Skip to main content

Relativizations of Nonuniform Quantum Finite Automata Families

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11493))

Abstract

Theory of relativization provides profound insights into the structural properties of various collections of mathematical problems by way of constructing desirable oracles that meet numerous requirements of the problems. This is a meaningful way to tackle unsolved questions on relationships among computational complexity classes induced by machine-based computations that can relativize. Slightly different from an early study on relativizations of uniform models of finite automata in [Tadaki, Yamakami, and Li (2010); Yamakami (2014)], we intend to discuss relativizations of state complexity classes (particularly, \(1\mathrm {BQ}\) and \(2\mathrm {BQ}\)) defined in terms of nonuniform families of time-unbounded quantum finite automata with polynomially many inner states. We create various relativized worlds where certain nonuniform state complexity classes become equal or different. By taking a nonuniform family of promise decision problems as an oracle, we can define a Turing reduction witnessed by a certain nonuniform finite automata family. We demonstrate closure properties of certain nonuniform state complexity classes under such reductions. Turing reducibility further enables us to define a hierarchy of nonuniform nondeterministic state complexity classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some literature, a quantum finite automaton is allowed to use “classical states” besides “quantum states.” Such an automaton is often abbreviated as a qcfa. If we use a garbage tape and a measurement, then we essentially do not need to introduce classical states. To simplify our description of 2qfa’s, we use no classical states in this exposition.

  2. 2.

    A tape is circular if both ends of the tape are glued together so that a tape head moves out of \(\$\) to the right, it reaches , and the vice versa.

  3. 3.

    A tape is said to be write only if a tape head always moves to the next blank cell just after writing any non-blank symbol.

References

  1. Aaronson, S., Kuperberg, G.: Quantum versus classical proofs and advice. Theory Comput. 3, 129–157 (2007)

    Article  MathSciNet  Google Scholar 

  2. Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory Comput. Syst. 39, 165–188 (2006)

    Article  MathSciNet  Google Scholar 

  3. Baker, T., Gill, J., Solovay, R.: Relativizations of the P=?NP question. SIAM J. Comput. 4, 431–442 (1975)

    Article  MathSciNet  Google Scholar 

  4. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite automata. Technical report 304, Institute of Computer Science, Polish Academy of Science, Warsaw (1977)

    Google Scholar 

  5. Dwork, C., Stockmeyer, L.: A time-complexity gap for two-way probabilistic finite state automata. SIAM J. Comput. 19, 1011–1023 (1990)

    Article  MathSciNet  Google Scholar 

  6. Freivalds, R., Ozols, M., Mančinska, L.: Improved constructions of mixed state quantum automata. Theoret. Comput. Sci. 410, 1923–1931 (2009)

    Article  MathSciNet  Google Scholar 

  7. Gruska, J.: Quantum Computing. McGraw-Hill, London (2000)

    MATH  Google Scholar 

  8. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_4

    Chapter  Google Scholar 

  9. Kapoutsis, C.A.: Minicomplexity. J. Autom. Lang. Comb. 17, 205–224 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Kapoutsis, C.A.: Two-way automata versus logarithmic space. Theory Comput. Syst. 55, 421–447 (2014)

    Article  MathSciNet  Google Scholar 

  11. Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly versus NL. Theory Comput. Syst. 56, 662–685 (2015)

    Article  MathSciNet  Google Scholar 

  12. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. AMS, Providence (2002)

    Book  Google Scholar 

  13. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of STOC 1978, pp. 275–286 (1978)

    Google Scholar 

  14. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theor. Comput. Sci. 411, 22–43 (2010)

    Article  MathSciNet  Google Scholar 

  15. Villagra, M., Yamakami, T.: Quantum state complexity of formal languages. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 280–291. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19225-3_24

    Chapter  MATH  Google Scholar 

  16. Yakaryilmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Inf. Comput. 279, 873–892 (2011)

    Article  MathSciNet  Google Scholar 

  17. Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and the hierarchy over the family of context-free languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 514–525. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5_45. A complete version is available at arXiv:1303.1717

    Chapter  MATH  Google Scholar 

  18. Yamakami, T.: Nonuniform families of polynomial-size quantum finite automata and quantum logarithmic-space computation with polynomial-size advice. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 134–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-13435-8_10

    Chapter  Google Scholar 

  19. Yamakami, T.: State complexity characterizations of parameterized degree-bounded graph connectivity, sub-linear space computation, and the linear space hypothesis. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 237–249. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3_20. A complete and corrected version is found at arXiv:1811.06336

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Yamakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamakami, T. (2019). Relativizations of Nonuniform Quantum Finite Automata Families. In: McQuillan, I., Seki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2019. Lecture Notes in Computer Science(), vol 11493. Springer, Cham. https://doi.org/10.1007/978-3-030-19311-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19311-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19310-2

  • Online ISBN: 978-3-030-19311-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics