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Abstract. We continue the investigation of three operations on words
and languages with motivations coming from DNA biochemistry, namely
unbounded and bounded hairpin completion and hairpin lengthening.
We first show that each of these operations can be used for replacing
the third step, the most laborious one, of the solution to the CNF-SAT
reported in [28]. As not all the bounded/unbounded hairpin completion
or lengthening of semilinear languages remain semilinear, we study suf-
ficient conditions for semilinear languages to preserve their semilinearity
property after applying once either the bounded or unbounded hairpin
completion, or lengthening. A similar approach is then started for the
iterated variants of the three operations. A few open problems are finally
discussed.
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1 Introduction

A DNA strand can be abstracted, if its spatial structure is ignored, as a word over
the four-letter alphabet {A,C,G,T} where the letters represent the nucleotides
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Adenine, Cytosine, Guanine, and Thymine, respectively. In the double helix of
DNA, the two strands are end-to-end chemically oriented in opposite directions,
namely from 5′ to 3′ and from 3′ to 5′, respectively, hence they are anti-parallel,
which permits base pairing by the Watson-Crick complementarity, where A is
complementary to T and C to G. This base pairing, by the hydrogen bonds
between complementary nucleotides under some specific environment conditions,
is one of the main properties of DNA which the process of DNA replication is
based on.

Throughout this note, we use a bar-notation for the Watson-Crick comple-
ment; thus A = T and T = A as well as C = G and G = C. We extend this
bar-notation to sequences of nucleotides (words) by s1 · · · sn = sn · · · s1.

Due to the base pairing discussed above, a single stranded DNA molecule
may produce a hairpin structure as shown in Fig. 1.

Fig. 1. Hairpin structure.

In many DNA-based algorithms, the single stranded DNA molecules that
formed already or might form a hairpin structure cannot be used in the sub-
sequent computations. Hairpin or hairpin-free DNA structures have numerous
applications in DNA computing and molecular genetics. In a series of papers,
see, e.g., [7,9,10], such structures are discussed in the context of finding sets
of DNA sequences which are unlikely to lead to “bad” hybridizations, that is
DNA fragments do not anneal to complementary segments in undesired ways.
It has been claimed in different places that the potential of DNA molecules
to form self-assembly structures might be employed for designing solutions to
hard problems, see, e.g., [30]. Thus a first DNA-based solution to the CNF-SAT
problem, where one of the main steps was implemented on the basis of hairpin
formation by single-stranded DNA molecules was reported in [28]. In this DNA-
based solution, the third phase is mainly based on the elimination of hairpin
structured molecules. A rather long and complicated lab methodology is dis-
cussed for implementing this phase. We propose a modification of this algorithm
that may use any of the three operations considered here and could be easily
implemented. Different types of hairpin and hairpin-free languages were defined
in [3,25], and [15], where they were studied from a language theoretical point of
view.

A common lab technique to lengthen DNA or to make copies of regions
of DNA is called polymerase chain reaction (PCR). This technique which is
rather cheap, easy and reliable is widely used in molecular biology but also in
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DNA computing. This technique is used to produce a complete double stranded
DNA molecule starting from a single stranded molecule as informally follows:
the starting single strand (usually called primer) is bonded to its 3′ end with
another shorter strand (usually called template) by Watson-Crick complemen-
tarity. Then a polymerization buffer with many copies of the four nucleotides,
and a DNA polymerase (an enzyme) will concatenate nucleotides to the primer
by complementing the template. A very closely related intramolecular reaction,
called whiplash PCR, which employs polymerization stop is also used here.

These principles discussed above have been the source of inspiration for intro-
ducing in [5] a new formal operation on words, namely hairpin completion. We
now informally explain the hairpin completion operation and how it can be
related to the aforementioned biological concepts. Let us consider the following
hypothetical biological situation: we are given one single stranded DNA molecule
z such that either a prefix or a suffix of z is Watson-Crick complementary to a
subword of z. Then the prefix or suffix of z and the corresponding subword of z
get annealed by complementary base pairing and then z is lengthened by DNA
polymerases up to a complete hairpin structure. Finally, the linear structure
of the molecule is restored by DNA denaturation such that the whole process
described above can be resumed. This is illustrated in Fig. 2, where z = γαβα.

Fig. 2. (a) A single stranded DNA molecule; (b) hairpin formation with part α;
(c) polymerization extension of γ; (d) restoring the linear structure.

The mathematical expression of this hypothetical situation defines the hair-
pin completion operation. This operation is considered in [5] as an abstract
operation on formal languages. A series of subsequent works extended the
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investigation of this operation and proposed a few variants. Some algorithmic
problems regarding the hairpin completion are investigated in [18]. In the afore-
mentioned papers, no restriction is imposed on the length of prefix or suffix added
by the hairpin completion. In [14] one considers a restricted variant of the hair-
pin completion, called bounded hairpin completion. Another operation derived
from the biological phenomenon described above, namely hairpin lengthening
has been introduced in [21] and further investigated in [22]. Two other opera-
tions inspired by these biological phenomena are: WK-superposition [2] and [20],
overlap assembly [6] and [8].

We propose a modification of the solution to the CNF-SAT based on the
DNA hairpin formation reported in [28]. This modification, which may use any
of the operations considered here, eliminates the third step of that algorithm
which seems to be the most laborious one. Our algorithm appears, at least
theoretically, to be more easily implemented in a laboratory because our step
might be implemented by gel electrophoresis.

A set of tuples of integers constructed as a multi-dimensional arithmetic pro-
gression is called linear. A finite union of linear sets is called semilinear. The
semilinear sets are exactly the sets definable in Presburger arithmetic [12]. They
also can be viewed as a generalization of ultimately periodic sets of natural
numbers to any given dimension. Semilinear sets have numerous applications
in theoretical computer science and mathematics: the verification of some sub-
classes of Minsky counter machines, automata and logics over unranked trees
with counting, equational Horn clauses, systems of Diophantine equations, etc.

Semilinearity is considered to be a linguistic invariant for natural languages,
that is a property which remains robust under slight syntactic modifications.
Clearly the class of semilinear languages is not directly useful as it contains
undecidable languages, but it might be useful to separate classes of languages
depending on the defining formalism. As many researchers have considered DNA
as a language, pointing out that genetic code and natural language share a
number of units, structures and operations, we may ask whether a bio-inspired
operation applied to a semilinear language preserves the semilinearity property
of that language, especially if the operation is intended to capture some biological
phenomena. Along these lines it is worth mentioning that the input sets decidable
by a chemical reaction network are precisely the semilinear sets [4].

The three aforementioned operations are considered in relation to the semi-
linearity property of defined languages. We first show that not all the bounded
or unbounded hairpin completion or hairpin lengthening of semilinear lan-
guages remain semilinear, but we give sufficient conditions for semilinear lan-
guages to preserve the semilinearity property after applying once the bounded
or unbounded hairpin completion or hairpin lengthening. A similar investigation
is then done for the iterated variants of the three operations. Finally, we discuss
a few directions for further investigation.
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2 Basic Definitions

We assume the reader to be familiar with the fundamental concepts of formal
language theory and automata theory, see, e.g., [27].

An alphabet is a finite set of letters. For a finite set A we denote by card(A)
the cardinality of A. The set of all words over an alphabet V is denoted by V ∗.
The empty word is denoted by ε; moreover, V + = V ∗ \{ε}. Given a word w over
an alphabet V , we denote by |w| its length, while |w|a denotes the number of
occurrences of the letter a in w. If w = xyz for some x, y, z ∈ V ∗, then x, y, z are
called prefix, subword, suffix, respectively, of w. If 0 < |x|, |z| < |w|, then x and
z are called proper prefix and proper suffix, respectively. If x or z is non-empty,
then y is called a proper subword of w.

An involution over a set S is a bijective mapping σ : S −→ S such that
σ = σ−1. In this paper’s context, any involution σ over some set S such that
σ(a) �= a for all a ∈ S is called a Watson-Crick involution. Despite that this is
nothing more than a fixed point-free involution, we prefer this terminology since
the hairpin completion defined later is inspired by the DNA biochemistry, where
the Watson-Crick base-pair complementarity plays an important role. Let · be a
Watson-Crick involution over some alphabet V ; we extend this involution to an
anti-morphism from V ∗ to V ∗ in the usual way, namely a1a2 . . . an = an . . . a2 a1.
We say that the letters a and a are complementary to each other. If · is a Watson-
Crick involution over some alphabet V , then clearly V = {a | a ∈ V } = V ; such
an alphabet is called a Watson-Crick alphabet. If not otherwise stated, all the
alphabets in this note are Watson-Crick alphabets and · is a fixed involution such
that a �= a for any letter a in the alphabet. Remember that the DNA alphabet
consists of four letters, VDNA = {A,C,G, T}, which are abbreviations for the
four nucleotides and we have set A = T , C = G.

Let V be an alphabet, for any w ∈ V + we define the k-hairpin lengthening
of w, denoted by HLk(w), for some k ≥ 1, as follows [21]:

HLPk(w) = {δw | w = αβαγ, |α| = k, α, β, γ ∈ V +,

and δ is a proper prefix of γ}
HLSk(w) = {wδ | w = γαβα, |α| = k, α, β, γ ∈ V +,

and δ is a proper suffix of γ},

HLk(w) = HLPk(w) ∪ HLSk(w)

If in the above definitions, one replaces “δ is a proper prefix/suffix of γ” by
“δ = γ”, then the operation is called k-hairpin completion [5] and it is denoted
by HCk. Furthermore, if δ = γ and |γ| ≤ p, for some positive integer p, then
the operation is called p-bounded k-hairpin completion [14] and it is denoted by
pHCk. The hairpin lengthening/completion and bounded hairpin completion of
w is defined by

H(w) =
⋃
k≥1

Hk(w),
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where H ∈ {HL,HC, pHC}, respectively. The hairpin lengthening/completion
and bounded hairpin completion is naturally extended to languages by

Hk(L) =
⋃

w∈L

Hk(w) H(L) =
⋃

w∈L

H(w),

where H ∈ {HL,HC, pHC}, respectively. We want to stress that the biological
phenomenon is just a source of inspiration for introducing the operations defined
above. First, it is known that a “stable” hairpin structure as above is possible
if the subword α is sufficiently long. Second, it is known that DNA polymerase
can act continuously only in the 5′ −→ 3′ due to the greater stability of 3′ when
attaching new nucleotides. As one can see in our definitions, we have allowed
polymerase to extend continuously in either end; however, polymerase can also
act in the opposite direction, but in short “spurts” (Okazaki fragments).

For a class of languages F and an integer k ≥ 1 we denote the class of the
hairpin lengthening/completion and bounded hairpin completion of languages
in F by Hk(F) = {Hk(L) | L ∈ F}.

3 A New Solution to the CNF-SAT Using Hairpin
Operations

The Conjunctive Normal Form (CNF) - Satisfiability (SAT) problem asks to
find, if any, Boolean assignments that satisfy a given formula in conjunctive
normal form, that is a formula of the form C1 ∧ C2 ∧ · · · ∧ Cm, where each Ci

is a clause and ∧ is the logical AND operator. Each clause Ci is of the form
Ci = li1 ∨ li2 ∨ · · · ∨ liki

, where each lij
is a literal (a variable or its negation)

and ∨ is the logical OR operation. A DNA-based algorithm for solving CNF-SAT
having three main steps was proposed in [28]. We refer to [28] for all unexplained
notions.

S1. Generate all the literal strings with respect to the given formula. The literal
strings encode conjunctions of literals one per clause. Such a conjunction is

l1r1
∧ l2r2

∧ · · · ∧ lmrm
,

where 1 ≤ rj ≤ kj for all 1 ≤ j ≤ m. This step is implemented by a routine
ligation reaction which concatenates DNA segments encoding literal units
to larger strings according to the input formula.

S2. Allow all literal strings formed in step S1 to form hairpins. Note that the
hairpin structures formed in this step are not necessarily as that of (b) in
Figure 2. More precisely, it is not necessary that one of the segments that
get annealed by complementary base pairing be a prefix or a suffix. This
step may be implemented by regulating the temperature.

S3. Remove all the molecules that formed a hairpin in step S2. This has been
done by two techniques: (i) remove DNA molecules that formed hairpin
by enzymatic digestion, and (ii) amplify the population of DNA molecules
without hairpin by a variant of PCR, called “exclusive PCR”. This is the
reason why this step is very laborious.
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The correctness of the algorithm follows from the fact that a molecule forms
a hairpin in the second step, if and only if it encodes an inconsistent assign-
ment, that is when both a variable and its negation are true. A long and rather
complicated procedure based on the two techniques described above is proposed
for implementing the third step. We propose the following modification of this
algorithm. First, instead of literal units as in the previous algorithm, we use
extended literal units, that is literal units as above linked to a unique segment,
say α which is newly designed and cannot form hairpin structure with any other
segment. As in the first step of the previous algorithm, literal strings are obtained
by extending the already produced strings with extended literal units associated
with a new clause which was not considered yet. However, before extending the
current literal strings with the new extended literal unit, we propose to allow
all current literal strings obtained in the previous step to form hairpins and be
extended by one of the three hairpin operations. All those literal strings that con-
tain the complement of α will be removed such that they will not be extended
with new extended literal units. The algorithm is informally described below.
This situation corresponds to the case of using hairpin completion.

S1. Generate all the exteded literal units associated with each clause.
S2. For each clause C that has not been considered yet, do the following:
S2.1. Extend by ligation the current literal strings with the extended literal

units associated with C, say α.
S2.2. Allow all current literal strings obtained in the previous step to form

hairpins and be extended by one of the three hairpin operations. Let us
choose the hairpin completion.

S2.3. Remove all literal strings that contain the complement of α.
S3. All the literal strings at this step encode solutions to the input formula.

As one can see, this modification seems to simplify the implementation of
the algorithm because the laborious step 3 in the initial algorithm, which is
based on a rather complicated la procedures, namely either enzymatic digestion
of the hairpin DNA molecules or exclusive PCR, is avoided and replaced by a
sequence of a rather standard lab procedure which removes all single stranded
DNA molecules that contain a given sequence. In the case of hairpin lengthening,
this lab method could be gel electrophoresis.

4 Non-iterated Hairpin Formation and Semilinearity

A language is semilinear if its Parikh map is a semilinear set [24]. More formally,
a subset S of N

k (k-tuples of natural numbers) is a linear set if there exist vectors

v0, v1, . . . , vn ∈ N
k such that S = {v0+

n∑
i=1

xivi|xi ∈ N, 1 ≤ i ≤ n}. A finite union

of linear sets is called a semilinear set. Let V = {a1, . . . , ak} be an alphabet. The
Parikh mapping of w is the vector ψ(w) = (|w|a1 , . . . , |w|ak

), which is extended
to languages, by ψ(L) = {ψ(w)|w ∈ L}. A language is semilinear if its Parikh
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mapping is a semilinear set. Two languages are said to be letter-equivalent if
for every word in one language there exist at least one anagram of that word
in the other language. Clearly, two letter-equivalent languages have the same
Parikh mapping. It is known that a language L is semilinear if and only if it is
letter-equivalent to a regular language [24]. Furthermore, a language family is
called semilinear if all the languages in the family are semilinear. We denote by
SLin the class of semilinear languages.

Theorem 1

1. SLin is closed neither under HCk nor under HLk, for any k ≥ 1.

2. SLin is not closed under pHCk, for any k ≥ 1, p ≥ 2.

Proof. Since our main source of inspiration is the DNA biochemistry, we give
counterexamples that use at most 4-letter alphabets.

1. Let k ≥ 1 and take the semilinear language

L1 = {ba2n

bkambk | n,m ≥ 1},

where both a and a are different from b. It is easy to note that HCk(L1) =

{ba2n

bkambka2nb | n,m ≥ 1}, which is not semilinear. This follows from the
fact that semilinear sets are closed under projection, and the projection of
ψ(HCk(L1)) on a is not semilinear.
Furthermore,

HLk(L1) ={ba2n

bkambkar | n,m ≥ 1, 1 ≤ r ≤ 2n}∪
{ba2n

bkambka2kb | n,m ≥ 1}.

By a similar reason as above, HLk(L1) cannot be semilinear. We prove that
the projection of ψ(HLk(L1)) on the letters a and b is not semilinear. This
projection is the set

X = {(t, k) | t ≥ 1} ∪ {(2t, k + 1) | t ≥ 1}.

As the class of semilinear sets is closed under intersection [12], if X were
semilinear, then the set X ∩ {(t, k + 1) | t ≥ 1} would be semilinear and this
is not the case.

2. We take the semilinear language L2 = {batbka2n

bk | n, t ≥ 1}. For every
p ≥ 2, pHCk(L2) = {barbka2n

bkarb | n ≥ 1, 1 ≤ r < p}, which is not
semilinear. This statement is supported by the fact that the projection of
ψ(pHCk(L2)) on a is X = {r + 2n | 1 ≤ r < p, n ≥ 1}, which is not
semilinear.
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Assume that X is semilinear, hence X is a finite union of linear sets. At least
one set in this union, say Y must be infinite. Assume that Y is a linear set with
q periods, that is there are the natural numbers c1, c2, . . . , cq, for some q ≥ 1,
such that

Y = {co +
q∑

j=1

xjcj | xj ∈ N}.

It is known that any linear set is the union of a finite set and a linear set with
one period [26]. Therefore, Y = Z ∪ {c0 + xy | x ∈ N}. Now, let n1 be a large
number and 1 ≤ r1 < p such that r1 + 2n1 = c0 + xy, for some x. Clearly, there
exist 1 ≤ r2 < p and n2 such that r2 + 2n2 = c0 + (x + p)y. It follows that
2n1(2n2−n1 − 1) + r2 − r1 = py, which is a contradiction by the choice of n1. �

Although the whole class SLin is closed under none of the hairpin completion,
bounded hairpin completion, and hairpin lengthening, subclasses of SLin with
further closure properties are closed.

A shuffle of two words is an arbitrary interleaving of subwords of these words
such that it contains all letters of both words, like shuffling two decks of cards.
This is a well-known language-theoretic operation with a long history in the-
oretical computer science, in particular within formal languages. Formally, the
shuffle operation denoted by ||| is defined recursively for two words as follows:

x ||| ε = ε ||| x = {x}, x ∈ V ∗, and
ax ||| by = a(x ||| by) ∪ b(ax ||| y), a, b ∈ V, x, y ∈ V ∗.

The shuffle of two languages L1, L2 ⊆ V ∗ is denoted by L1 ||| L2 and is defined
as the language consisting of all words that are a shuffle of a word from L1 and
a word from L2. Thus

L1 ||| L2 = {w ∈ u ||| v | u ∈ L1, v ∈ L2 }.

A restrictive variant of this operation that can be applied to equal length
words only, called literal shuffle, is defined by x ��� y = a1b1a2b2 . . . anbn, provided
that x = a1a2 . . . an, y = b1b2 . . . bn, for some n ≥ 1, and ai, bi ∈ V, 1 ≤ i ≤ n.

Theorem 2. Let F be a family of semilinear languages.

1. If F is closed under intersection and shuffle with regular languages, then both
families HCk(F) and HLk(F) contain semilinear languages only, for any
k ≥ 1.

2. If F is closed under intersection with regular languages, then all languages in
pHCk(F) are semilinear for all p, k ≥ 1.

Proof. 1. The proof of the first two statements is based on a similar idea to that
used in [19]. We take a semilinear language L ⊆ V ∗ in F and define the next
two languages:

L1 = {(γ ��� γ)αβα, α, β, γ ∈ V +, |α| = k, γαβα ∈ L},

L2 = {μ(δ ��� δ)αβα, α, β ∈ V +, |α| = k, μδαβα ∈ L}.

�
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Claim 1: HCk(L) ∈ SLin.

It is known that the class of semilinear languages is closed under union, hence
it suffices to prove that HCSk(L) is semilinear. Clearly, this language is letter-
equivalent to the language L1. We consider a new alphabet U , disjoint of V , and
define a one-to-one mapping σ : V −→ U ; moreover let θ : (V ∪ U)∗ −→ V be a

morphism such that θ(a) =
{

a, if a ∈ V,

b, if a = σ(b).

Now, L1 can be written as L1 =
⋃

|α|=k

θ((L ||| U∗) ∩ {aσ(a) | a ∈ V }+{α}V +{α}).

By the closure properties of F , the language L ||| U∗ is in F , moreover,
(L ||| U∗) ∩ {aσ(a) | a ∈ V }+{α}V +{α} still belongs to F as each language
{aσ(a) | a ∈ V }+{α}V +{α} is regular for any |α| = k. For the class of semi-
linear languages is closed under non-erasing morphisms, it follows that L1 is a
finite union of semilinear languages, which verifies the first claim of the proof.

Claim 2: HLk(L) ∈ SLin.

The language HLSk(L), which is defined analogously to HCSk(L), is now letter-
equivalent to the language L2. Further on,

L2 =
⋃

|α|=k

θ((L ||| U∗) ∩ V ∗{aσ(a) | a ∈ V }+{α}V +{α}),

which concludes the proof of the second claim.

2. Let L ⊆ V ∗ be a semilinear language in F , and p, k ≥ 1. As in the previous
case, it suffices to prove that pHCPk(L) is semilinear. To this aim, for every
x with 1 ≤ |x| ≤ p, we consider the language L(x) = L ∩ (

⋃
|α|=k

{α}V +{αx}).

Since F is closed under intersection with regular sets, it follows L(x) ∈ F
holds. Now, pHCPk(L) =

⋃
1≤|x|≤p

{x}L(x), which implies that pHCPk(L) is

semilinear.

As a direct consequence of this theorem and of Parikh Theorem [24] we have:

Corollary 1. The hairpin completion, hairpin lengthening, and bounded hairpin
completion of every context-free language is semilinear.

In the proof of the previous theorem, we have used the new alphabet U , hence
the construction does not work if one wants to stay within the DNA alphabet
with four letters. However, a similar result holds under related requirements.
A generalized sequential machine (GSM for short) is a device that has finitely
many states and each transition is defined as follows: it reads one input letter
and outputs 0 or more letters, depending on the current state and the read letter.
Every GSM defines a GSM mapping which is a function that associates a finite
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set of words with each input word. The GSM mapping of a language is defined
in the standard way. A family of languages F is closed under GSM mapping if
the GSM mapping of each language in F lies in F .

Theorem 3. If F , a family of semilinear languages, is closed under GSM map-
pings, then all families HCk(F), HLk(F), and pHCk(F) contain semilinear
languages only, for any k ≥ 1.

Proof. We give an informal explanation for HCk(F); the small differences for
the other two cases can be easily set by the reader. We define a GSM M that
follows the next stages:

Stage 1. For each read letter a, M outputs aa. Nondeterministically, M passes
to the next stage. Note that M reads at least one letter in Stage 1.

Stage 2. This stage is divided into two substages. In the first one, M reads k
letters, outputs them and store them as a word into its internal memory. In the
second substage, M outputs each read letter. At least one letter is read during
the second substage. Nondeterministically, M passes to Stage 3.

Stage 3. M reads k letters, outputs them and checks whether these letters form
a word that is the complement of the stored word. If this is the case, M enters
a final state otherwise, it enters an error state and halts in both cases.

It is not difficult to note that, given a language L in F , the GSM mapping
of L is letter-equivalent to HCSk(L), which concludes the proof. �

5 Iterated Hairpin Formation and Semilinearity

We consider that a similar investigation of the iterated hairpin completion, hair-
pin lengthening, and bounded hairpin completion could be of interest for the
reader. The iterated version of the hairpin completion is defined as usual by:

HC0
k(w) = {w}, HCn+1

k (w) = HCk(HCn
k (w)), HC∗

k(w) =
⋃

n≥0 HCn
k (w)

HC0(w) = {w}, HCn+1(w) = HC(HCn(w)), HC∗(w) =
⋃

n≥0 HCn(w)

HC∗
k(L) =

⋃
w∈L

HC∗
k(w) HC∗(L) =

⋃
w∈L

HC∗(w).

In a similar way one can define the iterated hairpin lengthening as well as the
bounded hairpin completion. The examples presented in Theorem 1 can be mod-
ified to prove the following statement.

Theorem 4. SLin is closed neither under HC∗
k nor under pHC∗

k , for any k ≥ 3
and p ≥ 2.

Proof. The modifications are as follows:

L1 = {ba2n

bkbambbk | n,m ≥ 1}, L2 = {batbs(ab)2
n

bk | n, t ≥ 1, s ≥ k}.



48 H. Bordihn et al.

The proof is based on the fact that the iteration is blocked after the first step.
More precisely, HC∗

k(L1) = L1 ∪HCk(L1) and pHC∗
k(L2) = L2 ∪pHCk(L2). As

HCk(L1) = {ba2n

bkbambbka2nb | n,m ≥ 1}, it follows that HCk(HCk(L1)) = ∅.
The projection of HC∗

k(L1) on a is not semilinear.
On the other hand, as pHCk(L2) = {batbs(ab)2

n

bk+qatb | n ≥ 1, 0 ≤ q ≤
s−k, t+q +1 ≤ p}. Again, pHCk(pHCk(L2)) = ∅. If the alphabet of pHC∗

k(L2)
is {a, a, b, b}, then the set

ψ(pHCk(pHCk(L2))) ∩ {(n1, n2, n3, n4 | ni ≥ 1, 1 ≤ i ≤ 4}

is not semilinear as its projection on the first component is not semilinear. �

Clearly, the statement is valid for any k ≥ 1, as soon as alphabets with more
than four letters are used. We do not know whether SLin is closed under HL∗

k.
We now consider the iterated hairpin completion of singletons. Two out of

the three cases have been completely solved. More precisely,

Theorem 5. Let w be a word and k, p ≥ 1.

1. The iterated k-hairpin lengthening of w is regular, hence semilinear [21].
2. The iterated p-bounded k-hairpin completion of w is regular, hence semilinear

[14].

The case of iterated unbounded hairpin completion is open. It is known that
the iterated unbounded hairpin completion of a single word can be even non-
context-free [17], but we are not aware of any result about the semilinearity of
this language. It is worth noting that the iterated unbounded hairpin completion
of the word used in [17], namely

w = akbakakakcak,

is a semilinear language, though it is not context-free. We strongly conjecture
that the iterated unbounded hairpin completion of a single word is always semi-
linear. It is worth noting that there have been reported necessary and sufficient
conditions such that the iterated unbounded hairpin completion of a single word
with a special structure, namely a crossing (2, 2)-word, is a regular language
[29]. The fact that the iterated p-bounded k-hairpin completion of a singleton is
semilinear turns out to be useful for proving a more general result.

Theorem 6. Let p, k ≥ 1 and F be a class of semilinear languages closed under
intersection with regular languages. Then pHC∗

k(F) ∈ SLin.

Proof. We take the language L ∈ F over the alphabet V . The language L can
be written as the union of two languages L1 and L2, where

– L1 contains all words of L shorter than 2(k + p) + 1.
– L2 contains all words of L of a length at least 2(k + p) + 1.
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The relation pHC∗
k(L) = pHC∗

k(L1) ∪ pHC∗
k(L2) is immediate. As the language

L1 is finite and the iterated bounded hairpin completion of every singleton is
semilinear, it follows that pHC∗

k(L1) is semilinear. It remains to prove that
pHC∗

k(L2) is also semilinear.
We first note that L2 ∈ F as it can be obtained from L by intersection

with a regular language. Second, let u, v be arbitrary words over V of length
k + p. We set L2(u, v) = L2 ∩ {u}V +{v}. By the closure properties of F , each
language L2(u, v) belongs to F as well. As L2 =

⋃
|u|=|v|=k+p

L2(u, v) it follows

that pHC∗
k(L2) =

⋃
|u|=|v|=k+p

pHC∗
k(L2(u, v)). Every language pHC∗

k(L2(u, v))

can be expressed as pHC∗(L2(u, v)) = σ(pHC∗
k(uZv)), where Z is a letter that

does not belong to V and σ is a substitution σ : (V ∪ {Z})∗ −→ 2V ∗
defined by:

σ(a) =
{{a}, if a ∈ V,

{z ∈ V + | uzv ∈ L2(u, v)}, if a = Z.

As one can easily see, each substitution σ as above is a substitution with semi-
linear languages which preserves the semiliniarity [11], therefore each language
pHC∗

k(L2(u, v)) is semilinear. In conclusion, pHC∗
k(L2) is semilinear as well,

which concludes the proof. �

As we have mentioned above, the iterated bounded hairpin completion and the
iterated hairpin lengthening of every singleton language are semilinear sets.
Based on the constructive proofs of these results we may have the following
brief discussion.

Let p, k ≥ 1, w be a word over some alphabet V of cardinality n, and X ⊆ N
n

be a semilinear set. Then the problems:

(i) Does ψ(HL∗
k(w)) = X hold?

(ii) Does ψ(pHC∗
k(w)) = X hold?

are decidable. Both are odd consequences of the following facts. From the proof
in [21], it is possible to effectively construct a finite automaton that recog-
nizes HL∗

k(w), hence a regular expression for this language. From the regular
expression one can construct the semilinear set ψ(HL∗

k(w)) following the origi-
nal Parikh’s proof [24] as well as some later variants [1,13]. A more recent work
dealing with the complexity of this transformation is [16]. Thus, if HL∗

k(w) is
recognized by a nondeterministic finite automaton with n states, ψ(HL∗

k(w))
can be constructed in polynomial time in n (but exponential in card(V )). As
the equivalence of semilinear sets is decidable, see, e.g., [23], the statement (i) fol-
lows. An analogous reasoning works for the second statement as well. Obviously,
the algorithm described here has a huge complexity. Is it possible to decrease
this complexity by considering another approach?
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6 Concluding Remarks

Starting from the observation that the class of semilinear languages is not closed
under any of the non-iterated or iterated hairpin operations, we have given some
sufficient conditions for subclasses of semilinear languages to preserve this prop-
erty after applying the hairpin operations. It would be of interest to find other
sufficient and/or necessary conditions. Another possible and attractive way to
continue this investigation might be to extend the investigation from Sect. 4 to
other classes of languages.
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26. Rosales, J.C., Garćıa-Sánchez, P.A.: Numerical Semigroups. Springer-Verlag, New-

York (2009). https://doi.org/10.1007/978-1-4419-0160-6
27. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-

Verlag, Berlin (1997). https://doi.org/10.1007/978-3-642-59136-5
28. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T.,

Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, 1223–
1226 (2000)

29. Shikishima-Tsuji, K.: Regularity of iterative hairpin completions of crossing (2, 2)-
words. Int. J. Found. Comput. Sci. 27, 375–390 (2016)

30. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly
of DNA: some theory and experiments. In: DNA Bsed Computers II, vol. 44 of
DIMACS (1999), pp. 191–213 (1999)


