
This is a repository copy of The role of structure and complexity on Reservoir Computing 
quality.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/147383/

Version: Accepted Version

Conference or Workshop Item:
Dale, Matthew, Dewhirst, Jack Daniel, O'Keefe, Simon Edward Marius orcid.org/0000-
0001-5957-2474 et al. (3 more authors) (2019) The role of structure and complexity on 
Reservoir Computing quality. In: UCNC 2019, Tokyo, Japan, June 2019, 03-07 Jun 2019. 

https://doi.org/10.1007/978-3-030-19311-9_6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



The Role of Structure and Complexity on

Reservoir Computing Quality

Matthew Dale1,4, Jack Dewhirst1,4, Simon O’Keefe1,4, Angelika Sebald2,4,
Susan Stepney1,4, Martin A. Trefzer3,4

1Department of Computer Science, University of York, UK
3Department of Chemistry, University of York, UK

3Department of Electronic Engineering, University of York, UK
4York Cross-disciplinary Centre for Systems Analysis

matt.dale@york.ac.uk

Abstract. We explore the effect of structure and connection complexity
on the dynamical behaviour of Reservoir Computers (RC). At present,
considerable effort is taken to design and hand-craft physical reservoir
computers. Both structure and physical complexity are often pivotal to
task performance, however, assessing their overall importance is challeng-
ing. Using a recently proposed framework, we evaluate and compare the
dynamical freedom (referring to quality) of neural network structures,
as an analogy for physical systems. The results quantify how structure
affects the range of behaviours exhibited by these networks. It high-
lights that high quality reached by more complex structures is often
also achievable in simpler structures with greater network size. Alterna-
tively, quality is often improved in smaller networks by adding greater
connection complexity. This work demonstrates the benefits of using ab-
stract behaviour representation, rather than evaluation through bench-
mark tasks, to assess the quality of computing substrates, as the latter
typically has biases, and often provides little insight into the complete
computing quality of physical systems.

Keywords: Reservoir Computing, Unconventional Computing, Echo State
Networks, Structure, Complexity

1 Introduction

Reservoir Computing (RC) [26, 29] is a computational model used to train and
exploit an increasingly rich variety of dynamical systems, ranging from virtual
neural networks to novel physical systems, such as quantum, electrical, chemical,
optical and mechanical (see reviews [20, 28]). Every reservoir system is designed
to harness the underlying dynamics of the substrate it is implemented with,
whether that be a physical device or material, a simulated network, or a set of
system equations. However, finding a suitable substrate, or designing one, with
sufficient dynamics to compute specific tasks is challenging.

Methods to assess the complete range of dynamics a substrate can exhibit
are still undeveloped. Therefore, matching substrates to tasks is typically done
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through trial and error. This makes for a long and laborious exercise to determine
how best to configure, perturb and alter the low-level design of substrates to
improve performance.

In [10] we present an alternative method to assess and compare computing
systems based on abstract behaviours of dynamical properties. The idea is to
map and explore the full dynamical range of substrates and use this to deter-
mine the effects of configuration, perturbation and design alteration on substrate
“quality”.

Here we use that method to investigate how topology and structural com-
plexity in simulated recurrent networks affect dynamical range and quality. Our
hypothesis is that, when implementing these networks, compromises in size and
structure lead to similar qualities, e.g., larger networks with simple structure
are equivalent to smaller networks with complex structures; therefore, simple
structures still exhibit complex behaviours, but require larger network size to do
so.

In the reservoir computing literature, simple network topologies and regular
structures produce competitive performances to complex networks [24, 25, 30].
Simple structures made from multiple processing units are easy to implement
and control in hardware. However, complex structures are more abundant in
physical systems, but harder to manipulate. Knowing how structure and size
affect quality will provide a useful guide to future substrate designers.

2 Reservoir Computing

Embracing the intrinsic properties of physical systems has the potential to offer
improvements in performance, efficiency and/or computational power compared
with conventional computing systems [5, 18]. However, to do so requires a model
of computation that naturally fits the substrate rather than imposing an inap-
propriate model that fights its implementation [27].

The reservoir computing model’s simplicity means that it naturally aligns
with many physical systems. However, its simplicity also has drawbacks, for
example, it struggles to solve complex tasks requiring high-order abstractions [11,
20].

An input-driven reservoir computer is typically represented and divided into
three layers: the input, the reservoir, and the readout. The reservoir is the dy-
namical system, and perturbed and observed as a black-box. The input and
readout depend on the chosen method of encoding and decoding of information
to and from the reservoir, and the material instantiation of the encoded infor-
mation. Depending on the implementation, this could be discrete or continuous
values encoded in electrical, optical, chemical or other signals.

As with many systems, each reservoir is configured, controlled and tuned
to perform a desired function. This often requires the careful tuning of param-
eters in order to produce working and optimal reservoirs. Most reservoirs are
hand-crafted to a task, often requiring expert domain knowledge to design an
optimal system. However, the separation between layers allows the reservoir to
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be optimised and configured independently of the input and readout layer. Many
techniques have been used to optimise virtual reservoirs [1], and more recently,
physical reservoirs [7–9].

To interpret a substrate as a reservoir, we define that the observed reser-
voir states x(n) form a combination of the substrate’s implicit function and its
discrete observation:

x(n) = Ω(E(Winu(t), uconfig(t))) (1)

where Ω(n) is the observation of the substrate’s macroscopic behaviour and
E(t) the continuous microscopic substrate function, when driven by the input
u(t). Here, Win symbolises a set of input weights common to all reservoir sys-
tems; this is typically random (see [19], a guide for creating reservoir weights).
The variable uconfig(t) represents the substrate’s configuration, whether that
be through external control, an input-output mapping, or other method of con-
figuration. Typically, uconfig(t) is not a function of time, but only of a given
problem. However, switching between different configurations in time could add
additional dynamical complexity.

This formalisation of the reservoir states separates the system into contribut-
ing parts, including the observation and configuration method, which as a whole
represents the overall reservoir system.

The final output signal y(n) is determined by the readout function g, on the
observation x(n):

y(n) = g(x(n)) (2)

In Eq.1, we give a simple case where no feedback is applied. To add feedback,
the input variables y and Wfb are added to E(.), where Wfb represents feedback
weights.

Note that E , the intrinsic substrate function, is described as being fixed,
clamped, or set by uconfig; only g is adapted. However, depending on the sys-
tem, E may change when interacted with or observed, and therefore be non-
deterministic.

3 CHARC Framework

The CHARC (CHAracterisation of Reservoir Computers) framework [10] is used
to map and compare the computational expressiveness of computing substrates.
In this process, the applied computational model, e.g., encoding, decoding and
abstract representation of the system, is also assessed, suggesting whether the
chosen model is a suitable fit to the physical implementation.

To characterise the computing quality of substrates, the framework searches
over metrics measuring dynamical properties. The framework shows that carbon
nanotube composites possess a lower quality than small recurrent networks when
configured and stimulated using current techniques [10]. This supports previous
findings [7–9].
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Fig. 1: CHARC framework basic workflow.

In addition to the quality measure, the framework can also be used to model
relationships between dynamical behaviour and task performance, which can be
used to predict performance across the different substrates, without the need to
assess directly [10].

The basic framework is defined in terms of various levels to define and mea-
sure quality. The output of lower levels are used by higher levels to model rela-
tionships between parameters, dynamics and task performance.

At the base level, the computational model is chosen. The reservoir comput-
ing model is applied here: input-driven dynamics recorded as system states and
extracted through a trained weighted readout layer. However, other models are
possible. In the context of a model, an abstract behaviour space is defined. This
space represents the dynamical behaviour of the substrate when configured. This
space is typically different from the configuration space, where small changes in
parameters result in large changes in behaviour, and vice versa.

To define the n-dimensional behaviour space, n independent property mea-
sures are used. Here, we define the same three-dimensional space used in [10],
using three metrics measuring basic properties required for reservoir computing:
Kernel Rank (separation property), Generalisation Rank (generalisation prop-
erty), and Memory Capacity (echo state property). An example 3-dimensional
space is shown in step 1 of the CHARC workflow, fig. 1.

Kernel rank (KR) measures the reservoir’s ability to produce a rich non-
linear representation of the input u and its history u(t − 1), u(t − 2), . . .. This
measures the linear separation property, outlined by Legenstein & Maass [16].
The generalisation rank (GR), proposed at the same time, is a measure of the
reservoir’s capability to generalise given similar input streams. Reservoirs in
ordered regimes typically have low ranking values in both measures, and in
chaotic regimes both are high. In general, a good reservoir should possess a
high kernel quality rank and a low generalisation rank [4]. However, in terms of
matching reservoir dynamics to tasks, the right balance is less clear.

The measure for memory capacity (MC) captures the linear short-term mem-
ory capacity of a reservoir. This measure was first outlined in [14] to quantify
the echo state property. For the echo state property to hold, the dynamics of the
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input driven reservoir must asymptotically wash out any information resulting
from initial conditions, i.e., produce a fading memory.

For an outline of how to implement these measures consult [10]. As mentioned
there, these three measures by themselves do not capture all the information
about the reservoir’s dynamical properties. To improve the accuracy of the model
and the quality measure, more independent property measures are required.
However, these three measures suffice to demonstrate the use of the framework
to evaluate various substrates here.

The Exploration &Mapping level defines the search method used to construct
the mapping between abstract reservoir and substrate configuration. This is
shown as step 2 in fig. 1.

Exploration of the space is done using an adapted implementation of novelty
search [17]. Novelty search is an open-ended genetic algorithm that navigates
the behaviour space searching for novel solutions, until some user-defined ter-
mination criterion is met. Novelty search discovers a wider range of behaviours
than does random search; it explores the behaviour space until it reaches the
dynamical boundaries of the system. The mapping process can therefore deter-
mine the practical use of the substrate, or whether the computational model and
configuration method is appropriate.

The Evaluation level defines the mechanisms to evaluate quality. This con-
stitutes the final level for measuring quality. To assess quality, the behaviour
space – representing abstract reservoir x, given configuration y – is divided into
voxels/cells. Step 3 in fig. 1, demonstrates how the behaviour space is divided.
Counting how many voxels are occupied by behaviours builds an approxima-
tion of the dynamical freedom: how many distinct reservoirs the substrate can
instantiate. This acts as the measure of quality to compare across systems.

The maximum quality of a substrate measured in this way is bounded by
number of search evaluations: quality ≤ number of evaluations. For example,
given a 1000 iterations of the evolutionary search, the maximum number of voxels
occupied is 1000. The method therefore requires a sufficiently large number of
evaluations to get a good measure of quality.

4 Simulated Network Topologies

In [23, 24], it was shown that simple and deterministic connection topologies
tend to perform as well as, or better than, standard (fully-connected) randomly-
generated reservoir networks on a number of benchmark tasks.

In the experiments described below, we use the CHARC framework to in-
vestigate the effect of network topology, by evaluating three simulated recurrent
network topologies: ring, lattice, and fully-connected networks.

The ring topology (fig.2a) has the least complexity. Each node has a single
self-connection and one connection to each of its neighbours to its left and right,
resulting in every node having three connections.

A basic ring topology is the simplest network to implement in physical hard-
ware as the number of connections required is small. Ring structures with various
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(a) ring (b) lattice (c) fully-connected

Fig. 2: Network structures investigated here.

connection types have been applied to reservoir computing systems, including
minimum complexity echo state networks (ESN) [24], DNA reservoirs (deoxyri-
bozyme oscillators) [12], Cycle reservoirs with regular jumps (CRJ) [23], and
delay-based reservoirs using a single non-linear node with a delay line [3, 21].

The lattice topology (fig.2b) has greater connection complexity. Here, we de-
fine a square grid of neurons with each connected to its Moore neighbourhood
(as commonly used in cellular automata like Conway’s Game of Life [2]). So each
node (except for the perimeter nodes) has eight connections to neighbours and
one self-connection, resulting in each node having a maximum of nine connec-
tions.

Lattice networks/models are common in computational physics, condensed
matter physics and beyond, modelling physical interactions, phase transitions
and structure [15]. Examples include: discrete lattices like the Ising model with
variables representing magnetic dipole moments of atomic spins, and the Gray-
Scott reaction-diffusion model to simulate chemical systems [22]. Also, physical
substrates often have a regular grid of connections. Lattice networks are therefore
more realistic representations of many physical systems that would be considered
for reservoir computing.

The fully-connected topology (fig.2c) has the most connections and is con-
sidered the most complex. This type of network is challenging to implement in
physical hardware. It is typically used in recurrent neural network models, such
as echo state networks [13]; however, its biological plausibility is debatable.

In early work on echo state networks (ESN) it was believed these networks of-
ten work best when sparsely connected [13, 19], decoupling dynamics into smaller
subsystems. However, the reservoir community is still undecided on the actual
benefits of sparsity on performance.

Fully-connected networks possess the most parameters (weights) and degrees-
of-freedom in the configuration space, but how this translates to dynamical be-
haviour is undeveloped.

In the following experiments, each network’s dynamics is given by the state
update equation:

x(t) = (1− α)x(t− 1) + αf(Winu(t) +Wx(t− 1)) (3)
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where x is the internal state, f is the neuron activation function (a tanh func-
tion), u is the input signal, Win and W are weight matrices giving the connection
weights to inputs and internal neurons respectively. The parameter α is the leak

rate, controlling the time-scale mismatch between the input and reservoir dy-
namics; when α = 1, the previous states do not leak into the current states.

The final trained output y(t) is given when the reservoir states x(t) are
combined with the trained readout weight matrix Wout:

y(t) = Woutx(t) (4)

5 Experiment Parameter Settings

To quantify how network structure affects dynamical behaviour, that is, reservoir
quality, we investigate the three topologies over multiple network sizes and two
internal connection types.

These two connection types define whether a connection in the reservoir is
undirected – the weights on a link are the same in both directions, and so the
weight matrix W is symmetric – or directed – the weight wij from node xi to
xj may be different from the weight wji from node xj to xi, and so the weight
matrix W is not symmetric. Considering these two connection types provides
additional limits on the complexity of each network. For the fully-connected
topology, we investigate only the directed type, making them equivalent to echo
state networks.

The network sizes assessed for each topology are: 25, 50, 100, 200 nodes. For
the lattice, these are networks with the nearest square values: 25 (5×5), 49 (7×7),
100 (10×10) and 196 (14×14). By comparing different sizes, we can determine
what relationships exist between network structure and quality independent of
size, and therefore whether relationships scale with network size.

Each network has many local (weight) and global (scaling) parameters under
manipulation in the novelty search process. Individual weights in the input layer
matrix Win and the reservoir matrix W are mutated between [−1, 1]. Global
weight scaling parameters of both matrices are also evolved. For W scaling this
is a value between [0, 2], and for Win scaling between [−1, 1]. The leak rate
parameter α, controlling the “leakiness” of past states into current states, is
restricted between [0, 1]. Input and internal connectivity, the weight distribu-
tion and sparseness of Win and W , are evolved by mutating between zero-value
weights and non-zero weights.

The output weight matrix Wout for each network is used only for the memory
capacity measure, as both KR and GR are calculated using only the reservoir
states. When the readout layer Wout is in use, training is carried out using ridge
regression (see [19] for training details) to minimise the difference between the
network output y and the target signal yt.

The parameters used for the novelty search algorithm are those used in [10]:
population size = 200, deme = 40, recombination rate = 1, mutation rate = 0.2,
ρmin = 3, and ρmin update = 200 generations.
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Fig. 3: Behaviour space coverage of all networks.

10 runs are conducted for each network topology, size and connection type,
with 2000 generations for each run. In our implementation of novelty search
(see [10]), only one new behaviour is possible every generation.

6 Results

6.1 Size and Structure

Here we compare total coverage of the behaviour space, how many voxels are
occupied, by each topology. The argument in [10] is that this number represents
a measure of substrate quality. The maximum size of the behaviour space in
this work is bound by the largest network size to the power of total number of
measures, i.e., total behaviours = 2003. However, a maximum of 2200 behaviours
are possible in a single run here, set by the number of generations and initial
population size. Hence the maximum possibly quality is 2200.

The coverage results (fig. 3) show that the fully-connected (directed) topol-
ogy, the ESN network, occupies a greater area of the behaviour space, possessing
a higher quality than the others, independent of size. This suggests that access
to more adjustable parameters typically leads to more dynamical behaviours.

The larger ESN networks reach close to the maximum possible coverage in
every run, suggesting more generations are required to better outline their limits.
The others, however, struggle to reach the maximum coverage. This suggests that
either new behaviours are more difficult to find, requiring additional search time,
or the behavioural limits of the networks are nearly reached. A common pattern
across all types is each network tends to improve in quality when increased in
size. How many new behaviours are discovered by increasing in size, depends on
topology and connection type.

Fig. 3 shows that the undirected lattice topology is statistically similar to the
directed ring topology, across all network sizes. As implementing the lattice con-
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(a) 50-neuron

(b) 200-neuron

Fig. 4: Superimposed behaviour space of: a) 50-neuron network, b) 200 neuron
network. Directed topologies only. Showing all 10 runs of 2000 generations each.

nectivity is more demanding, requiring greater complexity (up to 9 connections
per node versus 3 per node), this result suggests a way to get similar dynamical
behaviour to an undirected lattice with less connection complexity.

A visualisation of how two network sizes (50 and 200-neuron) cover the be-
haviour space using each network topology is given in fig. 4. Here, only the
directed topologies are shown; for undirected results, see next section. The plot
shows that ESNs tend to occupy regions the others cannot, such as chaotic
regions, e.g., with high KR and high GR, and regions with larger memory ca-
pacities.

The ring and the lattice topologies have similar maximum memory capacities
as each other; however, lattices typically exhibit greater non-linearity and chaotic
behaviour (higher KR and GR values) than rings.

6.2 Directed vs. Undirected Networks

Here we compare the difference in quality between directed and undirected con-
nection types. In the previous section, we show that network topology signifi-
cantly affects quality. Here we show that connection type is equally as important.
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(a) 100-neuron ring

(b) 100-neuron lattice

Fig. 5: Directed vs. Undirected: Superimposed behaviour space of: 100-neuron
ring and lattice network. Showing all 10 runs of 2000 generations each.

To visualise this, the behaviour space coverage of a 100-neuron ring and lat-
tice is shown in fig. 5. Each plot shows the directed connection type (grey) and
undirected type (black). Here, directed connections typically result in broader
dynamical behaviour, producing more “challenging” behaviours (high KR and
high MC). The difficulty in producing such behaviours exists because non-
linearity (KR) and ordered dynamics (MC) are often conflicting. The additional
freedom of a non-symmetric weight matrix allows a broader set of behaviours to
be realised.

6.3 Parameters vs. Quality

The results show the quality of each topology and connection type tends to
scale linearly with the maximum number of weights available in each network
configuration (fig. 6). Here, the maximum number of weights is used to represent
the total freedom in the network’s configuration space. In reality, the actual
number of connections – with non-zero weights – required to occupy different
regions of the behaviour space may differ significantly.

In fig. 6, several groups exist where networks with the same maximum num-
ber of weights produce different qualities. For example, the 25-neuron lattice
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Fig. 6: The quality (coverage) of all network sizes and structures compare to
maximum number of weights available by each network.

(undirected), 100-neuron ring (undirected) and 50-neuron ring (directed) are
each limited to roughly 100 weights, yet differ significantly in quality/coverage.
The 50-neuron ring (directed), with simpler structure, produces many more be-
haviours than the more complex 25-neuron lattice (undirected). This pattern
also continues as both increase in network size.

It is also seen that adding more parameters (weights) does not always lead to
more dynamical behaviours, e.g., the 50-neuron ring (directed) and 50-neuron
lattice (undirected) produce similar qualities despite the lattice having many
more available connections. It then becomes clear that how weights are struc-
tured and directed, controlling information flow, has a greater affect on quality
of the network. This supports similar results using hierarchical networks, where
structure and number of parameters also significantly impact performance [6].

7 Conclusion

Assessing and comparing how structure affects dynamical behaviour is often
challenging. For unconventional substrates, determining what predefined struc-
ture and channels of information exist is even more challenging. Even if structure
can be decided at creation, what is a suitable or ideal structure is often limited
by physical constraints.

Here we show that the CHARC framework provides a method to assess what
effect changes in structure have on computing quality. We use simulated recur-
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rent networks as a model of physical reservoir systems. Our experiments show
that networks with low structural complexity can exhibit similar quality and
behaviours to more complex structures. However, in almost every case, this is
only possible when network size is increased, resulting in a trade-off between
size and structure. This result therefore acts as useful guide to the design of new
unconventional reservoir computing substrates, where more complex structures
tend to be more challenging to implement than simple structures like the ring
topology.

Overall, this work showcases one undeveloped area within a much wider chal-
lenge: how to better understand the computing properties of substrates. The
work demonstrates how the CHARC framework can be used to evaluate changes
in design, configuration and representation of unconventional substrates and re-
late it to a task-independent measure of computing quality. In future work, we
intend to further develop the framework to improve the design and fit of compu-
tational models, and even substrate design directly. For example, moving beyond
the reservoir computing model, leading to a more generic CHARC framework;
using the framework as a test-bed to assess unconventional program constructs;
and, using quality as an objective to optimise within the substrate design pro-
cess.
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