
Jekyll RDF
Template-Based Linked Data Publication with Minimized

Effort and Maximum Scalability

Natanael Arndt1,2[0000−0002−8130−8677], Sebastian Zänker2,
Gezim Sejdiu3[0000−0002−3441−1372], and Sebastian Tramp4[0000−0003−4707−2864]

1 AKSW, Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany
arndt@informatik.uni-leipzig.de
http://aksw.org/NatanaelArndt

2 Institut für Angewandte Informatik e.V., Goerdelerring 9, 04109 Leipzig, Germany
zaenker@infai.org

http://aksw.org/SebastianZaenker
3 Smart Data Analytics, University of Bonn, Endenicher Allee 19a, 53115 Bonn,

Germany
sejdiu@cs.uni-bonn.de

http://sda.tech/Person/GezimSejdiu/
4 eccenca GmbH, Hainstr. 8, 04109 Leipzig, Germany

sebastian.tramp@eccenca.com
https://sebastian.tramp.name

Abstract Over the last decades the Web has evolved from a human–
human communication network to a network of complex human–machine
interactions. An increasing amount of data is available as Linked Data
which allows machines to “understand” the data, but RDF is not meant
to be understood by humans. With Jekyll RDF we present a method to
close the gap between structured data and human accessible exploration
interfaces by publishing RDF datasets as customizable static HTML
sites. It consists of an RDF resource mapping system to serve the re-
sources under their respective IRI, a template mapping based on schema
classes, and a markup language to define templates to render customized
resource pages. Using the template system, it is possible to create do-
main specific browsing interfaces for RDF data next to the Linked Data
resources. This enables content management and knowledge manage-
ment systems to serve datasets in a highly customizable, low effort, and
scalable way to be consumed by machines as well as humans.

Keywords: Data Visualization · Data Publication · Static Site Gen-
eration · Content Management · Semantic Templating · Linked Data.

1 Introduction

In 2001 Tim Berners-Lee and James Hendler stated: The Web was designed as
an information space, with the goal not only that it should be useful for human–
human communication, but also that machines would be able to participate and

http://aksw.org/NatanaelArndt
http://aksw.org/SebastianZaenker
http://sda.tech/Person/GezimSejdiu/
https://sebastian.tramp.name


help users communicate with each other [6]. Now 18 years later we are at the
point that a huge amount of data is published as Linked Data as it is apparent in
the Linked Open Data Cloud5 with 1,234 datasets and 16,136 links between the
datasets6. But the RDF data is not suited and meant to be read and understood
by humans. On the informal Semantic Web Layer Model7 the top most layer
represents User Interface & Applications. A great variety of applications exist
to visualize RDF data. Such applications are table based triple explorers, like
pubby8, LOD View9, and LD Viewer/DBpedia Viewer [17,18] and visual graph
explorers like LodLive10, LODmilla [20], and Linked Data Maps [21]. These
applications are restricted to a view that is very close to the RDF data model
and are thus suited for data experts who understand the concepts of RDF and
the respective vocabularies, but not suitable for end users.

Web Content Management Systems (WCMS) are software systems to sup-
port the processes to create, manage, provide, control, and customize content
for websites [11]. Besides the management of the content in a Content Repos-
itory, the customizable presentation using templating systems is a key aspect
of WCMS. Semantic Content Management Systems (SCMS) extend Content
Management Systems with additional functionality to enrich the content with
semantic meta-data in a Knowledge Repository. Nowadays we are at the point
that the semantic data is not “only” meta-data, but encodes the information
itself. The activity to manage the semantic data as information by itself is
called Semantic Data Management and gets a lot of attention [8,4]. To make
this semantic data available to end users there is a need for semantic templating
systems which is experiencing little research so far.

In this work, we present an approach for the generation of static Web explo-
ration interfaces on Linked Data. The approach is based on devising a declarative
DSL to create templates to render instance data. The templates are associated
to RDF classes and a breath-first search algorithm determines the best-suitable
template for any given data resource. To demonstrate the feasibility of the ap-
proach, we implemented it as an extension to the popular Jekyll11 Static Site
Generator and CMS12. In contrast to dynamic web pages, static web pages are
preparatively generated and can be served without further server-side computa-
tion, thus providing highest possible scalability. This approach is complemen-
tary to the data focused approach of Linked Data Fragments13 to reduce costly
server-side request evaluation. By rendering RDF data to static HTML sites we
provide a method to browse the Semantic Web seamlessly integrated with the
rest of the Web and close the gap between structured data and human accessible
5

http://lod-cloud.net/
6 As of June 2018
7

https://www.w3.org/2007/03/layerCake.svg
8

http://wifo5-03.informatik.uni-mannheim.de/pubby/
9

http://lodview.it, https://github.com/dvcama/LodView
10

http://en.lodlive.it/, https://github.com/dvcama/LodLive
11

https://jekyllrb.com/, https://www.staticgen.com/, https://www.netlify.com/blog/2016/05/02/top-ten-static-website
-generators/

12
https://www.siteleaf.com/, https://www.netlifycms.org/

13
http://linkeddatafragments.org/

http://lod-cloud.net/
https://www.w3.org/2007/03/layerCake.svg
http://wifo5-03.informatik.uni-mannheim.de/pubby/
http://lodview.it
https://github.com/dvcama/LodView
http://en.lodlive.it/
https://github.com/dvcama/LodLive
https://jekyllrb.com/
https://www.staticgen.com/
https://www.netlify.com/blog/2016/05/02/top-ten-static-website-generators/
https://www.netlify.com/blog/2016/05/02/top-ten-static-website-generators/
https://www.siteleaf.com/
https://www.netlifycms.org/
http://linkeddatafragments.org/


exploration interfaces. To the best of our knowledge Jekyll RDF14 is the first ap-
proach to apply the concept of Static Site Generators to RDF knowledge bases.
In contrast to the state of the art (cf. section 2) it does not require programming
knowledge of its user, does not need a dynamic back-end nor it is integrated in
an IDE. It is provided as a standalone tool inspired by the UNIX (and more
recently micro-service) philosophy to make each program do one thing well [12].
Because of the separation of concerns it is integrable with existing content man-
agement and knowledge management workflows. Due to the modular conception
the presented method should be transferable to further Static Site Generators
like Next, Hugo, and Hyde15 or complex frameworks like Gatsby16.

In this paper we first give an introduction to the state of the art in section 2.
Then we provide an overview on the Static Site Generator architecture with
detailed descriptions of the core components in section 3. An important aspect
of the separation of concerns approach is the ability to integrate a tool with
larger systems to accomplish high-level tasks. We present the integration of
the Static Site Generator in a Linked Data tool chain in section 4. The Jekyll
RDF system is already used in several setups from various domains which we
present in section 5. Finally, we draw our conclusions and outline future work
in section 6.

2 State of the Art
The generic data model provided by RDF allows the publication of data rep-
resenting various domains and their aspects on the Web. The abstraction of
the data model from its representation opens the possibility for arbitrary visu-
alizations of the data. A great variety of systems exists that provide ways to
access and visualize RDF data [16,13]. Many systems are created to serve a
specific purpose such as visualizing a specific dataset or data expressed using
a specific vocabulary. In the following we focus on frameworks and template
based systems that provide a generic tooling to create custom exploration and
visualization interfaces that are usable for any RDF dataset.

Templating systems usually provide a flexible approach for inserting data
into a scaffolding of an HTML page. The SPARQL Web Pages17 system defines
a templating language that allows to incorporate data from an RDF graph into
HTML and SVG documents. It is shipped with the commercial version of the
TopBraid Composer. A similar approach is followed by LESS [5] which later was
integrated with the OntoWiki [10]. The OntoWiki Site Extension18 [9] allows to
render RDF resources in HTML views using a PHP base templating language.
To serve the required representation of a Linked Data resources the OntoWiki
Linked Data server uses content negotiation to dynamically serve an HTML view
to web browsers and an RDF representation to Linked Data systems.
14

https://github.com/AKSW/jekyll-rdf
15

https://nextjs.org/, https://gohugo.io/, http://hyde.github.io/
16

https://gatsbyjs.org/
17

http://uispin.org/
18

https://github.com/AKSW/site.ontowiki

https://github.com/AKSW/jekyll-rdf
https://nextjs.org/
https://gohugo.io/
http://hyde.github.io/
https://gatsbyjs.org/
http://uispin.org/
https://github.com/AKSW/site.ontowiki


RDF Data

Layout TemplatesPages

Je
ky

ll 
B

u
ild

Je
ky

ll 
R

D
F

Je
ky

llJe
ky

ll 
B

u
ild

Je
ky

ll 
R

D
F

Je
ky

ll

Init Pages
Call Plug-In
Generators

Generate
a Page for Each
RDF Resource

Extract
RDF Resource

Template
Mapping 

Convert Markdown
to HTML

Process
Jekyll RDF Markup

Process
Liquid Markup

Map Resources IRIs
to Page Paths

Recursively Apply
Layouts to the
Page Contents

The Layouts can contain
further Liquid Tags & Filters
as well as Jekyll RDF Markup

Write
to Disk

Jekyll RDF Configuration

If a Jekyll Page with the same path
as a Jekyll RDF Resource exists already

they are merged into one Page

Rendered Jekyll Site

1 2 3

Figure 1. The architecture of Jekyll RDF and its interplay with Jekyll.

A different approach to provide customizable web interfaces to explore and
even edit RDF data is presented by Khalili et al. with the LD-R [14]. It provides
a framework to define Linked Data-driven Web Components in JavaScript. With
this framework it is possible to reuse existing components and compose new
dynamic web interfaces. A similar approach to build Semantic Interfaces for Web
Applications is presented with the MIRA framework [7]. It defines an abstract
interface definition that composes elements to form a hierarchy of widgets. These
widgets can be used in JavaScript applications to build responsive user interfaces.

In summary, the related work of LD-R and MIRA [14,7] as well as complex
frameworks like Gatsby aim at programmers and software engineers. The previ-
ous work of LESS and the OntoWiki Site Extension [5,10,9] provides a template
based approach. But LESS and OntoWiki Site Extension as well as the applica-
tion frameworks presented in [14,7] rely on a server side complex dynamic data
management system. In this paper, our aim is to provide a static approach to
maximize the scalability while minimizing the effort by following a templated
based approach that can be used without programming knowledge.

3 The Static Site Generation Architecture

We conceived our system as an extension to existing Static Site Generators.
A Static Site Generator usually translates a set of HTML and Markdown files
(pages) to a collection of HTML files (site) by using structural templates. Pages
and templates can be conditionally formatted and enriched with tags and filters
defined by a markup language to embed data values and alter the presentation.
The generated site is served either with an integrated web server or any other
HTTP server. To showcase our approach we implemented Jekyll RDF19 as a
plugin for the popular Jekyll system.

The plugin system of Jekyll provides among others the possibility to add
a generator to create new pages and to implement custom tags and filters for
the Liquid markup language20. Jekyll RDF uses this system to provide its
19

https://github.com/white-gecko/jekyll-rdf
20

https://shopify.github.io/liquid/, https://shopify.github.io/liquid/basics/introduction/

https://github.com/white-gecko/jekyll-rdf
https://shopify.github.io/liquid/
https://shopify.github.io/liquid/basics/introduction/


Listing 1. The sections of the Jekyll configuration relevant for Jekyll RDF including
base url, data source, selection of resources, and template mappings.

1 baseurl: "/sachsen/"
2 url: "http://pfarrerbuch.aksw.org"
3 plugins: [jekyll-rdf]
4 jekyll_rdf:
5 path: "sachsen.ttl"
6 restriction: "SELECT ?resourceUri WHERE {?resourceUri ?p ?o . FILTER 

↪→ regex(str(?resourceUri), '^http://pfarrerbuch.aksw.org/sachsen/')}"
7 default_template: "resource"
8 class_template_mappings:
9 "http://xmlns.com/foaf/0.1/Person": "person"

10 "http://purl.org/voc/hp/Place": "place"
11 "http://purl.org/voc/hp/Position": "position"
12 instance_template_mappings:
13 "http://pfarrerbuch.aksw.org/": "home"

main functionalities as depicted in fig. 1: (1, 2) generate a Jekyll page for each
resource from the RDF graph (cf. sections 3.1 and 3.2), and (3) extend the
markup language by a set of filters and tags to query the RDF graph (Jekyll
RDF Markup Language, cf. section 3.3). Jekyll controls the main flow of the
build process which is depicted in the lower row. The particular tasks which
are relevant for the rendering of RDF data are depicted in the upper row. The
process needs several data artifacts namely, the pages to be rendered by Jekyll,
the configuration options which are specific to Jekyll RDF, the RDF data, and
the templates to defined the layout of the pages and RDF resources. The process
to generate a Jekyll page for each RDF resource is split into four steps, extract
the RDF resource from the RDF data model as specified in the configuration
(cf. listing 1) and create program objects accordingly, map the resources to
templates, map the IRIs of the RDF resources to according page paths, and
generate a Jekyll page object for each RDF resource. The template mapping
(no. 1 in fig. 1) can happen directly per RDF resource or based on the RDF
types of a resource, this is described in detail in section 3.1. Design decisions
required to represent the RDF resource’s IRIs in the path system of Jekyll are
explained in section 3.2 (no. 2). Further, Liquid is extended to the Jekyll RDF
Markup Language which is presented in section 3.3 (no. 3).

In listing 1 an exemplary configuration file for Jekyll is provided with the rel-
evant sections to configure a Jekyll RDF setup. Lines 1 and 2 together represent
the URL under which a Jekyll site is served. In line 3 the Jekyll RDF plugin is
registered. Lines 4 to 13 are the specific parameters to configure Jekyll RDF,
the path (line 5) specifies the data source for the RDF data and the restriction
(line 6) specifies the list of RDF resources to be rendered. Lines 7 to 13 specify
the template mapping and are further described in section 3.1.

3.1 Template Mapping

Jekyll provides a templating system to allow the reuse of components on mul-
tiple pages and allow similar pages to look alike. The template for a Jekyll



owl:Thing

Resources

Cl
as

s 
H

ie
ra

rc
hy

②

③ ③②

②② ②

②③
Templates

x

✓
Figure 2. The class hierarchy is used to select the template to render a resource.

page is specified in a header in the page. During the rendering process Jekyll
applies this template to the content of the page. In contrast to a Jekyll page
an RDF resources has no “content” and no header and thus we need to specify
the representation of the resource. In the following we introduce three map-
ping mechanisms to determine which template should be applied for a resource.
The template assignment configuration is shown in lines 7 to 13 in listing 1.
In the instance_template_mappings section each resource can be directly assigned
to a template by specifying the resource IRI and the template name. Fur-
ther, two indirect options to assign a template are specified. In the section
class_template_mappings RDF classes are mapped to templates. Each resource
that is an instance of a specified class or its subclasses gets this template as-
signed. The precedence order of the template mappings is: instance based, class
based, default_template.

Other than for the instance based and default mapping the class template
mapping introduces ambiguity as depicted in fig. 2. If a resource has multiple
classes and each has a template assigned, it can not be decided which template
to use for the resource. The template selection can not be limited to the trivial
evaluation of rdf:type triples as this would not take the assignment of templates
to super classes into account. Inferencing along rdfs:subClassOf relations would
also be no good approach as it introduces more ambiguity and hides precedence
information about the most specific class for a resource.

We decided to select the template for an instance according to three rules
as depicted in fig. 2 (a candidate is a class that has a template assigned). (1)
Select the closest candidate in the class hierarchy, (2) if more then one candidate
exists with different templates but with the same shortest path distance, take
the candidate with the most specific class, (3) if still no candidate could be
selected, produce a warning and randomly select one of the candidates. A class
a is considered more specific than b if an rdfs:subClassOf property path exists
from a to b but not the other way around. To implement the template selection

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#subClassOf


scheme://authority/path?query#fragment

http://pfarrerbuch.aksw.org/sachsen/ort/3441.html
http://pfarrerbuch.aksw.org/sachsen/ort/3441#stellen

url baseurl
Jekyll Site URL

http://pfarrerbuch.aksw.org/sachsen/co
nfi

g

file path

sub resource

re
s.

 IR
I

Jekyll RDF page

Figure 3. Scheme of the selection of page paths based on the configured Jekyll Site
URL.

we chose a breath-first-search algorithm on the class hierarchy. To avoid cycles,
visited classes are marked. Once a suitable templates is selected all classes along
the search path are annotated with their distance to the selected candidate and
a reference to the selected template. These annotations can be used to prune
the search space of subsequent iterations. To optimize the overall process for
resources with the same sets of classes we maintain a dictionary of the hashed
sorted list of class IRIs and the selected template throughout the rendering
process. Using this dictionary no resource that is subsequently rendered with
the same set of classes needs to initiate a new template selection process.

3.2 Resource Mapping and Site Creation

Jekyll RDF is meant to provide an HTML view for Linked Data resources and
thus we need to map the resource’s HTTP IRIs to file system paths, which is
depicted in fig. 3. Taking an RDF resource Jekyll RDF matches it with the
Jekyll Site URL as it is set in lines 1 and 2 of the configuration in listing 1.
The matched part is than removed from the resource IRI and the remaining
part ort/3441 is mapped to the file path ort/3441.html. A query string in an IRI
can be treated in the same way as a path. A fragment part is interpreted and
truncated by the browser during a request, thus the second resource IRI ends
up at the same IRI as the previous one. As fragment identifiers are usually used
to identify anchors in HTML pages, all IRIs with a fragment are added to a
list data structure (page.subResources) of the respective non fragment IRI page.
All resources that do not match the configured base IRI are rendered with a,
currently unstable, fallback solution under the directory rdfsites.

It is possible that a resource created by Jekyll RDF would overwrite a page
that was already generated by Jekyll or any other plugin. In this case Jekyll
RDF merges the two page object into one page and copies the content of the
previously existing page into the content variable (cf. section 3.3) of the template
selected for the RDF resource. If a template is specified for the Jekyll page it
overwrites the template selected for the RDF resource.

3.3 Jekyll RDF Markup Language

The Jekyll RDF Markup Language (JML) is based on Liquid and extends it by
filters to access the RDF graph from within a template. Liquid provides the
concepts of objects, tags, and filters20. Objects define placeholders in a template



Listing 2. A simple template with HTML markup enriched by JML filters.
1 <h1>{{ page.rdf | rdf_property: "rdfs:label", "en" }}</h1>
2 <div>{{ page.rdf | rdf_property: "dct:created" | date: "%Y-%m-%d" }}</div>
3
4 {% assign publicationlist = "ex:publicationlist" | rdf_container %}
5 <ul>
6 {% for pub in publicationlist %}
7 <li>{{ pub | rdf_property: "dc:title" }}</li>
8 <li>{{ pub | rdf_property: "dct:creator", false, true | join: ", " }}</li>
9 {% endfor %}

10 </ul>

Table 1. The filters defined by Jekyll RDF and the tasks performed by them.
Filter Parameters ([optional]) Description
rdf_get Get a variable representing a resource from the RDF

graph.
rdf_property IRI, [language, bool] Get a value of a property of a resource (lines 1, 2, and 7

of listing 2). If the last parameter is set to true an array
is returned (line 8).

rdf_inverse_property IRI, [bool] Get the value of an inverse property.
rdf_collection and
rdf_container

[IRI] Get RDF collections and RDF containers from the
RDF graph as shown in line 4 of listing 2.

sparql_query sparql query Execute a SPARQL Query on the RDF graph, the passed
value is bound to ?resourceUri or to ?resourceUri_n if an array
is provided.

to insert values and are denoted by two curly braces {{ … }}. The special object
{{content}} in templates is a placeholder for the content of the rendered page.
Tags are used to embed control flow into the template, they are denoted by curly
braces and percent signs {% … %}. The tag {% assign = "some value" %} is used to
assign a value to a variable. Filters manipulate the output of objects or the value
of variables, they are chained and applied from left to right and separated by a
vertical bar |. A filter gets a value passed from the left and can get parameters
passed to the right after a colon : and separated by commas.

On every page which is generated by Jekyll RDF the variable page.rdf is
present to reference the RDF resource represented by that page. To provide a
way to access the RDF graph from within the template Jekyll RDF defines new
Liquid filters as shown in table 1 and listing 2. The usage of Liquid filters allows
to chain existing filters and filters defined by further plugins to the output of
the JML filters. The JML filters accept a resource IRI as string or a resource
object to be passed as value, they are shown and described in table 1.

4 Integration With Data Publication Workflows

With our approach we follow the single responsibility principle: Make each pro-
gram do one thing well [12]. This principle is recently gaining attention with the
increase of the importance of micro services to manage complex software sys-
tems. Following this principle it is possible to integrate Jekyll RDF with existing
tools, workflows, management systems, and interfaces to build a full SCMS or



to support data engineers to publish RDF graphs as HTML pages. A pragmatic
and in software engineering already proven successful approach for coordinating
collaboration and exchange of artifacts is the usage of Git repositories. The
Quit Store [2,3] is a method on top of Git to version and collaboratively manage
RDF knowledge repositories. In the following we show two aspects to consider
when integrating Jekyll RDF with data management and content management
workflows. We present two setups that adapt the continuous integration method
from software engineering to build flexible data publication workflows with Jekyll
RDF in section 4.1. To close the gap between structured data and human acces-
sible browsing interfaces based on Jekyll RDF it is equally important to make
the underlying RDF data available. We discuss possibilities to integrate the
HTML and RDF publication with each other in section 4.2.

4.1 Using Jekyll RDF with a Continuous Integration

Continuous Integration (CI) is a concept used in software engineering to au-
tomatically test, build, and deploy software artifacts. This concept recently
increases in usage for data engineering [19]. With Jekyll RDF it is possible to
define a step in a CI system to render and deploy pages whenever the data is
updated. Travis CI21 is a hosted continues integration service used to build and
test software projects at GitHub. Using a continuous integration system during
the work in a team allows to produce automated builds and feedback during
the development process whenever a contributor updates the templates or data
in the Git repository. In fig. 4 we show two possible setups of automatic con-
tinuous deployment pipelines to publish Jekyll RDF sites. The setup in fig. 4a
shows a completely publicly hosted setup that uses the Travis CI service to build
the Jekyll RDF site and the webspace provided by GitHub pages to serve the
produced Static Site. This setup allows a flexible collaboration system com-
bined with a free of charge deployment without the need to maintain a complex
infrastructure. The setup in fig. 4b is slightly complexer and allows the differen-
tiation between a stable “master” version and an unstable “develop” version. In
combination with Docker it is possible to build ready to deploy system images
including the rendered site. Whenever an updated system image is available the
deployment restarts the respective service with the updated image.

4.2 Integration with RDF Publication

Following the Linked Data principle: When someone looks up a URI, provide
useful information, using the standards (RDF*, SPARQL)22 one page is created
for each resource in the knowledge graph. Each resource page provides useful
information in a human accessible format. Since the web page is build based
on RDF data, besides the HTML representation, it is also important to make
the underlying RDF data available to Semantic Web agents. To achieve this,
21

https://travis-ci.org
22

http://www.w3.org/DesignIssues/LinkedData.html

https://travis-ci.org
http://www.w3.org/DesignIssues/LinkedData.html


Tr
a
v
is

 C
I

Tr
a
v
is

 C
I

Fetch Git
Repository

Execute
Jekyll RDF

Error Report

Deploy to
GitHub Pages

Failure

Success

G
it

H
u
b

G
it

H
u
b

Receive
UpdateGit

Repository

Serve
Updated Site

Create/Update
Jekyll Site/RDF Data

Jekyll RDF SiteRDF Data

Push To
GitHub

In this diagram, GitHub and Travis CI
are examples for a
Git Repository Management System
or Continous Integration System

(a)
Tr

a
v
is

C
I

Tr
a
v
is

C
I

Fetch Git
Repository

Execute
Jekyll RDF

Error Report

Success

Failure

G
it

H
u
b

G
it

H
u
b

Receive
Update on
"master"

Receive
Update on
"develop"

Git
Repository

D
o
ck

e
r 

H
u
b

D
o
ck

e
r 

H
u
b

Fetch Git
Repository

Docker Image

Bundle Pages in
a Docker Image

Store
Error Report

Execute
Jekyll RDF

HTML Pages

Success

Failure

D
e
p
lo

y
m

e
n
t

D
e
p
lo

y
m

e
n
t

Pull Docker
Image

Serve
Updated Site

Create/Update
Jekyll Site/RDF Data

Jekyll RDF SiteRDF Data

Watch
for Update

Git Push to
"master" Branch

Git Push to
"develop" Branch

(b)

Figure 4. Jekyll RDF integrated in two different deployment pipelines.

various methods exist to make the respective data available as needed. In the
following we discuss possibilities that have an overlap with the setup of Static
Sites.

A way to embed data in a document is to use RDFa properties within the
HTML tags. Since RDFa interferes with the surrounding HTML-tags it is not
subject to Jekyll RDF. Instead the embedding has to be performed by the tem-
plate designer. To support the designer this problem could also be subject to
future work for building a Jekyll RDFa plugin on top of Jekyll RDF. Instead of
embedding the RDF data each resource can also be served in a separate file. In
this case a script is employed to process the same data source as Jekyll RDF and
produce individual Linked Data resource pages. To provide a possibility for an
agent to find the respective resource page a link can be set or the HTTP server
employs content negotiation. But in many cases, where Static Sites are used, the
user has no ability to interfere with the HTTP protocol of the server. In this case
the only way is to add an HTML header link tag23 to point to the resource page,
this can be embedded directly in any Jekyll template. If the HTTP protocol of
the server can be configured the same link can be set as HTTP Link header24.
In this case also content negotiation25 is an elegant commonly used way to serve
the correct representation of the resource based on the request.

23
https://www.w3.org/TR/2017/REC-html52-20171214/document-metadata.html#the-link-element

24
http://www.rfc-editor.org/rfc/rfc5988.txt

25
https://tools.ietf.org/html/rfc7231#section-5.3, https://www.w3.org/DesignIssues/Conneg

https://www.w3.org/TR/2017/REC-html52-20171214/document-metadata.html#the-link-element
http://www.rfc-editor.org/rfc/rfc5988.txt
https://tools.ietf.org/html/rfc7231#section-5.3
https://www.w3.org/DesignIssues/Conneg


5 Application

In the following we show a selection of use cases where we have successfully
applied Jekyll RDF to build customized data exploration interfaces. The use
cases are from different domains and provide very individual user interfaces as
shown in figs. 5 and 6. The first two use cases are from the Digital Humanities,
followed by a Current Research Information System, and finally we eat our own
dogfood and present the usability of Jekyll RDF to build vocabulary description
pages. In table 2 we compare the setups according to the number of triples,
defined templates and pages, resulting pages, and execution time.

Digital Humanities The Multilingual Morpheme Ontology (MMoOn; [15]) is
an ontology in the linguistics to create language resources of morphemic data (in-
ventory) for inflectional languages. With the Open Hebrew Inventory we created
a language specific extension of the MMoOn vocabulary for the Modern Hebrew
language. The dataset currently consists of 197, 374 RDF Statements describing
Hebrew words, lexemes, and morphs. Using the Jekyll RDF system we could
create an interface to the Open Hebrew dataset that is specifically adapted to
the presentation of Hebrew language data. To define the templates we created
a Git repository26 that consists of four class templates, two overview pages, and
the dataset. On each update to the Git repository the Travis CI (cf. section 4.1)
executes the Jekyll RDF process to create the 13, 404 inventory pages, 20 vocab-
ulary pages, and two overview pages. Figure 5a shows the exploration interface
at the example of the word הֻכְתַּב (hukhtav). Next to the HTML interface we
created RDF resource pages in Turtle and RDF/JSON serialization. This RDF
representation of the data is used to attach a system for users to contribute to
the data through Structured Feedback [1]. In this way further dynamic elements
can be provided in a static page based on the RDF data.

Another Project from the Digital Humanities is the Pfarrerbuch project27.
In this project we build a Research Data Management system for historians to
create a database of all pastors who served in Saxony, Hungary, the Church
Province of Saxony, and Thuringia since the reformation. Especially in the filed
of history we see a great need for customized and easily accessible user interfaces.

Smart Data Analytics Work Group The Smart Data Analytics research
group (SDA28) investigates machine learning techniques (analytics) using struc-
tured knowledge (smart data). Machine learning requires sufficient data as train-
ing datasets. SDA investigated techniques which could help also to build such
a dataset to depict the organizational structure and entities representing SDA.
The SDA knowledge graph contains entities about persons, groups, projects, and
publications as well as their relations. It is used for question answering, faceted
26

http://mmoon-project.github.io/JekyllPage/
27

https://github.com/AKSW/pfarrerbuch.jekyllrdf
28

http://sda.tech, https://github.com/SmartDataAnalytics/sda.tech

http://mmoon-project.github.io/JekyllPage/
https://github.com/AKSW/pfarrerbuch.jekyllrdf
http://sda.tech
https://github.com/SmartDataAnalytics/sda.tech


(a) MMoOn exploration interface show-
ing the example of the resource for the
Hebrew word הֻכְתַּב (hukhtav).

(b) The documentation page for the diggr
OWL vocabulary used to model the in-
terplay of games and publishers in global
game culture research.

Figure 5. Images of Jekyll RDF pages to depict the variety of usage scenarios.

Table 2. Comparison of the presented Jekyll RDF setups. The average runtime is
measured at the Travis CI over the last 10 runs.
Setup #Triples #Templates/#Pages #Res. Pages Avg. Runtime
Open Hebrew Inventory 197,374 4/2 13,426 1952.4 s (32.54 min)
Pfarrerbuch (demo subset) 1,685 4/- 138 8 s
SDA Work Group 27,295 8 (Class) + 49 (Inst.)/2 253 327.3 s (5.45 min)
diggr Vocabulary 221 1/- 1 8 s

search, data mining, and analysis for better decision making while hiring or re-
structuring the group. Using Jekyll RDF and the Linked Data principles helps
to reuse the existing knowledge graph to build the work group homepage. In
this way it is possible to publish a Current Research Information System (CRIS)
with Jekyll RDF based on the SDA knowledge graph on the Web as shown in
fig. 6.

Vocabulary Documentation One of the major advantages of using RDF to
describe resources is the universality of the model and the ability to describe
the schema resources as part of the same graph as the described data. This en-
ables consumers and producers of the data to use an exploitable, executable, and
metadata rich knowledge framework. eccenca29 is a European enterprise based
in Germany with a strong vision how semantic vocabularies and Linked Data can
be used to integrate project data and data management. An important aspect
29

http://www.eccenca.com

http://www.eccenca.com


Figure 6. A work group page showing the members and projects.

of semantic data integration are vocabularies which capture essential concepts
from the customers domain. These vocabularies build the foundation for a se-
mantic data landscape which interlinks all customer datasets into an exploitable
graph. In order to communicate the results of an ontology specification work,
it is necessary to visualize and document the vocabularies. Existing ontology
documentation tools lack the ability to extensively customize the result. Using
Jekyll RDF we could build a set of templates for all major ontology classes and
publish it as a theme called Jekyll Ontology Documentation project (JOD)30.
However, fetching OWL constructs is problematic with SPARQL based graph
access alone and also complex functionality such as the generation of a Manch-
ester Syntax description is currently missing and should be integrated soon. It
can easily be integrated in an existing RDF vocabulary project as shown at the
example of the diggr Video Game Vocabulary project31 performed by the Leipzig
University Library. The deployment of Jekyll RDF with the JOD theme and a
CI/CD pipeline in order to create the vocabulary documentation was straight
forward. The user interface of the vocabulary documentation is shown in fig. 5b.

6 Conclusion and Future Work

With the presented Jekyll RDF system we provide a methodology to close the
gap between RDF data publishing and highly customizable publication and ex-
ploration interfaces. With our system it is possible to separate the management
of RDF dataset from the creation of appropriate templates for the data presen-
tation. Because we piggyback on the successful concept of Static Site Generators
a low entry barrier is provided and the system requirements for the HTTP server
are low. There is no need for costly dynamic server side computations which
30

https://github.com/eccenca/jod, https://rubygems.org/gems/jekyll-theme-jod
31

https://diggr.github.io/diggr-video-game-vocabulary/

https://github.com/eccenca/jod
https://rubygems.org/gems/jekyll-theme-jod
https://diggr.github.io/diggr-video-game-vocabulary/


often also rely on the availability of a hard to maintain SPARQL endpoint.
As shown in section 5 and table 2 the system allows the quick publication of
small RDF dataset like RDF vocabulary, but also the creation of pages for huge
datasets of more then 10k pages is possible with just a view templates. Espe-
cially, for the publication of highly interlinked datasets the usage of Jekyll RDF
has assets as shown by the CRIS use case. As a Static Site Generator performs
the work of creating the HTML pages in advance, the creation and the serving
can be separated. The use of computing power is predictable and not affected
by the amount of page visits. The separation allows a maximum flexibility in
scaling the delivery of the site. It is possible to make extensive use of caching
mechanisms such as content delivery networks to reduce the workload on the
server and increase the availability of a site. In contrast to caching of dynamic
pages the maintenance of static sites does not suffer from the problem of cache
invalidation which lowers the effort of the publication.

In contrast to the related work of LD-R and MIRA [14,7] and Gatsby we
provide a template based approach that aims at users without software devel-
oping experience. With the JML we minimize the effort of publishing Linked
Data without the need to write a single line of programming code. Using JML
as domain specific language allows also Web Designers to integrate knowledge
from RDF graphs into their work. The template based approach is similar to our
previous work with LESS and the OntoWiki Site Extension [5,10,9]. However,
the previous work as well as the application frameworks presented in [14,7] re-
lies on a complex dynamic data management back-end and SPARQL endpoint.
With Jekyll RDF we present a static approach to maximize the scalability as it
is independent of the availability of dynamic components at runtime.

As we extended Jekyll for our prototype we can benefit from the big ecosys-
tem of plugins to enrich the created site. For the future work the performance of
the generation process can be improved by an incremental build process to reuse
pages from previous builds. To increase the usability of the presented method
as a SCMS a set of predefined themes to be used with Jekyll RDF can support
users, as shown by JOD. Looking at the possibilities of this concept in combina-
tion with the successful and generic design of RDF we see a great potential for
future use cases. Due to the plethora of Static Site Generators we hope to see
implementations to adopt our conception and methods to further systems like
Next, Hugo, and Hyde15. There is no need to decide whether to publish data
or a customized human readable interface anymore as the can be server next to
each other on a static webspace.

Acknowledgements

Thanks to the 2016 Software Technik Praktikum course group who did the ini-
tial implementation of Jekyll RDF: Elias Saalmann, Christian Frommert, Simon
Jakobi, Arne Jonas Präger, Maxi Bornmann, Georg Hackel, Eric Füg. This work
was partly supported by grants from the German Federal Ministries of Education
and Research (BMBF) for the LEDS Project (03WKCG11C, 03WKCG11A),



Ministry of Transport and Digital Infrastructure (BMVI) for the LIMBO project
(19F2029A, 19F2029G), and the Ministry for Economic Affairs and Energy
(BMWi) for the PlatonaM project (01MT19005A).

References

1. Arndt, N., Junghanns, K., Meissner, R., Frischmuth, P., Radtke, N., Frommhold,
M., Martin, M.: Structured feedback: A distributed protocol for feedback and
patches on the web of data. In: LDOW (2016)

2. Arndt, N., Naumann, P., Radtke, N., Martin, M., Marx, E.: Decentralized col-
laborative knowledge management using git. Journal of Web Semantics (2018).
https://doi.org/10.1016/j.websem.2018.08.002

3. Arndt, N., Radtke, N.: A method for distributed and collaborative curation
of rdf datasets utilizing the quit stack. In: INFORMATIK 2017. LNI (2017).
https://doi.org/10.18420/in2017_187

4. Auer, S., Bühmann, L., Dirschl, C., Erling, O., Hausenblas, M., Isele, R., Lehmann,
J., Martin, M., Mendes, P.N., van Nuffelen, B., Stadler, C., Tramp, S., Williams,
H.: Managing the life-cycle of linked data with the LOD2 stack. In: ISWC (2012)

5. Auer, S., Doehring, R., Tramp, S.: LESS - template-based syndication and presen-
tation of linked data. In: ESWC (2010). https://doi.org/10.1007/978-3-642-13489-
0_15

6. Berners-Lee, T., Hendler, J.: Publishing on the semantic web. Nature 410(6832)
(2001)

7. Bertti, E., Schwabe, D.: Mira: A model-driven framework for semantic interfaces
for web applications. In: Web Engineering. Kobe, Japan (2016)

8. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J.
Semantic Web Inf. Syst. 5 (2009)

9. Frischmuth, P., Arndt, N., Martin, M.: Ontowiki 1.0: 10 years of development -
what’s new in ontowiki. In: SEMANTiCS P&D Track (2016)

10. Frischmuth, P., Martin, M., Tramp, S., Riechert, T., Auer, S.: OntoWiki - An
Authoring, Publication and Visualization Interface for the Data Web. Semantic
Web Journal 6(3) (2015). https://doi.org/10.3233/SW-140145

11. Gams, E., Mitterdorfer, D.: Semantische Content Management Systeme, chap. 11.
Springer (2009). https://doi.org/10.1007/978-3-540-72216-8_11

12. Gancarz, M.: Linux and the Unix Philosophy. Digital Press (2003)
13. Jacksi, K., Dimililer, N., Zeebaree, S.R.M.: State of the art exploration systems

for linked data: A review. IJACS 7(11) (2016)
14. Khalili, A., Loizou, A., van Harmelen, F.: Adaptive linked data-driven web com-

ponents: Building flexible and reusable semantic web interfaces - building flexible
and reusable semantic web interfaces. In: ESWC (2016)

15. Klimek, B., Arndt, N., Krause, S., Arndt, T.: Creating linked data morphological
language resources with mmoon - the hebrew morpheme inventory. In: LREC
(2016)

16. Klímek, J., Skoda, P., Necaský, M.: Survey of tools for linked data consumption.
Semantic Web Journal (2018)

17. Lukovnikov, D., Kontokostas, D., Stadler, C., Hellmann, S., Lehmann, J.: Dbpedia
viewer - an integrative interface for dbpedia leveraging the dbpedia service eco
system. In: LDOW (2014)

https://doi.org/10.1016/j.websem.2018.08.002
https://doi.org/10.18420/in2017_187
https://doi.org/10.1007/978-3-642-13489-0_15
https://doi.org/10.1007/978-3-642-13489-0_15
https://doi.org/10.3233/SW-140145
https://doi.org/10.1007/978-3-540-72216-8_11


18. Lukovnikov, D., Stadler, C., Lehmann, J.: Ld viewer - linked data presentation
framework. In: SEMANTiCS (2014)

19. Meissner, R., Junghanns, K.: Using devops principles to continuously monitor rdf
data quality. In: SEMANTiCS (2016). https://doi.org/10.1145/2993318.2993351

20. Micsik, A., Tóth, Z., Turbucz, S.: Lodmilla: Shared visualization of linked open
data. In: TPDL Workshops (2013)

21. Valsecchi, F., Abrate, M., Bacciu, C., Tesconi, M., Marchetti, A.: Linked
data maps: Providing a visual entry point for the exploration of datasets. In:
IESD@ISWC (2015)

https://doi.org/10.1145/2993318.2993351

	Jekyll RDF

