Skip to main content

Reduction of Trajectory Encoding Data Using a Deep Autoencoder Network: Robotic Throwing

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 980))

Abstract

Autonomous learning and adaptation of robotic trajectories by complex robots in unstructured environments, for example with the use of reinforcement learning, very quickly encounters problems where the dimensionality of the search space is beyond the range of practical use. Different methods of reducing the dimensionality have been proposed in the literature. In this paper we explore the use of deep autoencoders, where the dimensionality of autoencoder latent space is low. However, a database of actions is required to train a deep autoencoder network. The paper presents a study on the number of required database samples in order to achieve dimensionality reduction without much loss of information.

Z. Lončarević—Holder of Ad futura Scholarship for Postgraduate Studies of Nationals of Western Balkan States for Study in the Republic of Slovenia (226. Public Call).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bitzer, S., Vijayakumar, S.: Latent spaces for dynamic movement primitives. In: 2009 9th IEEE-RAS International Conference on Humanoid Robots, pp. 574–581, December 2009

    Google Scholar 

  2. Chen, N., Bayer, J., Urban, S., van der Smagt, P.: Efficient movement representation by embedding dynamic movement primitives in deep autoencoders. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 434–440, November 2015

    Google Scholar 

  3. Chen, N., Karl, M., Smagt, P.V.D.: Dynamic movement primitives in latent space of time-dependent variational autoencoders. 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), vol. 2, no. 3, pp. 629–636 (2016)

    Google Scholar 

  4. Deisenroth, M.P., Neumann, G., Peters, J.: A survey on policy search for robotics, pp. 388–403 (2013)

    Google Scholar 

  5. Gams, A., Petrič, T., Do, M., Nemec, B., Morimoto, J., Asfour, T., Ude, A.: Adaptation and coaching of periodic motion primitives through physical and visual interaction. Robot. Auto. Syst. 75, 340–351 (2016). http://www.sciencedirect.com/science/article/pii/S0921889015001992

    Article  Google Scholar 

  6. Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.: Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  Google Scholar 

  7. Kober, J., Peters, J.: Policy search for motor primitives in robotics. Mach. Learn. 84(1–2), 171–203 (2011)

    Article  MathSciNet  Google Scholar 

  8. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics (2013)

    Google Scholar 

  9. Nemec, B., Vuga, R., Ude, A.: Efficient sensorimotor learning from multiple demonstrations. Adv. Robot. 27(13), 1023–1031 (2013)

    Article  Google Scholar 

  10. Pahič, R., Lončarević, Z., Ude, A., Nemec, B., Gams, A.: User feedback in latent space robotic skill learning. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 270–276, November 2018

    Google Scholar 

  11. Schaal, S.: Is imitation learning the route to humanoid robots? Trends Cogn. Sci. 3(6), 233–242 (1999)

    Article  Google Scholar 

  12. Ude, A., Gams, A., Asfour, T., Morimoto, J.: Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Trans. Robot. 26(5), 800–815 (2010)

    Article  Google Scholar 

  13. Ude, A., Nemec, B., Petrič, T., Morimoto, J.: Orientation in cartesian space dynamic movement primitives. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2997–3004, May 2014

    Google Scholar 

  14. Vijayakumar, S., D’souza, A., Schaal, S.: Incremental online learning in high dimensions. Neural Comput. 17(12), 2602–2634 (2005). https://doi.org/10.1162/089976605774320557

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvezdan Lončarević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lončarević, Z., Pahič, R., Simonič, M., Ude, A., Gams, A. (2020). Reduction of Trajectory Encoding Data Using a Deep Autoencoder Network: Robotic Throwing. In: Berns, K., Görges, D. (eds) Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing, vol 980. Springer, Cham. https://doi.org/10.1007/978-3-030-19648-6_11

Download citation

Publish with us

Policies and ethics