Skip to main content

Variants of Fuzzy Neural Gas

  • Conference paper
  • First Online:
  • 789 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 976))

Abstract

Neural Gas is a prototype based clustering technique taking the ranking of the prototypes regarding their distance to the data samples into account. Previously, we proposed a fuzzy version of this approach, yet restricted our method to probabilistic cluster assignments. In this paper we extend this method by combining possibilistic and probabilistic assignments. Further we provide modifications to handle non-vectorial data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bezdek JC (1980) A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Trans Patt Anal Mach Intell 2(1):1–8

    Article  MathSciNet  Google Scholar 

  2. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57

    Article  MathSciNet  Google Scholar 

  3. Ball GH, Hall DJ (1965) Isodata an iterative method of multivariate data analysis and pattern classification

    Google Scholar 

  4. Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480

    Article  Google Scholar 

  5. Martinetz TM, Berkovich SG, Schulten KJ (1993) ‘Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans Neural Netw 4(4):558–569

    Article  Google Scholar 

  6. Karayiannis NB, Bezdek JC (1997) An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering. IEEE Trans Fuzzy Syst 5(4):622–628

    Article  Google Scholar 

  7. Geweniger T, Fischer L, Kaden M, Lange M, Villmann T (2013) Clustering by fuzzy neural gas and evaluation of fuzzy clusters. Comp Int Neurosc

    Google Scholar 

  8. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1(2):98–110

    Article  Google Scholar 

  9. Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    Article  Google Scholar 

  10. Villmann T, Kaden M, Nebel D, Bohnsack A (2016) Similarities, dissimilarities and types of inner products for data analysis in the context of machine learning, pp 125–133, June 2016

    Google Scholar 

  11. Ball GH, Hall DJ (1967) A clustering technique for summarizing multivariate data. Behav. Sci. 12(2):153–155

    Article  Google Scholar 

  12. Geweniger T, Villmann T (2017) Relational and median variants of possibilistic fuzzy C-means. In: WSOM+ 2017 12th international workshop on self-organizing maps, pp. 207–213

    Google Scholar 

  13. Hammer B, Hasenfuss A (2007) Relational neural gas. In: Hertzberg J, Beetz M, Englert R (eds) KI 2007: Advances in Artificial Intelligence. LNAI 4667. Springer, Heidelberg, pp 190–204

    Chapter  Google Scholar 

  14. Pekalska E, Duin RPW (2005) The dissimilarity representation for pattern recognition: foundations and applications. In: Machine perception and artificial intelligence. World Scientific Publishing Company, December 2005

    Google Scholar 

  15. Freeman PR (1983) The secretary problem and its extensions: a review. Int. Stat Rev 51(2):189–206

    Article  MathSciNet  Google Scholar 

  16. Villmann T, Liebers C, Geyer M (2003) Untersuchung der psycho-physiologischen Interaktion von Patient und Therpeut im Rahmen für psychodynamische Einzeltherapien und informationstheoretische Auswertung. Psychotherapeutische Reflexionen gesellschaftlichen Wandels, pp 305–319

    Google Scholar 

  17. Geweniger T, Zühlke D, Hammer B, Villmann T (2010) Median fuzzy c-means for clustering dissimilarity data. Neurocomputing 73(7–9):1109–1116

    Article  Google Scholar 

  18. Geweniger T, Zühlke D, Hammer B, Villmann T (2009) Fuzzy variant of affinity propagation in comparison to median fuzzy c-means. In: Advanced in self-organizing maps - proceedings of WSOM, LNCS 5629. Springer, pp 72–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Villmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geweniger, T., Villmann, T. (2020). Variants of Fuzzy Neural Gas. In: Vellido, A., Gibert, K., Angulo, C., Martín Guerrero, J. (eds) Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization. WSOM 2019. Advances in Intelligent Systems and Computing, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-030-19642-4_26

Download citation

Publish with us

Policies and ethics