Skip to main content

DNA Origami Words and Rewriting Systems

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11493))

Abstract

We classify rectangular DNA origami structures according to their scaffold and staples organization by associating a graphical representation to each scaffold folding. Inspired by well studied Temperley-Lieb algebra, we identify basic modules that form the structures. The graphical description is obtained by ‘gluing’ basic modules one on top of the other. To each module we associate a symbol such that gluing of molecules corresponds to concatenating the associated symbols. Every word corresponds to a graphical representation of a DNA origami structure. A set of rewriting rules defines equivalent words that correspond to the same graphical structure. We propose two different types of basic module structures and corresponding rewriting rules. For each type, we provide the number of all possible structures through the number of equivalence classes of words. We also give a polynomial time algorithm that computes the shortest word for each equivalence class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhuvana, T., Smith, K.C., Fisher, T.S., Kulkarni, G.U.: Self-assembled CNT circuits with ohmic contacts using Pd hexadecanethiolate as in situ solder. Nanoscale 1(2), 271–275 (2009)

    Article  Google Scholar 

  2. Book, R.V., Otto, F.: String-Rewriting Systems. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-9771-7

    Book  MATH  Google Scholar 

  3. Borisavljević, M., Došen, K., Petric, Z.: Kauffman monoids. J. Knot Theor. Ramifications 11(2), 127–143 (2002)

    Article  MathSciNet  Google Scholar 

  4. Dolinka, I., East, J.: The idempotent-generated subsemigroup of the Kauffman monoid. Glasgow Math. J. 59(3), 673–683 (2017)

    Article  MathSciNet  Google Scholar 

  5. Eichen, Y., Braun, E., Sivan, U., Ben-Yoseph, G.: Self-assembly of nanoelectronic components and circuits using biological templates. Acta Polym. 49(10–11), 663–670 (1998)

    Article  Google Scholar 

  6. Garrett, J., Jonoska, N., Kim, H., Saito, M.: Algebraic systems for DNA origami motivated from Temperley-Lieb algebras. CoRR, abs/1901.09120 (2019)

    Google Scholar 

  7. Jones, V.F.R.: Index for subfactors. Inventiones Math. 72, 1–25 (1983)

    Article  MathSciNet  Google Scholar 

  8. Kauffman, L.H.: Knots and Physics. World Scientific, New York (2001)

    Book  Google Scholar 

  9. Lau, K.W., FitzGerald, D.G.: Ideal structure of the Kauffman and related monoids. Commun. Algebra 34(7), 2617–2629 (2006)

    Article  MathSciNet  Google Scholar 

  10. Li, J., Fan, C., Pei, H., Shi, J., Huang, Q.: Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 25(32), 4386–4396 (2013)

    Article  Google Scholar 

  11. Rothemund, P.W.K.: Design of DNA origami. In: Proceedings of 2005 International Conference on Computer-Aided Design, pp. 471–478 (2005)

    Google Scholar 

  12. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  13. The on-line encyclopedia of integer sequences. https://oeis.org/

  14. Veneziano, R., et al.: Designer nanoscale DNA assemblies programmed from the top down. Science 352(6293), 1534 (2016)

    Article  Google Scholar 

  15. Verma, G., Hassan, P.A.: Self assembled materials: design strategies and drug delivery perspectives. Phys. Chem. Chem. Phys. 15(40), 17016–17028 (2013)

    Article  Google Scholar 

  16. Whitesides, G.M., Boncheva, M.: Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Nat. Acad. Sci. U.S.A. 99(8), 4769–4774 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

This work is partially supported by NIH R01GM109459, and by NSF’s CCF-1526485, DMS-1800443 and DMS-1764366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwee Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garrett, J., Jonoska, N., Kim, H., Saito, M. (2019). DNA Origami Words and Rewriting Systems. In: McQuillan, I., Seki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2019. Lecture Notes in Computer Science(), vol 11493. Springer, Cham. https://doi.org/10.1007/978-3-030-19311-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19311-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19310-2

  • Online ISBN: 978-3-030-19311-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics