sewell, E.C., Jacobson, S.H.: Solving the pricing problem in a branch-and-price algorithm for graph coloring using zero-suppressed binary decision diagrams. INFORMS J. Comput. 28(1), 67–82 (2016). https://doi.org/10.1287/ijoc.2015.0667

    Article  MathSciNet  MATH  Google Scholar 

  29. Raghunathan, A.U., Bergman, D., Hooker, J.N., Serra, T., Kobori, S.: Seamless multimodal transportation scheduling. CoRR abs/1807.09676 https://arxiv.org/abs/1807.09676 (2018)

  30. Serra, T., Hooker, J.N.: Compact representation of near-optimal integer programming solutions (2017). http://www.optimization-online.org/DB_HTML/2017/09/6234.html

  31. Tjandraatmadja C., van Hoeve, W.J.: Target cuts from relaxed decision diagrams. INFORMS J. Comput. (2018, to appear)

    Google Scholar 

  32. Jiang, H., Aute, V., Radermacher, R.: CoilDesigner: a general-purpose simulation and design tool for air-to-refrigerant heat exchangers. Int. J. Refrig. 29, 601–610 (2006). https://doi.org/10.1016/j.ijrefrig.2005.09.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos V. Sahinidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ploskas, N., Laughman, C., Raghunathan, A.U., Sahinidis, N.V. (2019). Heat Exchanger Circuitry Design by Decision Diagrams. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics