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Abstract. Using industrial robots for machining applications in flexible manufac-

turing processes lacks a high accuracy. The main reason for the deviation is the

flexibility of the gearbox. Secondary Encoders (SE) as an additional, high preci-

sion angle sensor offer a huge potential of detecting gearbox deviations. This pa-

per aims to use SE to reduce gearbox compliances with a feed forward, adaptive

neural control. The control network is trained with a second network for system

identification. The presented algorithm is capable of online application and op-

timizes the robot accuracy in a nonlinear simulation.
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1 Introduction

Using industrial robots in machining processes offers great potential regarding process

flexibility while remaining low cost [1], [2], [3]. Themain drawback of robots compared

tomachining tools is the lack of Tool-Center-Point (TCP) accuracy. Oneway of improving

this accuracy is using secondary encoders (SE) on the main axes of the robot in order

to reduce gearbox compliances [4], [5]. [6] has shown, that SE are able to improve

robot accuracy in a cascade control using stiff control parameters and optimizing SE for

disturbance compensation only. In order to overcome the drawbacks of a stiff cascade

control configuration, the guiding behaviour of the axes needs to be improved by a

feed forward control. However, a model based control needs good model knowledge,

which is difficult to obtain. [2] shows that especially the friction model of the gearbox

is complicated, e.g. because the gearbox temperature changes more than 80∘𝐶 during

machining. Furthermore, a good control needs additional sensor information, which

are usually not available on standard robots and imply a costly update. Therefore, this

paper aims to overcome the drawbacks of bad model knowledge by using black-box

system identification and adjusting the control accordingly. Due to nonlinear physical

effects of the robot, e.g. gearbox friction and backlash, the algorithm has to be capable

of nonlinear system identification. In addition, the algorithm has to be ready for online

usage.

This paper is organized as follows. First, a concept - neural adaptive control - is intro-

duced and explained. Next, system identification using Runge-Kutta Neural Networks

(RKNN) for nonlinearmodelling is presented. Afterwards, aMulti-Layer-Perceptron (MLP)
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as feed forward controller is shown. Finally, a nonlinear simulation model of the robot

axis is presented and simulation results using the proposed algorithmare demonstrated.

2 Concept

An overview of neural adaptive control is given in [7], [8]. The core idea used in this

paper is to separate the tasks of system identification and controller design. The sig-

nal concept used in this paper is shown in Fig. 1. A controller network 𝑐(⋅) is used to

modify the feed forward reference trajectory 𝑟, which in our case is the arm reference

angle𝜑ோ. Depending on the reference, the controller creates a modified reference arm

angle 𝑢 ෡=𝜑௎. Before the controller is trained 𝜑ோ is equal to 𝜑௎. Using an unmodified

reference as input is possible because a closed loop system is utilized. For training the

controller in a simulation environment, a model of the measured system is needed. In

a comparative study [9] of multi-axis robot system identification, RKNN achieve a high

prediction accuracy while remaining a good generalization. RKNN are explained in [10]

and combine neural networks with the Runge-Kutta differential equation solver. The

RKNN is trained to approximate the measured arm angle 𝑦 ෡=𝜑஺ with the simulated

arm angle 𝑦̂ ෡= 𝜑̂஺ as good as possible.
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Fig. 1. Complete control structure. A RKNN is used for online black box system identification.

Using the RKNN, a feed forward controller network is trained and used online.

3 Runge-Kutta-Neural-Networks

For the state network 𝑓(⋅), the output network ℎ(⋅) and the initial network 𝑖(⋅), MLPs

with a single hidden layer are applied [11]. Using a MLP, we obtain the network equa-

tions
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̇𝑥̂(𝑡) = 𝑓(⋅) = 𝑊௢
ி 𝜎(𝑊
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௛
ூ௓𝑧̃௞ + 𝑏௛ூ ) + 𝑏௢ூ (3)

with the continuous state vector 𝑥(𝑡), the estimated discrete state vector 𝑥̂௞ at

time step 𝑘, input 𝑢௞ and estimated output 𝑦̂௞. The activation function 𝜎(⋅) is a hy-

perbolic tangent. Weight matrices and bias terms use the following index convention.

Low-indices𝐹,𝐻 and 𝐼 are used for𝑓(⋅),ℎ(⋅) and 𝑖(⋅) network respectively. Low-indices

𝑋, 𝑈 and 𝑍 represent state 𝑥̂ signal, input 𝑢 signal and regression vector 𝑧̃௞ respec-

tively. The regression vector consists of a measured input and output sequence 𝑧̃௞ =

[𝑢௞ିேଵ , 𝑢௞ିேଵାଵ, ..., 𝑢௞ିଵ, 𝑦௞ିேଶ , 𝑦௞ିேଶାଵ, ..., 𝑦௞ିଵ] with 𝑁ଵ ∈ ℕା and 𝑁ଶ ∈ ℕା. High-

indices 𝑜 andℎ denote output and hidden layer respectively. For a compact notation, all

model networkweights and bias terms are summarized inΘெ = [𝑊௢
ூ ,𝑊

௛
ூோ, 𝑏

௛
ூ , 𝑏

௢
ூ ,𝑊
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ி , 𝑏

௢
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௢
ு ,𝑊

௛
ு௑, 𝑏

௛
ு, 𝑏

௢
ு]. Note that (1) is continous time, while (2) and (3)

are discrete time equations. Calculating (1) requires a solution of the differential equa-

tion. This is done by using the 4-stage Runge-Kutta algorithm [10]. Incorporating the

RK algorithm leads to
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with the time step length ℎ. The input 𝑢௞ is assumed to be constant during one time

interval. The RKNN is trained using fmincon from theMATLAB optimization toolboxwith

the SQP algorithm. The cost function for training is

argmin
஀ெ

ቌቌ

௞

෍

௝ୀ௞ିேଷାmax(ேଵ,ேଶ)

(𝑦௝ − 𝑦̂௝)
ଶቍ + 𝜆ଵ ⋅ Θ

ଶ
ெቍ (5)

using (2), (3) and (4) for calculating 𝑦̂௞. The regularisation parameter is 𝜆ଵ. The num-

ber of time steps used for training the model is𝑁ଷ ∈ ℕା with𝑁ଷ ≫ 𝑁ଵ and𝑁ଷ ≫ 𝑁ଶ.

4 MLP Controller

In [12], a chaotic Lur’e Problem is solved using a similar concept. Based on that work,

a MLP is chosen feed forward control network 𝑐(⋅) and is defined by
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𝑢௞ = 𝑐(⋅) = 𝑊௢
஼ 𝜎(𝑊

௛
஼ௌ𝑠̃௞ + 𝑏௛஼) + 𝑏௢஼ (6)

with the partial reference trajectory 𝑠̃௞ = [𝑟௞, 𝑟௞ାଵ, ..., 𝑟௞ାேସ]with an arbitrary num-

ber of future time steps𝑁ସ ∈ ℕା. For a compact notation, all weights and bias terms of

network 𝑐(⋅) are summarized in Θ஼ = [𝑊௢
஼ ,𝑊

௛
஼ௌ, 𝑏

௛
஼ , 𝑏

௢
஼]. The optimization is also done

by theMATLAB optimization toolbox, with the cost function

argmin
஀஼

ቌቌ

௞ାேହିேସ

෍

௝ୀ௞

(𝑟௝ − 𝑦̂௝)
ଶቍ + 𝜆ଶ ⋅ Θ

ଶ
஼ + ቌ𝜆ଷ ⋅

௞ାேହିଵିேସ

෍

௝ୀ௞

(𝑢௝ାଵ − 𝑢௝)
ଶቍቍ (7)

and the weighting factors 𝜆ଶ and 𝜆ଷ. The simulated output 𝑦̂௞ is calculated using

(2), (3) and (4). The input 𝑢௞ for the RKNN is calculated with (6). The number of time

steps used for training the controller is 𝑁ହ ∈ ℕା with 𝑁ହ ≫ 𝑁ସ.

5 Simulation Model

The presented algorithm is tested with a closed loop nonlinear model of a single robot

joint. Due to the longest lever, axis 2 of a KUKA Quantec Ultra SE is chosen. The com-

pletemodel is presented in [6] and this paper will cover a summary only. The open loop

robot joint model is a two-mass-oscillator including nonlinear stiffness and nonlinear

friction. Fig. 2 shows the model with the physical relations described in Tab. 1. The real

robot is pictured in Fig. 3.

𝐽ெ

̂𝐽஺

𝑐̂ீ

𝜏௅

𝜑஺

𝜑ெ 𝜏ெ

𝑢ீ 𝑅̂ீ

Fig. 2.Model of the robot joint as two-mass-oscillator Fig. 3. KUKA Quantec Ultra SE

Themotor torque serves as actuating variable and generates an acceleration of the

motor inertia which rotates the gearbox. The gearbox, acting as a nonlinear spring,

encounters the motor torque, overcomes the gearbox friction and accelerates the arm

inertia. Using the model in Fig. 2, the nonlinear model can be obtained by calculating

the sum of torques around motor and arm inertia with the friction torque 𝜏̂ி and the

elastic spring torque 𝜏̂ா.

𝐽ெ ⋅ 𝜑̈ெ = 𝜏ெ −
𝜏̂ா

𝑢ீ
(8)

𝐽஺ ⋅ 𝜑̈஺ = −𝜏௅ − 𝜏̂ி + 𝜏̂ா (9)
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Table 1. Robot model variables and parameters

description type symbol value unit

motor torque state variable 𝜏ெ Nm

motor angle state variable 𝜑ெ rad

motor speed state and output variable 𝜑̇ெ rad/s

arm angle state and output variable 𝜑஺ rad

arm speed state variable 𝜑̇஺ rad/s

load torque distortion variable 𝜏௅ Nm

modified reference arm angle input variable 𝜑௎ rad

reference arm angle guiding variable 𝜑ோ rad

motor inertia parameter 𝐽ெ 0.0145 kgm2

arm inertia parameter 𝐽஺ 1092 kgm2

gearbox ratio parameter 𝑢ீ 203.52 −

backlash angle parameter 𝜙஻ 0.15 ⋅ 10ିଷ rad

lost-motion angle parameter 𝜙௅ெ 0.29 ⋅ 10ିଷ rad

offset torque parameter 𝜏ா,଴ 210 Nm

lost-motion stiffness parameter 𝑐௅ெ 1.44 ⋅ 10଺ Nm/rad

linear stiffness parameter 𝑐ீ 8.94 ⋅ 10଺ Nm/rad

coulomb friction parameter 𝜏஼,଴ 500 Nm

viscous friction parameter 𝑅ீ 764 Nms/rad

proportional speed gain parameter 𝑃ଵ 2 Nms/rad

integral speed gain parameter 𝐼ଵ 16 Nms2/rad

proportional position gain parameter 𝑃ଶ 8192 1/s

Motor friction as well as all electro-mechanical effects are neglected. Since the

KUKA Quantec has a hydraulic counterweight acting on axis 2, both counterweight and

gravity effects are neglected in this work. Temperature effects that have an influence

on the friction are neglected, too, and require further research.

The stiffness is modelled with backlash, lost-motion, and linear elasticity. Lost-motion

describes an effect in between backlash and linear elasticity, where not all tooth flanks

are yet in full contact. During backlash 𝜏ா equals 0. In the lost-motion range, the stiff-

ness is modelled linear with a lower slope and an offset. In the full-contact range, the

stiffness is modelled as a linear function with an offset. The stiffness coefficients are

defined as 𝑐௅ெ and 𝑐ீ, for lost-motion and full-contact respectively. We further define

the angular ranges 𝜙஻ and 𝜙௅ெ, for backlash and lost-motion respectively. With the

torsion angle

Δ𝜑 = 𝜑ெ/𝑢ீ − 𝜑஺ (10)

the following condition is defined.
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𝜏̂ா =

⎧
⎪

⎨
⎪
⎩

0 for |Δ𝜑| ≤ 𝜙஻

𝑐௅ெ Δ𝜑 − 𝑐௅ெ
𝜙஻

2
sign(Δ𝜑) for 𝜙஻ < |Δ𝜑| ≤ 𝜙௅ெ

𝑐ீ Δ𝜑 + 𝜏ா,଴ sign(Δ𝜑) for 𝜙௅ெ < |Δ𝜑|

(11)

The gearbox friction is modelled as coulomb and viscous friction. According to [2],

[13], and [14] the Stribeck effect can be neglected. With the linear friction constant 𝑅ீ
and the coulomb friction torque 𝜏஼,଴ the friction conditions for the model are defined.

𝜏̂ி = ቊ
0 for 𝜑̇஺ = 0

𝑅ீ 𝜑̇஺ + 𝜏஼,଴ sign(𝜑̇஺) otherwise
(12)

In order to augment the open loop model of the axis to a closed loop model, a feed

back controller is introduced. This cascade controller is configured as P-PI-controller

𝜏ெ = ቆ𝑃ଵ +
𝐼ଵ

𝑠
ቇ ⋅ (𝑃ଶ ⋅ (−𝜑஺ + 𝜑ோ) − 𝜑̇ெ) . (13)

with the Laplace transform variable 𝑠 and the control parameters 𝑃ଵ, 𝐼ଵ and 𝑃ଶ. The

controller uses both, the measured arm angle 𝜑஺ obtained by the SE and the motor

speed 𝜑̇ெ. The modified arm reference angle 𝜑ோ is the input whereas the measured

arm angle 𝜑஺ is the output of the closed loop system.

6 Simulations Results

The main result of this paper is presented in Fig. 6. The simulation is divided into three

subsections. First, from 0 to 1 𝑠, the input-output relation of the system is only mea-

sured and the unmodified reference is used as input. Then, a RKNN is trained for 500

iterations. Using the RKNN, a controller network is trained for 100 iterations. Finally,

from 1.5 to 2.5 seconds, the controller network is used online.

The training result of the RKNN is shown in Fig. 6.With aMaximum-Error of 0.016 °,

the RKNN achieves 96% accuracy with respect to the angle amplitude of 0.52 °. Un-

like other training algorithms, the data set is not split into a training and validation set.

This is for simplicity only. A second data set for validation would require the effort of

measuring a second, physical trajectory. However, a validation data set implies the ad-

vantages of a better evaluation of the trained network. Since the training data set of

the RKNN needs to cover the complete system dynamics, a rather long data set is cho-

sen. To shorten calculation time, the number of time steps in the training data set are

reduced by an interpolation. Therefore, the step length for training can be unequal to

the step length of data logging. The training of the control network is done on both,

random created trajectories and the unmodified reference trajectory. Using different

trajectories improves the generality of the controller network.
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Fig. 4. Training and test of proposed algorithm
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7 Conclusion

All in all, the proposed algorithm achieves a Root-Mean-Square-Error between the ref-

erence and actual arm angle of 0.0026 ° and a Maximum-Error of 0.012 °. With re-

spect to the Maximum-Error without this algorithm of 0.121 °, this is an improvement

of 90%. The simulation results prove that it is possible to define the robot joint as a

black-box and to optimize it with the help of RKKN without physical model knowledge.

The algorithm achieves to overcome the challenges of backlash, lost-motion and non-

linear stiffness in simulation.

Further research is required how stability constrains can be incorporated. Only with

this advancement, the network controller could bedesigned as feedback controller and

an open loopmodel could be applied. As a starting point, the NLq Theory [15] presents

a unified framework for neural adaptive control with global asymptotic stability cri-

teria. Furthermore, the continuous online update of both, the model and the control

network, need further research. Finally, the algorithm needs to be implemented and

tested on the real robot.
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