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Abstract

Mixed integer nonlinear programs (MINLPs) are arguably among the
hardest optimization problems, with a wide range of applications. MINLP
solvers that are based on linear relaxations and spatial branching work
similar as mixed integer programming (MIP) solvers in the sense that they
are based on a branch-and-cut algorithm, enhanced by various heuristics,
domain propagation, and presolving techniques. However, the analysis of
infeasible subproblems, which is an important component of most major
MIP solvers, has been hardly studied in the context of MINLPs. There
are two main approaches for infeasibility analysis in MIP solvers: conflict
graph analysis, which originates from artificial intelligence and constraint
programming, and dual ray analysis.

The main contribution of this short paper is twofold. Firstly, we
present the first computational study regarding the impact of dual ray
analysis on convex and nonconvex MINLPs. In that context, we intro-
duce a modified generation of infeasibility proofs that incorporates lin-
earization cuts that are only locally valid. Secondly, we describe an ex-
tension of conflict analysis that works directly with the nonlinear relax-
ation of convex MINLPs instead of considering a linear relaxation. This is
work-in-progress, and this short paper is meant to present first theoretical
considerations without a computational study for that part.

1 Introduction
In this paper, we consider mixed integer nonlinear programs (MINLPs) of the
form

min{cTx | Ax ≥ b, gk(x) ≤ 0 ∀k ∈ K, ` ≤ x ≤ u, xj ∈ Z ∀j ∈ I} (1)
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with objective coefficient vector c ∈ Rn, linear constraint matrix A ∈ Rm×n,
nonlinear constraint functions gk : Rn 7→ R, k ∈ K := {1, . . . , p}, continuously
differentiable, and possibly nonconvex, and variable bounds `, u ∈ Rn, where
R := R ∪ {±∞}. Furthermore, let N = {1, . . . , n} be the index set of all
variables and I ⊆ N the set of variables that need to be integral in every
feasible solution. Without loss of generality, we assume the objective function to
be linear. A nonlinear objective function can be transformed into a constraint
bounded by an artificial variable z that needs to be minimized. We call an
MINLP convex when all of its constraint functions gk are convex. Otherwise,
we call the MINLP nonconvex. When omitting the integrality requirements, we
obtain the nonlinear programming (NLP) relaxation of (1)

min{cTx |Ax ≥ b, gk(x) ≤ 0 ∀k ∈ K, ` ≤ x ≤ u, x ∈ Rn}. (2)

The mixed integer programming (MIP) relaxation of (1) is given by omitting all
nonlinear constraints gk for all k ∈ K

min{cTx |Ax ≥ b, ` ≤ x ≤ u, xi ∈ Z∀i ∈ I}. (3)

Omitting both, integrality requirements and nonlinear constraints, yields the
linear programming (LP) relaxation of (1)

min{cTx |Ax ≥ b, ` ≤ x ≤ u, x ∈ Rn}. (4)

All three relaxations provide a lower bound on the optimal solution value
of the MINLP (1). MINLP combines discrete decisions and nonlinear functions
that are potentially nonconvex. In theory, linear and convex smooth nonlinear
programs are solvable in polynomial time [27, 48]. In practice, both classes
can be solved very efficiently [10, 42]. In contrast to that, nonconvexities as
imposed by discrete variables or nonconvex nonlinear functions easily lead to
problems that are both NP-hard in theory and computationally demanding in
practice [49].

Commonly used methods to solve convex MINLPs (1) include the extended
cutting plane algorithm (ECP) [52], the extended supporting hyperplane algo-
rithm [31], outer approximation (OA) [17, 19], NLP-based branch-and-bound [23],
and LP/NLP-based branch-and-bound [45]. The most commonly used method
to solve nonconvex MINLPs is a combination of OA [29, 50] and spatial branch-
and-bound [34, 35, 24]. Different MINLP solvers either use LP or MIP relax-
ations or both during the tree search. For example, Couenne [14] and SCIP [49]
derive valid lower bounds by solving LP relaxations only, whereas BARON [28, 5]
and BONMIN [11, 12] solve both LP and MIP relaxations. In contrast to that, only
a handful of MINLP solvers provide the possibility to exclusively use NLP relax-
ations, e.g., BONMIN and FICO Xpress Optimizer [18]. For a detailed overview
of MINLP solvers that can handle convex and/or nonconvex MINLPs and the
implemented algorithm, we refer to [30].

In the following, we will focus on MINLP solvers that use a combination of
OA and spatial branch-and-bound. Spatial branch-and-bound is – analogous
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to LP-based branch-and-bound [15, 33] – a divide-and-conquer method which
splits the search space sequentially into smaller subproblems that are intended
to be easier to solve. Additionally, convex relaxations are used to compute
lower bounds on the individual subproblems. Based on the computed lower
bound, a subproblem can be pruned earlier if the lower bound already exceeds
the currently best-known solution. To divide the search space into smaller
pieces, spatial branch-and-bound branches on discrete variables with a fractional
solution value in the relaxation solution. In addition to that, spatial branch-and-
bound uses continuous variables for branching if they appear in nonconvex terms
of nonlinear constraints that are violated by the current relaxation solution.
During this procedure, infeasible subproblems may be encountered. Infeasibility
can either be detected by contradicting variable bounds, derived by domain
propagation, or by an infeasible convex relaxation. In contrast to modern MIP
solvers that can refer to a variety of well-studied techniques, e.g., [16, 46, 2],
to ’learn’ from infeasible subproblems, similar techniques for MINLPs exist for
certain special cases only.

2 Conflict Analysis in MINLP
In this section, we will briefly describe conflict analysis for MIPs of type (3) and
the drawbacks when applying these techniques to general MINLP.

2.1 Technical Background: Conflict Analysis in MIP
Conflict analysis for MIP has a long history and has its origin in artificial in-
telligence [47] and solving satisfiability problems (SAT) [36]. Similar ideas are
used in constraint programming (CP), see, e.g., [21, 25]. Integrations of these
techniques into MIP were independently suggested by [16], [46], and [2].

If infeasibility is encountered by domain propagation, modern SAT and MIP
solvers construct a directed acyclic graph which represents the logic of how the
set of branching decisions led to the detection of infeasibility. This graph is
called the conflict graph. Valid conflict constraints can be derived from cuts
in the graph that separate the branching decisions from an artificial vertex
representing the infeasibility. Based on such a cut, a conflict constraint consists
of a set of variables with associated bounds, requiring that in each feasible
solution at least one of the variables has to take a value outside these bounds.

If the LP relaxation of a subproblem with local bounds `′ and u′ turns out
to be infeasible, it is necessary to identify a set of variables and bound changes
that are sufficient to render the infeasibility. Such a set, the so-called Farkas
proof [44, 53], can be constructed by using LP duality theory that states that
exactly one of the systems

Ax ≥ b, `′ ≤ x ≤ u′ (5)

yTA+ rT{`′, u′} = 0, yTb+ rT{`′, u′} > 0, y ≥ 0 (6)
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where rT{`′, u′} :=
∑
j∈N : rj>0 rj`

′
j +

∑
j∈N : rj<0 rju

′
j , can be satisfied. Sys-

tem (6) implies a proof of infeasibility w.r.t. to the local bounds

0 < yTb+ rT{`′, u′} = yTb− (yTA){`′, u′} ⇐⇒ (yTA){`′, u′} < yTb. (7)

Consequently, every feasible solution has to satisfy

(yTA)x ≥ yTb, (8)

which is called Farkas proof; it is a globally valid constraint because it is a
nonnegative combination of all globally valid constraints. Thereby, Farkas proofs
are a special case of Benders cuts [6]. The Farkas proof is used as a starting
point for conflict graph analysis or dual ray analysis. Note, in MIP conflict graph
analysis yields at least one conflict that does not need to be linear, whereas dual
ray analysis yields exactly one linear constraint.

2.2 Conflict Analysis in MINLP
Only a few publications are dealing with infeasibility in MINLP. Most of the
literature is restricted to a certain class of MINLPs, e.g., conic certificates for
convex MINLPs [13] which has been proven to be very successful on mixed-
integer second-order cone (MISOCP) problems. Purely theoretical results for
mixed integer semidefinite programs (MISDP) were recently published in [26].
Both publications deal with MINLPs that are infeasible as a whole, and not
with the analysis of infeasible subproblems to learn information.

For MINLP algorithms that are based on solving LP relaxations, in partic-
ular, for OA- and ECP-based solvers, conflict analysis methods for MIP can
be applied under certain conditions. To this end, let us first recap the idea of
constructing an LP relaxation for an MINLP.

During the tree search, nonlinear functions are approximated by linear func-
tions if they are violated by a relaxation solution. Let x̃ be a relaxation solution
with gk(x̃) > 0. If gk is convex, a so-called gradient cut

gk(x̃) +∇gk(x̃)(x− x̃) ≤ 0

is added. If gk is nonconvex, convex underestimators are added, see, e.g., [49].
For quadratic functions, e.g., these are the so-called McCormick underestima-
tors [37]. More general nonlinear functions are typically decomposed into func-
tions of a single variable,for which explicit underestimators are known. Note that
gradient cuts are globally valid, while underestimators for non-convex functions
typically involve the local bounds and are hence not globally valid.

For a subproblem s during the tree search, let Gs := {ls1, . . . , lsq} be the index
set of all linear approximations of all gk with k ∈ K that have been added at the
node corresponding to s or any of its ancestors. Hence, it is the current set of
(local) linear relaxation cuts; all are valid at s. Let Gs be the matrix containing
all of these linearizations and ds be the corresponding right-hand sides. Thus,
the LP relaxation solved for subproblem s reads as

min{cTx | Ax ≥ b, Gsx ≥ ds, ` ≤ x ≤ u}. (9)
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We denote the set of linearizations added at the root node by G0. During the
(spatial) branch-and-bound the set of linearizations expands along each path of
the tree: It holds that G0 ⊆ Gs1 ⊆ . . . ⊆ Gsp ⊆ Gs for each path (0, s1, . . . , sp, s).
In analogy to solving MIPs, if (9) is infeasible each ray (y, w, r) in its dual can
be used to construct a proof of local infeasibility. Here, yi are the dual variables
corresponding to Ai·, wl are the dual variables corresponding toGsl· for all l ∈ Gs,
and rj denotes the reduced costs (the duals of the bound constraints) of every
variable xj . Note that rj = cj − yTA·j − wTGs·j .

Hence, a local infeasibility proof w.r.t. the local bounds `′ and u′ is given
by

yTb+ wTds + rT{`′, u′} > 0, (10)

In contrast to (8) the constraint yTAx + wTGsx ≥ yTb + wTds is not globally
valid in general because linearizations of nonlinear constraints might rely on
intermediate local bounds. Conflict analysis as introduced in [1, 53] only con-
siders globally valid reasons of infeasibility. Therefore, every local certificate of
infeasibility (10) needs to be relaxed to consider G0 only

yTb+ w̄Tds + r̄T{`′, u′} > 0, (11)

where w̄l := wl, if l ∈ G0, and w̄l := 0, otherwise, and r̄j := cj − yTA·j − w̄TGs·j .
As a consequence, the relaxed certificate (11) might not provide an infeasibility
proof anymore and cannot be used to generate a conflict constraint. If, how-
ever, (11) is a valid proof of local infeasibility, all conflict analysis techniques
known from MIP can be applied.

2.3 Locally Valid Certificates of Infeasibility
In MIP both conflict graph analysis and dual ray analysis rely on globally valid
proofs. In most MIP solvers, local cuts are applied rarely, if at all. This is
very different for non-convex MINLP solvers which rely on local linearization
cuts. A computational study within the constraint integer programming and
MINLP solver SCIP showed that the impact of conflict graph analysis for general
MINLPs is almost negligible [49]. A computational study regarding the impact
of dual ray analysis on an MINLP solver has – to the best of our knowledge
– never been conducted before. We present such a computational study in
Section 3.

The observation that conflict graph analysis on MINLP instances has a much
smaller impact than on MIP instances [8, 49] led to the assumption that a
substantial amount of infeasibility proofs of form (11) were not globally valid.
Hence, they are not suitable for conflict graph analysis as known from the lit-
erature and implemented in SCIP. These results indicate that locally added
linearization cuts are, non-surprisingly, important to render infeasibility w.r.t.
local bounds.
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Table 1: Aggregated results on MINLPLIB

# solved time nodes timeQ nodesQ confsglb confsloc

all
noconflict 1170 689 79.11 3014.25 1.000 1.000 – –
confgraph 1170 694 77.94 2952.07 0.985 0.979 9679.01 –
dualray 1170 695 76.78 2871.86 0.970 0.953 1359.92 –
dualray-loc 1170 698 76.35 2841.90 0.965 0.943 1338.65 3192.50
[100,tilim]
noconflict 99 83 638.34 86860.54 1.000 1.000 – –
confgraph 99 88 563.06 74251.69 0.882 0.855 23653.88 –
dualray 99 89 458.28 62890.08 0.718 0.724 2019.46 –
dualray-loc 99 92 429.31 59629.05 0.673 0.686 2086.62 3177.67

To incorporate local linearizations of nonlinear constraints we propose to
generalize dual infeasibility proofs of subproblem s with local bounds `′ and u′
as described in Section 2.1 to locally valid certificates of form

yTb+ ŵTds + r̂T{`′, u′} > 0, (12)

incorporating linearizations Ĝ with G0 ⊆ Ĝ ⊆ Gsp , ŵl := wl, if l ∈ Ĝ, and
ŵl := 0, otherwise, and r̂j := cj − yTA·j − ŵTGs·j . The certificate (12) is valid
for the search tree induced by subproblem q, where q is chosen to satisfy

q = min
q∈{1,...,sp}

{Gq−1 ⊆ Ĝ, Ĝ ∩ (Gq+1 \ Gq) = ∅}. (13)

Hence, the infeasibility proof might be lifted to an ancestor q of the subproblem
s it was created for, if all local information used for the proof were already
available at q. Note that it would be possible to apply conflict graph analysis
to (12), too. However, this would introduce a computational overhead because
the order of locally apply bound changes and separated local linearizations needs
to be tracked and maintained. Since conflict graph analysis already comes with
an overhead due to maintaining the so-called delta-tree, i.e., complete informa-
tion about bound deductions and its reasons within the tree, we omit applying
conflict graph analysis on locally valid infeasibility certificates.

3 Computational Study
For our computational study, we implemented the generation of locally valid in-
feasibility certificates in the academic constraint integer programming solver
SCIP [22]. In the following, we refer to SCIP with (global) conflict graph
analysis as confgraph and SCIP with (global) dual ray analysis as dualray.
Moreover, we refer to dualray extended by locally valid infeasibility proofs as
dualray-loc. As a baseline we use SCIP with deactivated conflict analysis
(noconflict). As a test set we use the MINLPLIB [40] without instances for
which at least one setting finished with numerical violations. This yields a test
set of 1170 instances. The experiments were run on a cluster of Intel Xeon
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E5-2690 2.6GHz machines with 128GB of RAM; a time limit of 3600 seconds
was set.

Aggregated results of all four settings are shown in Table 1. Here, [100,tilim]
denotes the set of instances for which all settings need at least 100 seconds and
are solved by at least one setting [4].

All settings with activated conflict analysis improve both the running time
of SCIP, the number of branch-and-bound nodes, and the number of solved in-
stances. Moreover, there seems to be a clear ordering: dualray-loc is superior
to dualray which in turn is superior to confgraph. Further, the harder the in-
stances are, the more performance is gained by dualray and dualray-loc com-
pared to confgraph. The number of locally added conflict constraints (confsloc)
by dualray-loc is on average larger than the amount of globally added con-
flict constraints (confsglb) but in the same order of magnitude. On the set of
nonconvex MINLPs, however, dualray-loc constructs 11.08 times more locally
than globally valid conflict constraints. These results indicate that locally added
linearizations of nonlinear constraints are important to render local infeasibility.

When looking into the generation of local proofs into detail, we could observe
that in 5% of all analyzed infeasible LPs no local cut was needed to construct a
valid infeasibility certificate, i.e., we could lift the local conflict to a global one.
For 14% of all local proofs we found a set of local cuts such that q = bs/2c, the
conflict could be lifted up at least half of the depth. 78% of the local proofs
could not be lifted. Since a lot of infeasibility information is lost, we propose to
use a nonlinear relaxation instead. The theoretical base for nonlinear conflict
analysis will be discussed in the following section, whereas the implementation
and a computational study is future work.

4 Outlook and Theoretical Thoughts
In this final section, we will discuss theoretical considerations how conflict anal-
ysis can be directly applied to a nonlinear relaxation of convex MINLPs. The
content described in the following is work-in-progress. At the beginning of this
paper, we argued that after LP/MIP-based branch-and-bound, another com-
mon method to solve MINLPs is NLP-based branch-and-bound. We will briefly
sketch how a generalization of LP infeasibility analysis can be derived from the
KKT-conditions of convex NLPs. Given a convex MINLP of form

min
x∈X
{f(x) | gk(x) ≤ 0 ∀k ∈ K, he(x) = 0 ∀e ∈ E}, (14)

where f, gk are convex, continuously differentiable functions over Rn and he are
affine functions. For every optimal solution x? of (14) of the (convex) NLP
relaxation of (14) there exist λ ≥ 0 such that it holds that

∇f(x?) +
∑
k∈K

λk∇gk(x?) +
∑
e∈E

µe∇he(x?) = 0, λkgk(x?) = 0. (15)
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These conditions raise from the so-called Karush-Kuhn-Tucker-Conditions [32].
Equality (15) is the gradient of the Lagrangian dual that reads as

L(x, λ, µ) := f(x) +
∑
k∈K

λkgk(x) +
∑
e∈E

µehe(x), (16)

with λ ≥ 0 and µ ∈ R|E|. By duality theory, the Lagrangian dual function
which reads as q(λ, µ) := supλ,µ L(x, λ, µ) yields a lower bound on the opti-
mal value of (14). Maximizing q(λ, µ) would give the tightest lower bound
of (14), and strict duality of convex optimization tells us that this is equiva-
lent to the optimal value of (14). Consequently, if there exists (λ?, µ?) such
that

∑
k∈K λ

?
kgk(x) +

∑
e∈E µ

?
ehe(x) > 0, then the dual is unbounded and thus

(λ?, µ?) proofs infeasibility of (14). Even though Slater regularity does not hold
for infeasible points 1, ∑

k∈K

λ?kgk(x) +
∑
e∈E

µ?ehe(x) ≤ 0 (17)

is a valid inequality for (14); it is a convex combination (defined by the dual
multipliers) of the constraints of (14). Inequality (17) is the convex optimization
equivalent of the Farkas proof (8).

Assume that constraint (17) is given as proof of infeasibility for a subproblem
within an NLP-based branch-and-bound. If no local cuts are involved in the
infeasibility proof, inequality (17) is a globally valid convex nonlinear constraint.
Note in this context that gradient cuts are globally valid.

Clearly, inequality (17) holds for all non-negative λ?. The following obser-
vation makes the concrete (λ?, µ?) from the infeasibility proof interesting to use
as global information inside a branch-and-bound tree search for convex MINLP.
Consider the linearization at an infeasible point x?

∇gk(x?)T(x− x?) ≤ 0 ⇔ ∇gk(x?)Tx ≤ ∇gk(x?)Tx? ∀k ∈ K. (18)

Then, the corresponding dual multipliers λ? give the (linear) Farkas proof∑
k∈K

λ?k∇gk(x?) +
∑
e∈E

µ?e∇he(x?) = 0 (19)∑
k∈K

λ?k∇gk(x?)Tx? +
∑
e∈E

µ?e∇he(x?)Tx? < 0. (20)

Hence, as in the case of dual ray analysis for MIP, inequality (17) is a single
inequality that would have provided the infeasibility proof from its derivative.
The hope (which is true for MIP) is that it is a good candidate to detect infeasi-
bility by propagation (under the use of integrality information) in other parts of
the search tree, and might be a meaningful aggregation of problem constraints
to create cuts from.

1If one wanted to assume regularity on the constraint functions of (14), linear independence
constraint classification would be applicable.
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For many NLP solvers, in particular dual active set methods [41, 43, 20] and
barrier algorithms [38, 39, 51], dual multipliers will be readily available. The
added advantage of active set methods is that they typically yield a sparse dual
weight-vector (λ, µ). This might come in handy when the local bounds involved
in the infeasibility proof should be used to seed a conflict graph analysis. Like
in the linear case, the problem is that the initial reason will typically be too
large to be meaningful.

All of this is subject to further investigation. We plan to implement NLP-
based conflict analysis into the academic constraint integer programming solver
SCIP and to study its impact on solver behavior. As in the MIP case, in-
feasibility information might be used in several other contexts, consider hybrid
branching [3], conflict-driven diving heuristics [54], and also rapid learning [7, 9].
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