Verification for everyone?
An overview of Dynamic Logic

Alexandre Madeira

CIDMA, U. Aveiro, Portugal
QuantaLab INESC TEC, U. Minho

madeira@ua.pt

Abstract. This note, reporting the homonym keynote presented in the
International Symposium on Molecular Logic and Computational Syn-
thetic Biology 2018, traces an informal roadmap on Dynamic Logic (DL)
field, focusing on its versatility and resilience to be adjusted and adopted
in a wide class of application domains and computational paradigms.
The exposition argues the room for developments on tagging DL to the
analysis of synthetic biologic domain.

1 Introduction

Dynamic Logic [8] was introduced in the 70’s by Pratt in [28] as a suitable logic
to reason about, and verify, classic imperative programs. Since then, it evolved
to an entire family of logics, which became increasingly popular for assertional
reasoning about a wide range of systems and scenarios.

This talk guides an overview on this path prepared to the broad audience
of this symposium, with interests and backgrounds ranging from formal Logics,
control and systems theory to Synthetic Biology. Rather than to introduce tech-
nical aspects on the mentioned formalism, this presentation aims to raise the
attention of the reader to the ‘camaleonic’ nature of DL, on its adoption on the
verification of novel computational domains and paradigms, and in the way it
can be yet extended to fit on the new challenges of synthetic biology.

This exposition starts by revisiting the roots of the topic, namely by (i) the
generic ideas of the calculus of Floyd and Hoare on classic imperative programs
and, by (ii) introduce Modal Logic, with its Kripke semantics, as the natural
formalism to reason about state transition systems. Then, recalling the seminal
ideas of Pratt of using a modal logic to perform Floyd-Hoare reasoning, we
briefly introduce the propositional and first order versions of DL (see [29] for an
historical perspective on the development of the topic).

Then, we overview some of contributions on the topic developed by our group.
The dynamisation method [21,23] contributed on this direction with a system-
atic procedure to construct Multi-valued Dynamic Logics able to handle systems
where the uncertainty is a prime concern. The method is parametric, and follows
our own pragmatic approach to the application of logics to a wide range of com-
plex computational systems: on the place of defining a dedicated logic for each

specific application, we develop parametric methods to derive logics tailored to
each situation or domain. The specificities involved in each situation should be
taken in account on the definition of the parameter adopted for each derivation.
The method reviewed in this talk, generates logics suitable to deal with systems
involving graded computations. The grading of these logics is reflected in the
costs, weight and certainty degrees of programs; but also in the assertions we
can do, due to their multi-valued semantics (rather than the standard bivalent
one). Beyond of standard Propositional Dynamic Logic [8], we can capture with
this method, for instance, the Fuzzy Dynamic Logics presented in [12,16]. But
other logics capable to reason with systems involving resource consuming com-
putations, or assertions graded in discrete truth spaces, can also be achieved as
well (cf. [21]).

This generic method have been also adjusted to build multi-valued variants of
other families of logics. We discuss in this talk two possible specialisations: one to
reason with systems involving knowledge - with its tuning to a method to build
Multi-valued Dynamic Epistemic Logics (developed in collaboration with M.
Martins and M. Benevides [2]; and, another one. to reason on weighted programs
on means of intervals of weight, rather than points (developed in collaboration
with R. Santiago, M. Martins and B. Bedregal [30, 31]).

2 The seminal roots

Floyd-Hoare Calculus

As mentioned above, the works of Floyd and Hoare were determinant on the
adventure of the formal verification discipline in software engineering. The stan-
dard concept of software corrections emerged from the ideas of [7, 11], by means
of the notion of Hoare triple:

{o}m{p}

Formally, a triple {¢} 7 {¢} is valid if any terminating execution of 7 from a state
satisfying ¢, results in a state satisfying ¢. Actually this notion of the program
correctness w.r.t. a specification underlies, not only the modern techniques of
software verification, but also the principles design-by-contract development and
specification methods based in the state transitions with pre and post conditions.
The Floyd-Hoare logic (Fig. 2) is a syntactic calculus to prove the correctness of
a complex program by decomposing it into simpler ones. The intuitions for the
set of axioms and inference rules is easy. For instance, the axiom (assign) just
states that a condition ¢ is satisfied after an assignment x := e, whenever before
of this assignment, the formula obtained by replacing in ¢ all the occurrences of
x by the expression e, was already true. Axiom (empty) is also natural, since the
program skip does not change states. As in the other natural deduction systems,
the idea of this calculus is to decompose the proof of compound programs, into a
set of simpler proof obligations, by creating a proof tree which leafs are axioms.
This is clearly reflected in the (comp) and (if then else) inference rules.
The rule (weak) allows to manipulate the triple conditions by strengthening

Axioms:

(assign)

Gz =cle) P Grkip (6}

Inference rules:

(wealg 228 _{FIS{E} o
{015(e}

{o}5{&} {T{¢}
{¢}S; T{p}

{o Aa}Si{p} {¢ A -a}Sa{p}
{¢}if athen S; else S2{p}

(comp)

(if then else)

Fig. 1. Fragment of the Floyd-Hoare Calculus

preconditions and weakening postconditions. Using this rules we are able to
validate Hoare triples. For instance,

{z =1}ifxr < 2thenz :=z + lelsezx := x x x{z = 2}

can be proved with the deduction:

{z=1Nz<2}x:=a+1{z=2} {z=1Nz>2}x:=a*xx{x=2}

{z =1}if x < 2thenz :=z + lelsezx := z x x{z = 2}

The left leaf is closed by axiom (assign), since (z = 2)[x + 1/z] & = = 1. For
the right one, we just have to note that © = 1Az < 2 & false, and therefore the
triple is vacuously satisfied, since there is no any state satisfying the precondition
false.

Modal Logic

The long tradition in the study of logics to reasoning in scenarios involving
change, come since the age of Aristotle. This family of logics, known as Modal
logics represents a classic topic in Logic and Philosophy. The developments of
Kripke in the 60’s in semantics for these logics, based in transition structures,
endow such formalisms with the suitable ingredients to reasoning about state-
based systems. This section briefly review the basic definition of propositional
multi-modal logic.

Signature for of this logic are pairs (Prop, A) where Prop, A are disjoint sets of
propositions, and modalities. The (Prop, A)-formulas are defined by the grammar

e ==pl{a)p|lale|~@leVelpAp

where p € Prop and a € A.
Models of this logic are state transition structures, with propositions locally
assigned to states. Formally, a (Prop, A)-model is a tuple M = (W, V, R) where

— W is a set

— V : Prop — P(W) is a function
— R=(R, CW X W)ueca is an A-family of binary relations

Finally, we recall the notion of modal satisfaction. The satisfaction of a
(Prop, A)-formula ¢ in a state w of a (Prop, A)-model M is recursively defined
as follows:

— M,wEpiff weV(p)

M, w [{a)p iff there is a w’ € W such that (w,w’) € R, and M, w’ | ¢
— M,w [[a]p iff for any w’ € W such that (w,w’) € R, we have M,w' |= ¢
M,w | —p iff it is false that M, w = ¢

- MwEeAg iff MywkEpand M,w = ¢’

- MwEeVy iff MjwkE por M,w ¢

Propositional Dynamic Logic

Being programs a paradigmatic example of state-transition systems, modal logic
emerged as natural formalism to reason about it. Particularly, it provided solid
theoretic field, to support the verifications in Floyd-Hoare triples. Moreover,
as observed by V. Pratt in the seminal work [28] Floyd-Hoare logic is purely
syntactic, and Modal logic can be considered as an alternative to Floyd-Hoare
logic.

In a first view, the multi-modal logic presented above would be enough to
reason about programs, by considering the class of possible programs as the set
of modalities. Fortunately programs are structured terms. This allows us to deal
with these objects in a systematic way, a key factor on the definition of dynamic
logics. Assuming a set of atomic programs II, the universe of the (composed)
programs can be defined with the following grammar:

Tu=mo || mw | 7| Ty

for mg € II and x a formula in the logic. The connectives of the terms are
the usual Kleene operators, namely + represents the non-deterministic choice,
; the sequential composition and * the reflexive iterative operator. Additionally
we have the operator 7 for tests, that is necessary to represent conditionals.
Note that this grammar actually provides an abstract computational language,
able to represent the standard imperative language commands. For instance we
have that if x then 7 fi = (?x;7) + (?—x), that if x then 7 else 7' fi =
(7x;) + (?=x; 7') and that while x do m od = (?x;7)*; 7—x.

Fixing this abstract model of computation, we are in condition to adjust multi-
modal logic into a formalism to reasoning about programs. Firstly, signatures
are pairs (Prop, IT) where Prop is a set of propositions and IT is a set of atomic
programs names. Models are Kripke structures tuples (W, V, R) where:

— Wis a set
— V : Prop — P(W) is a function
CR=(R, CW xW),mell

Observe that these models only interprets atomic programs, since R can be
extended to the interpretation of composed programs, with the usual relational
operators. Namely, we have R(mo) = Ry,, R(m +7') = R(m) UR(x’), R(m;7') =
R(m)-R(n') and R(7*) = R(m)* = U, ey R(7™), where 7! = m; ™. Finally we
have the interpretations of tests as the co-reflexive R(x?) = {(w,w)|M,w = x}.
Now, we defined the satisfaction relation as above, just replacing the cases of

modal operators by

— M, w = (m)g iff there is a w’ € W such that (w,w’) € Ry and M,w’ |= ¢;
— M,w [[7]p iff for any w’ € W such that (w,w’) € R, we have M,w’ |= .

Shifting to the first-order case

As suggested, propositional dynamic logic provides the essential machinery to
reason about abstract programs. The regular modalities reflect the abstract
structure of the programs control, where the standard imperative commands
can be easily accommodated. We observe here that above freedom on what an
atomic program is a key factor to the versatility of this logic, to be adapted to
new computational domains. Let us firstly focus in the verification of a classic
imperative programs. For this case atomic programs are, naturally, variables as-
signments. As usual, the states in our models should correspond to valuations of
program data variables. Hence, the atomic propositions used in the propositional
case are here replaced by data predicates. For sake of simplicity, we assume that
all the programs variables are numerical R variables.

Formally, signatures are sets of data variables Var. The set of programs is
defined as in the propositional case, but considering assignments x := 6, with 6
a term defined with Var and the arithmetic operations {+, —, x, - - - },on place of
atomic programs w € I1. As mentioned, semantic states are variables assignments
w € RV2'. The interpretation of programs is now given by an interpretation
p C RY® x RV™ exactly defined as the propositional R, but considering the
interpretation of base programs py.—p = {(u,v)[v(x) = 6 and for any y € V \
{z}, uly) = v(y)}-

Hence, we can use this modal logic to support the verification of Floyd-Hoare
triples. For instance the validity of formula

r=1=z<2)z=c+1+(-(z<2)z:=c*z]jr =2
or, equivalently
x=1—[ifr <2thenz:=x+lelsexr :=z*z]x =2
corresponds to the verification of the triple
{zx =1}ifx < 2thenz :=z + lelsex := z x x{x = 2}

done above. This is an useful fact that relates Floyd-Hoare logic and first-order
dynamic logic: for any Floyd Hoare triple {¢}n{¢}, {¢}n{p} is verified iff the
formula 1 — [7]¢p is valid.

Note that this principle can be extended to other variants of Hoare and
dynamic logics. Whenever a new dynamic logic is defined, a new Floyd-Hoare is
created for free.

Less conventional variants

As stated in the introduction, the resilience of dynamic logic on being adjusted
to new computational paradigms and domains is a key factor for its adoption in
a wide multitude of contexts. Actually, the way we construct the first-order dy-
namic logic from its propositional version, by preserving all of its structure, with
the exception of its atomic programs (and respective interpretation), not only
justify the big family of dynamic logics we have today, but opens the door for
further versions and variants. Actually, as it will be discussed, the DL adequacy
and resilience on being adapted to a wide range of computational systems, relies
on real understanding of what is the nature of the atomic programs involved in
each context. On place of considering programs as the standard variables assign-
ments, we can consider, for instance systems of differential equations flowing in a
given domain (e.g. a time constraint or a data predicate). This is the base idea of
differential dynamic logic of A. Platzer [27]. By counsidering as atomic programs
these evolutions, we are in the presence of a logic to reason and verify continuous
systems. But if we consider also discrete assignments we have a suitable logic to
reason in hybrid systems.

A logic to reason about quantum programs and quantum protocols can be
also achieved if we consider, as basic programs, quantum measurements and
unitary transformations. Such is the idea behind the works of S. Smets and
A. Baltag in Quantum Dynamic Logic [1]. The game logics of Parikh [26] and
the Dynamic Epistemic logics (revisited bellow)[6] are two well established logic
fields, where the same analogy can be done.

3 Parametric Generation of Dynamic Logics

This section overviews the dynamisation method, a systematic method to con-
struct Multi-valued Dynamic Logics that we introduced in [22, 23]. This method
is parametrized by an action lattice [13]. Despite of its distinct original purposes,
this algebraic structure showed to be very useful in the context of our work, on
providing a generic support for the computational space (as a Kleene algebra)
and for the truth spaces (as residuated lattice) of the logics build trough our
constructions.

Definition 1 ([13]). An action lattice is a tuple
A= (A7+7;70713*34)3')

where A is a set, 0 and 1 are constants, * is an unary operation in A and +,;,—
and - are binary operations in A satisfying the axioms enumerated in Figure 1,
where the relation < is induced by +: a < b iff a + b =b.

a+(b+c)=(a+b)+c (1) ar<z=ax<z (11
a+b=b+a (2) via<z=uza <z (12
at+a=a (3) aGr<besr<a—b (13
a+0=0+a=a (4) a—b<a—(b+c) (14

a; (b;c) = (a;b); ¢ (5) (r—2z)" =22 (15
a;l=1;a=a (6) a-(b-c)=(a-b)-c (16

a; (b+c¢) = (a;b) + (a;¢) (7) a-b=b-a (17
(a+0b);¢=(a;¢)+ (b;c) (8) a-a=a (18
a;0=0;a=0 9) a+(a-b) =a (19
l1+a+(a*;a") <a" (10) a-(a+b) =a (20

Fig. 2. Axiomatisation of action lattices

As discussed bellow, the structure of an action lattice plays a double role
in our method: it will support the model for computations, and of truth space.
The operation +, plays a double role, the non-deterministic choice, in the in-
terpretation of programs, and the logical disjunction, in the interpretation of
sentences. Operations % and ; are taken to interpret the iterative application
and sequential composition of actions and, the operations — and - interpret the
logical implication and conjunction.

We explore [22] an extensive set of action lattice. Here we will just recall four
of them. Firstly, we consider the two elements boolean algebra

2= ({T7 L}? \/7 /\a J~7 T) *, =7, /\)

with the standard boolean connectives and with T* = 1% = T. Moreover, by
explicitly introducting a denotation for a truth value unknown, we can consider
the three elements linear lattice

3 = ({T’u’ J‘}? \/7 /\’ J‘? T? *7 *>7 /\)

where

VILuT AlLuT —=|LuT x|
LT L|lLLL LI|TTT L1|T
ulvuul uwullwu w|LTT wu|T
TITTT T|LawT T|LaT T|T

In order to consider a linear discrete lattice with a finite number of points,
we can consider Wajsberg hoops [3] enriched with a suitable star operation.
For a fix natural £ > 0 and a generator a, we define the structure Wy =
(Wi, +,;,0,1,*,—,), where W), = {a°,a',--- ,a*}, 1 = a” and 0 = a*, and
for any m,n < k, a™ + a" = amin{m,n}7 a™;a" = amin{m-i—n,k}’ (am)* — aO’
a™ — " = amer{n=m0t apnd o™ - " = a™e*{mn} For instace, the underlying
order of the Wajsberg hoop W5 is Wi is a® < a* < a® < a? < a' < dP.

Moreover, we can also consider continuous structures for the truth degrees
and weight for our logics. For instance, the Lukasiewicz arithmetic lattice is the
structure

L = ([0,1], max,®,0, 1, *, —, min)
where x =y = min(1,1 —z+4y), 2 @y =max(0,y + « — 1) and z* = 1.

Now, fixing an action lattice A = (A, +,;,0,1,%,—,) as parameter, we will
construct the multi-valued dynamic logic DL(A) (as proposed in [17]). Signa-
tures of DL(A) are pairs (IT, Prop) where IT denotes the set of atomic compu-
tations and Prop the set of propositions. Then, the set of IT-programs Prg(IT),
are defined by the grammar

mu=mo|mw| w4+ w| 7w, where mg € IT

Given a signature (I, Prop), the set of formulas FmP* (I, Prop) is given by the
grammar

pu=TI[LlplpVplpAplp—plp< pl(mp|[rlp
with p € Prop and 7 € Prg(IT).

Now we have to introduce the models for DL(A). As expected, graded com-
putations will be interpreted in state transition systems with weights in the
transitions, usually represented by adjency matrices. On this view, our method
takes advantage of the Conway matricial constructions over Kleene algebras i.e.
in the structure

Mn(A) = (MTL<A)7 +u 3 Ou 17 *)
defined as in [4, 14]. Namely with:

— M, (A) is the space of (n x n)-matrices over A
— for any A, B € M,(A), define M = A+B by M, ; = A, ; + B;;, i,j < n.
— for any A,B € M, (A), define M = A5 Bby M;; = > p_,(A;x; By,j) for
any 4,7 < n.
1 i
ne= and

— 1 and O are the (n x n)-matrices defined by 1;; = {0 herwi
otherwise

0;; =0, for any 7,5 < n.
— for any M = [a] € M;(A), M™ = [a*];

for any M = {é g} € M,(A), n > 1, where A and D are square matrices,
define

M = F* | F*;B;D"
" | DY C;F*ID"+(D*;C;F ;B3 D)

where F = A+ B; D™ ;C. Note that this construction is recursively defined
from the base case (where n = 2) where the operations of the base action
lattice A are used.

As showed in [14], the structure M, (A) is also a Kleene algebra, and therefore,
figures as a suitable space to represent, manipulate and interpret programs.
Enriching the interpretation of basic programs with graded interpretations for
the propositions, we get the models for a signature (II,Prop). Formally, the
DL(A) models for (II, Prop) are tuples

A= (Vvv vV, (ATF)WGH)

where W is a finite set (of states), V' : Prop x W — A is a function, and
A, € M,,(A), with n standing for the cardinality of W.

As expected, the interpretation of a program 7 € Prg(Il) in a model A €
ModP# (11, Prop) is recursively defined, from the set of atomic programs (Ayx) e,
with A = Ar s Apr, A = Az + A and Apv = .A: together with the con-
stants interpretations A; = 1 and Ay = 0.

The reader can easily observe that the models of DL(2) corresponds exactly
to the standard PDL. More interesting instantiations can be found in [22].

In order to illustrate the running concepts, let us consider the consider the
({p, a}, {m,7'})-model A = ({s1, 52}, V. (Ap)peiny) of DLE) with V(p,s1) =
0.1, V(q,51) = 0.5, V(p,s2) = § and V(q, s2) = 0.75 and

0.7 0.5

) ?fg N 4 @
P 3 P = 21
W [O 0.7] W 7‘3 0.5 2

Then, for instance the program A, . is interpreted by

V2 V2 V2
0 }7 (3/5 2 — (35 2 (22)

52 0.5 5 0.7

3
00.7

The last ingredient for the definition of DL(L) is the graded satisfaction.
Here, on place of being a satisfaction relating each state with the formulas there
satisfied, we have a function that assigns the ‘satisfaction degree’ of a formula
in a given state state. The operations of the action lattices have to play the
truth space role, on the interpretation of logic connectives. Formally, the graded
satisfaction relation for a model A € ModP* (1, Prop), with A complete, consists
of a function

A = max(Ay, Ap) = max ([

E: W x FmDL(H7 Prop) — A

recursively defined as follows:

- (wET)=T
wkEl)=1
w E p) = V(p,w), for any p € Prop

)= (w) (wE)

wipvp) = (w p)+ (w =)
whp—p) = (W p) = (w = p)

\
S
T
)
>
)

We say that p is valid when, for any any model A, and for each state w € W,
(whp)=T.

Returning to our running example, we can calculate the satisfaction degree of
the formula (7 + 7')(p — ¢)) in the state s; as follows:

(s1 = (m+7')(p = ¢)) = max(0® (0.1 = 0.5), 2 © (0.75 — T))
Y20 (0.75 - T)

= 2 ©min(1,1 - 0.75+ T)
— V2

=2
Therefore, we conclude with a degree of certainty g that, after executing 7+ 7’
from the state s;, we have p — q.

Reasoning with systems involving knowledge

The complexity of the current information systems, involving processes with
complex network of heterogeneous learning agents, raises for further generalisa-
tions of Multi-agent Epistemic Logics, including weighted versions. Hence, the
building logics on-demand principle, inherent to dynamisation, appear as an ad-
equate technique to be used is this domain. In this section, we review a variant
of dynamisation tailored to the generation of graded dynamic epistemic logics
introduced in [2].

Firstly let us recall the basis of Multi-agents Epistemic Logic (DEL). Signature
of DEL are pairs (Prop, Ag) where Prop is a set of propositions and Ag a finite
set of agents. Note that this can be seen as propositional dynamic logic signa-
tures which atomic programs are the agent knowledge relations. The (Prop, Ag)
formulas of DEL are defined by the grammar

eu=p| T |01 Ap2 |1 Vea| Koo | Bay | Cap

where p € Prop, a € Ag and G C Ag. The intuitive meaning of the epistemic
modalities is the following: K,¢ means that agent a knows ¢; B,y means that
agent a believes that ¢; and the common knowledge operator Cg - means that
all the members of the group of agents G knows ¢ and each member of the group
knows that all the members of the groups know ¢, etc.

The models are just special models of PDL. Formally, multi-agent epistemic
model is a tuple € = (W, (Ry)acag, V') defined as in PDL but assuming that, for
any agent a € Ag, R, is an equivalence relation. The interpretation of knowledge
modalities is defined by

- M,sEK,¢piff forall s € S:sR,s" = M,s' = ¢
— M, s |E B,¢ iff there is ans’ € S such that sR,s" and M, s" = ¢

- M,sE=Cgoiffforall & € S, sREs' = M, s = ¢

The similarities with PDL are straightforward. Modality K, corresponds to the
modality [a] for an atomic program a. Its dual, the modality B,, corresponds
to the modality (a) for an atomic program a. Modality C¢ is captured by the
modality [(3 0, a)*].

In order to get some intuitions on this logic, let us recall the well know
example of the envelops used in [6]. Three envelopes containing 0, 1 and 2 euros
are given to the agents ana, bob and clara. Each agent just knowns the content of
her envelop. Using proposition Prop = {Em|E €{1,2,3},x € {a,b, c}} referring
that “agent x has envelop E, and representing states by the order of envelops,
e.g. the state 012 represents the case that agent a has 0, agent b has 1 and ¢
has 2, we can represent epistemic state of each agent as follows!:

012 —a— 021

- \M ~,
S
102
AN

AN
120
-

b.

N d

201 —a— 210

Fig. 3. anna’s, bob’s and clara’s epistemic model [6]

Hence, we have, for instance, that 012 = B0, and 012 = B, K2, hold.
Redefining our dynamisation method for this specific seetings we obtain a method
to build graded dynamic epistemic logics. The satisfaction relation for the epis-
temic modalities takes now the form:

— (W Ko) = Ayew (Ra(w, w') = (' = ¢))
— (W Ba9) = Vyew (Ra(w, w'); (v = ¢))
— (W Co ¢) = Nrew (Ro(w,w') = (v’ |= ¢))

These logics are prepared to deal with agents with graded beliefs (on place of
bivalent ones). Let us revisit the example above, by supposing that the agent ana
‘suspect’ that the envelop of bob has a higher amount than the one of herself. In
a scale from 0 to 5, her belief is 4; Conversely, her belief that the envelop received
by bob has a smaller value is 1. The epistemic perception of ana is depicted in
the following picture. Again, we omit the reflexive loops in the picture (with
value 5):2

1 'We omit the reflexive loops in the picture
2 The complete treatment of this illustration is in [2];

>

012 021

102 120

}

201 210

)\/
1
Fig. 4. anna’s beliefs

Reasoning with interval approximations

There are some situations where only approximations for the transition weights
are possible (e.g. when dealing weights over irrational numbers, we have no
machine representation of transition weights; or due impreciseness in some mea-
surements). On this purpose, for the specific case of Fuzzy Dynamic logic, we ad-
justed the dynamisation constructions to deal with intervals, rather than points.
This results in a new family of dynamic logics whose assertions, and the satis-
faction outcomes, are also intervals. This section informally overviews our work
in Interval Dynamic Logic presented in [30,31]. The presentation is guided to
the case . but the same principle can be extended to other continuous action
algebras.

In the sequel, for any closed interval X, we use X and Y to denote its left
and right bounds, i.e. for X = [a,b], X =a and Y = b.

Our first concern is about the structure to interpret such kind of programs.
The following result presented in [30] provides a Kleene algebra for that end:

Theorem 1 (|30]).

K(L) = (U, Maz, (%), [0,0],[1,1],%)

where

- U={[a,b] | 0<a<b<1}

Maz(X,Y) = [max(X,Y), maXLX;Y)]

- Min(X,)Y) = [min(l,ﬁX),rﬁnin(X,Y)] o
XQY=[(X0Y), XoY)] = [max(0,X +Y —1),max(0, X +Y — 1)]
X=X X = (L1,

is a Kleene algebra.

For instance, we can consider interval approximations of the weight transition
structure presented above as

[0.7,0.7] [0.5,0.5]
oa0d (0,0) (0.4,0.5) [0‘6’0'8]8 (0,0) (0.6,0.8)
A : Wég {(0,0) (0.7,0.7)} A @[0/7_:] {(0.7,0.9) (0.5,0.5)}

Using the K (f) operations, we can also interpret (composed) programs. For
instance A4 is

max ([(0,0) (0.4,0.5)] {(0,0) (0.6,0.8)]> _ [(0,0) (0.6,0.8)}
(0,0) (0.7,0.7) | * | (0.7,0.9) (0.5,0.7) (0.7,0.9) (0.7,0.7)

It is expected to extend the structure K (f) with an interpretation of the
implication, in order to have an action lattice for intervals. The natural candidate
is X=Y =[(X -Y),X —>Y) =mnl,1-X+Y),mn(l,1 - X +Y)]
However, the reader can easily observe that axioms (13) and (15) does not hold
in & (c.f. [30] for a complete discussion) . Hence, despite of its Kleene algebra
structure, L it is not an action lattice. We studied in [30], an weakness of action
lattices, called quasi-action lattice, that capture L. Fortunately, this structures
still have good properties to serve as parameter of dynamisation method. For
instance, by considering a valuation V : Prop — U with V(p,s;) = [0.1,0.1],
V(g,s1) = [0.5,0.5], V(p,s2) = [0.7,0.8] and V(q,s2) = [0.75,0.75], we can
calculate the degree of satisfaction of the sentence (m + 7')(p — ¢) from the
state sy as:

(s1 g (m+7)(p — q))
= max([0,0] ® ([0.1,0

= max([0, 0], [0.6, 0.8]

=[0.6,0.8] ® [1,1]

= [0.6,0.8].

1] =[0.5,0.5)),[0.6,0.8] ® ([0.5,0.5]==[0.7,0.8]))
®[0.5 —0.7,05 — 0.8])

4 Further extensions and applications?

As suggested along the paper, the pattern of changing the atomic programs to
adapt the computing paradigm is not only recognised in our methods to build
graded dynamic logics, but in most of variants of dynamic logics in the literature.
This motivates our position that the shape of dynamic logic provides the de
facto essence of what a logic for programs is. When invited to make a personal
overview in dynamic logic in the International Symposium on Molecular Logic
and Computational Synthetic Biology 2018, the authors main motivation was to
open the discussion of what should be the suitable atomic programs, for a further
dynamic logic tailored to synthetic biology. The same exercise have been done
by the group on finding new dynamic logics for other domains and applications,
including reactive processes [17,9, 10], petri-nets with failures [15]. We have also
explored this ‘logic-on-demand’ strategy in other modal logics. Our long term

research in the parametric generation of hybrid logics [24, 19, 25] supports the
formal development of a wide range of reconfigurable systems from the design
to the verification stage [20]. Moreover, we extended the parametric generation
of Dynamic Epistemic Logics in [18] by considering structured representation of
states.

Exploiting the limits of our methods on building dynamic logics prepared
to deal with paraconsistencies in behaviours or in knowledge acquirement, is a
research line that we intend to develop. This will certainly be useful for the ap-
plication domains of this symposium. The recent contributions within the group
in paraconsistent hybrid logic [5] provides an interesting starting point for this
agenda. Shifting the paraconsistency of atomic modalities to composed programs
is, however, challenging. Specific questions as ‘what is a paraconsistent program’
should be answered. More precisely, the understanding of what is a paraconsis-
tent execution of a program, if the paraconsistency is inherent to the atomic
programs, or if it results from a ‘paraconsistent control’, due non conventional
interpretation of the Kleene operators, are questions to be studied in this line.

Acknowledgements. The author would sincerely thanks the invitation of the
MLCSB’18 to present this personal perspective on Dynamic Logic, a topic with
which he has been involved in the last years.

This work is financed by the ERDF — European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisa-
tion - COMPETE 2020 Programme and by National Funds through the Por-
tuguese funding agency, FCT - Fundagao para a Ciéncia e a Tecnologia, within
project POCI-01-0145-FEDER-016692 and UID/MAT/04106/2019, in a contract
foreseen in nos. 4-6 of art. 23 of the DL 57/2016, changed by DL 57/2017.

References

1. Baltag, A., Smets, S.: Quantum logic as a dynamic logic. Synthese 179(2),
285-306 (2011). https://doi.org/10.1007/s11229-010-9783-6, https://doi.org/
10.1007/s11229-010-9783-6

2. Benevides, M., Madeira, A., Martins, M.: A family of graded epis-
temic logics. Electr. Notes Theor. Comput. Sci. 338, 45-59 (2018).
https://doi.org/10.1016/j.entcs.2018.10.004, https://doi.org/10.1016/j.
entcs.2018.10.004

3. Blok, W.J., Ferreirim, I.M.A.: On the structure of hoops. algebra universalis 43(2-
3), 233-257 (2000). https://doi.org/10.1007/s000120050156, http://dx.doi.org/
10.1007/s000120050156

4. Conway, J.H.: Regular Algebra and Finite Machines. Printed in GB by William
Clowes & Sons Ltd (1971)

5. Costa, D., Martins, M.A.: Paraconsistency in hybrid logic. J. Log. Comput.
27(6), 1825-1852 (2017). https://doi.org/10.1093 /logcom/exw027, https://doi.
org/10.1093/1logcom/exw027

6. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese
Library Series, volume 337, Springer, The Netherland (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Floyd, R.W.: Assigning meanings to programs. Proceedings of Symposium on
Applied Mathematics 19, 19-32 (1967), http://laser.cs.umass.edu/courses/
cs521-621.5pr06/papers/Floyd.pdf

Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)

Hennicker, R., Madeira, A.: Institutions for behavioural dynamic logic with binders.
In: Hung, D.V., Kapur, D. (eds.) Theoretical Aspects of Computing - ICTAC 2017 -
14th International Colloquium, Hanoi, Vietnam, October 23-27, 2017, Proceedings.
Lecture Notes in Computer Science, vol. 10580, pp. 13-31. Springer (2017)
Hennicker, R., Madeira, A., Knapp, A.: A hybrid dynamic logic for event/data-
based systems. In: Hahnle, R., van der Aalst, W. (eds.) Fase 2019. Lecture Notes
in Computer Science, vol. 11424. Springer (in print)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576-580 (Oct 1969). https://doi.org/10.1145/363235.363259, http://doi.
acm.org/10.1145/363235.363259

Hughes, J., Esterline, A.C., Kimiaghalam, B.: Means-end relations and a mea-
sure of efficacy. Journal of Logic, Language and Information 15(1-2), 83—
108 (2006). https://doi.org/10.1007/s10849-005-9008-4, http://dx.doi.org/10.
1007/s10849-005-9008-4

Kozen, D.: On action algebras, manuscript in: Logic and Flow of Information,
Amsterdam, 1991

Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366-390 (1994)

Leandro Gomes, A.M., Benevides, M.: Logics for petri nets with propagating fail-
ures. FSEN19 - Fundamentals of Software Engineering. Lecture Notes in Computer
Science (in print)

Liau, C.: Many-valued dynamic logic for qualitative decision theory. In: Zhong,
N., Skowron, A., Ohsuga, S. (eds.) New Directions in Rough Sets, Data Mining,
and Granular-Soft Computing, 7th International Workshop, RSFDGrC ’99, Ya-
maguchi, Japan, November 9-11, 1999, Proceedings. Lecture Notes in Computer
Science, vol. 1711, pp. 294-303. Springer (1999). https://doi.org/10.1007/978-3-
540-48061-7-36, http://dx.doi.org/10.1007/978-3-540-48061-7-36

Madeira, A., Barbosa, L.S., Hennicker, R., Martins, M.A.: A logic for the
stepwise development of reactive systems. Theor. Comput. Sci. 744, 78-96
(2018). https://doi.org/10.1016/j.tcs.2018.03.004, https://doi.org/10.1016/j.
tcs.2018.03.004

Madeira, A., Benevides, M., Martins, M.: Epistemic logics with structured states.
Electr. Notes Theor. Comput. Sci. (in print)

Madeira, A., Martins, M.A., Barbosa, L.S., Hennicker, R.: Refinement
in hybridised institutions. Formal Asp. Comput. 27(2), 375-395 (2015).
https://doi.org/10.1007/s00165-014-0327-6, https://doi.org/10.1007/
s00165-014-0327-6

Madeira, A., Neves, R., Barbosa, L.S., Martins, M.A.: A method for rigorous
design of reconfigurable systems. Sci. Comput. Program. 132, 50-76 (2016).
https://doi.org/10.1016/j.scico.2016.05.001, https://doi.org/10.1016/j.scico.
2016.05.001

Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of
many-valued dynamic logics. J. Log. Algebr. Meth. Program. 85(5), 1011-1037
(2016). https://doi.org/10.1016/j.jlamp.2016.03.004, https://doi.org/10.1016/
j.jlamp.2016.03.004

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of many-
valued dynamic logics. Journal of Logical and Algebraic Methods in Program-
ming pp. — (2016). https://doi.org/http://dx.doi.org/10.1016/j.jlamp.2016.03.004,
http://wuw.sciencedirect.com/science/article/pii/S2352220816300256
Madeira, A., Neves, R., Martins, M.A., Barbosa, L.S.: A dynamic logic for ev-
ery season. In: Braga, C., Marti-Oliet, N. (eds.) Formal Methods: Foundations
and Applications - 17th Brazilian Symposium, SBMF 2014, Maceio, AL, Brazil,
September 29-October 1, 2014. Proceedings. Lecture Notes in Computer Science,
vol. 8941, pp. 130-145. Springer (2014). https://doi.org/10.1007/978-3-319-15075-
8 9, https://doi.org/10.1007/978-3-319-15075-8_9

Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of in-
stitutions. In: Corradini, A., Klin, B., Cirstea, C. (eds.) Algebra and Coalgebra in
Computer Science - 4th International Conference, CALCO 2011, Winchester, UK,
August 30 - September 2, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6859, pp. 283—297. Springer (2011). https://doi.org/10.1007/978-3-642-22944-
2 20, https://doi.org/10.1007/978-3-642-22944-2_20

Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Proof the-
ory for hybrid(ised) logics. Sci. Comput. Program. 126, 73-93 (2016).
https://doi.org/10.1016 /j.scico.2016.03.001, https://doi.org/10.1016/j.
scico.2016.03.001

Parikh, R.: The logic of games and its applications. In: Selected Papers of the
International Conference on "Foundations of Computation Theory" on Topics in
the Theory of Computation. pp. 111-139. Elsevier North-Holland, Inc., New York,
NY, USA (1985), http://dl.acm.org/citation.cfm?id=4030.4037

Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer
(2018). https://doi.org/10.1007/978-3-319-63588-0, https://doi.org/10.1007/
978-3-319-63588-0

Pratt, V.R.: Semantical considerations on floyd-hoare logic. In: 17th An-
nual Symposium on Foundations of Computer Science, Houston, Texas,
USA, 25-27 October 1976. pp. 109-121. IEEE Computer Society (1976).
https://doi.org/10.1109/SFCS.1976.27, https://doi.org/10.1109/SFCS.1976.27
Pratt, V.R.: Dynamic logic: A personal perspective. In: Madeira, A., Bene-
vides, M.R.F. (eds.) Dynamic Logic. New Trends and Applications - First
International Workshop, DALI 2017, Brasilia, Brazil, September 23-24, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10669, pp. 153-170.
Springer (2017). https://doi.org/10.1007/978-3-319-73579-5 10, https://doi.
org/10.1007/978-3-319-73579-5_10

Santiago, R., Bedregal, B., Madeira, A., Martins, M.A.: On interval dynamic logic:
Introducing quasi-action lattices. Science of Computer Programming 175, 1 — 16
(2019). https://doi.org/https://doi.org/10.1016/j.scico.2019.01.007, http://www.
sciencedirect.com/science/article/pii/S0167642319300103

Santiago, R.H.N., Bedregal, B.R.C., Madeira, A., Martins, M.A.: On interval
dynamic logic. In: Ribeiro, L., Lecomte, T. (eds.) Formal Methods: Founda-
tions and Applications - 19th Brazilian Symposium, SBMF 2016, Natal, Brazil,
November 23-25, 2016, Proceedings. Lecture Notes in Computer Science, vol.
10090, pp. 129-144 (2016). https://doi.org/10.1007/978-3-319-49815-7 8, https:
//doi.org/10.1007/978-3-319-49815-7_8

