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Abstract. Nowadays, obtaining high-quality magnetic resonance (MR)
images is a complex problem due to several acquisition factors, but is
crucial in order to perform good diagnostics. The enhancement of the res-
olution is a typical procedure applied after the image generation. State-
of-the-art works gather a large variety of methods for super-resolution
(SR), among which deep learning has become very popular during the
last years. Most of the SR deep-learning methods are based on the min-
imization of the residuals by the use of Euclidean loss layers. In this
paper, we propose an SR model based on the use of a p-norm loss layer
to improve the learning process and obtain a better high-resolution (HR)
image. This method was implemented using a three-dimensional convo-
lutional neural network (CNN), and tested for several norms in order to
determine the most robust fit. The proposed methodology was trained
and tested with sets of MR structural T1-weighted images and showed
better outcomes quantitatively, in terms of Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM), and the restored and
the calculated residual images showed better CNN outputs.

Keywords: Super resolution · magnetic resonance images · convolu-
tional neural networks.

1 Introduction

Obtaining high quality, high resolution images is critical for medical diagnosis,
due to the impact of the subsequent clinical decisions. Even though acquisition
techniques for MR imaging are continuously being improved, resolution is always
limited by a variety of factors. This calls for the application of post-processing
algorithms to optimize image quality. Resolution enhancement is of particular
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interest, and the improvement of super-resolution (SR) algorithms is also a sub-
ject of constant interest. Many different approaches have been applied to obtain
resolution-enhanced images in the recent years, and, among them, deep learning
has been gaining increasing popularity. Most of these methods are based on the
minimization of the residuals using Euclidean loss layers.

In recent times, the use of p-norm methods in optimization algorithms has
drawn attention for various applications. They have been used for machine learn-
ing binary classifiers [5, 4], and in the framework of optimal control [2]. Due to
the properties of the p-norm when dealing with with sparse vectors and matrices
[3, 8, 14, 1], it has also been applied for feature selection [13].

One of the advantages of using a p-norm, with p < 2, is that it can allow
reducing the effect of outliers in a minimization problem. Noise and artifacts in
the images of the training set for MR superresolution are outliers that have to
be avoided so that a SR algorithm provides realistic high quality solutions. In
this work, the p-norm with p < 2 is proposed as the loss function for neural
layers of super resolution convolutional neural networks, and the most suitable
values of p are studied.

The rest of paper is organized as follows: Section 2 contains the theoretical
background of our model. Then, in Section 3 the experiments carried out and the
outcomes are described. Finally, the conclusions and future works are presented
in Section 4.

2 The model

In this section we present the learning rule for neural layers with p-norm loss
function. The rationale behind our proposal is that the classic quadratic loss
function, which corresponds to p = 2, may be outperformed by loss functions
based on the p-th power of the absolute value of the error. For p < 2, this
increases the robustness of the learning rule against outliers, i.e. training samples
with extremely large values of the error.

The p-norm of a D-dimensional vector v ∈ RD is defined as:

‖v‖p =

D∑
j=1

|vj |p (1)

For deep learning neural networks, the standard loss function is the square of
the Euclidean (2-norm) of the difference between the desired output vector and
the output vector obtained from the network, averaged for all available training
samples. While this choice yields excellent results for many applications, there
is room for improvement, since the exponent p in (1) determines the importance
that the loss function gives to those training samples which have components
with higher absolute values |vj |. The higher p, the more importance that is given
to extreme values of |vj |. It must be considered that maybe those extreme values
of |vj | correspond to badly measured training samples, or irrelevant observations.
Therefore, a loss function which does not get too influenced by those extreme
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errors might obtain better values than the 2-norm. The most promising values
of p are those for which the p-norm fulfils the mathematical definition of norm,
i.e. 1 ≤ p ≤ 2.

Given the above considerations, we propose to employ neural layers with a
p-norm loss function. The loss function is defined as follows, for N samples of
dimension D:

E =

N∑
i=1

D∑
j=1

|yij − zij |p (2)

where yij is the j-th component of the i-th obtained output vector from the
network and zij is the desired output.

The derivative of the loss function with respect to a synaptic weight w is:

∂E

∂w
=

N∑
i=1

D∑
j=1

p |yij − zij |p−1
sign (yij − zij)

∂yij
∂w

(3)

where the sign function is defined as follows:

sign (x) =

{
−1 if x < 0

1 if x ≥ 0
(4)

Stochastic gradient methods can be applied to the gradient of the loss func-
tion (3), in order to train a p-norm neural layer within a deep neural network.

3 Experimental results

This section describes the experiments we carried on. First, Subsection 3.2 ex-
plains the low-resolution image generation, as well as the software and hard-
ware employed, and the selected performance metrics for comparison between
p-norms. The input datasets are described in Subsection 3.1. Finally, we report
the findings of the experiments in Subsection 3.3.

3.1 Datasets

Six different T1-weighted MR images are considered for the evaluation of the
p-norms:

– 2 images of the Kirby 21 (images 10 and 11) [7]. These data were acquired
using a 3-T MR scanner with a 1.0× 1.0× 1.2mm3 voxel resolution over an
field-of-view (FOV) of 240× 204× 256mm acquired in the sagittal plane.

– 2 images of the OASIS dataset (images 1 and 2 of the cross-sectional data)
[9] . Data were acquired on a 1.5-T Vision scanner with a 1.0×1.0×1.25mm3

voxel resolution over an FOV of 256× 256mm.
– 1 image of the IBSR public dataset [12]. It is named IBSR 07, it has image

size 256× 256× 128, with 1.5× 1.0× 1.0mm3 voxel resolution.
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– 1 T1-weighted image from CIMES3 using a 3-T MR scanner with a 0.93 ×
0.93× 1.0mm3 voxel resolution over an FOV of 256× 256mm.

3.2 Methods

The deep network used to evaluate our proposal was the SRCNN3D method [10],
which is a super-resolution convolutional neural network for three-dimensional
MR images. The convolutional network have been developed using Caffe package
[6] on a Python framework. One of the motivations of selecting this network is
its simplicity to understand and modify the source code to create our customized
p-norm loss layer.

Given an image Y and its respective LR one X, this CNN is based on the
application of three blocks of convolutional Rectified Linear Unit (ReLU) layers
successively, to a pre-interpolated image Z = I(X). This step is internal to the
method. Thus, the net computes a super-resoluted HR image by the minimiza-
tion of the Euclidean loss between the output of the CNN, s(Z), and the original
HR image Y.

f = argmins

∑
||Y − s(Z)||2 (5)

This network is trained using overlapping patches that are extracted from
a set of HR reference images. A down-sampling and up-sampling is applied to
each patch and a set of pairs input-target is created in order to learn an end-
to-end function between low and high resolution images. Specific details of the
implementation of this network can be found in the literature.

We carried out a training over 50000 iterations for each p-norm, using mo-
mentum of 0.9, learning rate of 0.0001 and batch size of 256. Stochastic Gradient
Descent (SGD) was used for model optimization (all are default parameters). Im-
ages 33-42 from Kirby dataset were used for training. Furthermore, zoom factors
2 and 3 were employed in our analysis. Fig. 1 shows the training loss curves for
each value of p. We used a fixed number of iterations for every training to make
a fair comparison, and the selected number of iterations assess the convergence
of all the trainings. We have also tested 1 ≤ p < 1.5 but no convergence was
achieved. The comparison experiments have been carried out on a 64-bit Per-
sonal Computer with an six-core Intel i7 3.50GHz CPU, 64 GB RAM, with a
GPU Nvidia GTX Titan.

On the other hand, LR images were created applying the following algorithm
to the HR images:

1. Crop HR image dimensions to make divisible by the scale factor.
2. Apply a 3D Gaussian filter with standard deviation equal to 1.
3. Use an bi-cubic interpolation method to generate LR image

In this work, Matlab fuctions were used with default parameters.
Three quality measures were used to evaluate the proposed method:

3 https://fguma.es/unidad-imagen-molecular/
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Fig. 1. Training loss for the p-norms (p ∈ {1.5, 1.6, 1.75, 1.9, 2}) during 50000 itera-
tions, smoothed using a sliding window of 50.

– Peak Signal-to-Noise Ratio (PSNR), measured in (decibels) dB, and the
more high value, the better is the likeness.

PSNR = 10 log10

(
peakval2

MSE

)
(6)

where peakval is maximum possible value of the image and MSE refers to
the Mean Squared Error.

– Structural Similarity index (SSIM) [11], which focuses on structural similar-
ities between images, returning a value between 0 and 1 (higher is better):

SSIM(x, y) =
(2µxµy)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(7)

where µxand µy are the mean value of images x and y, σx and σy are the
standard deviation of images x and y, σxy is the covariance of x and y,
c1 = (k1L)2 and c2 = (k2L)2 (default values were used: L = 1 is the dynamic
range, k1 = 0.01 and k2 = 0.03).

Besides, we used residual images to analyze the results from a qualitative
point of view:

residual = h− s (8)

where h represents the original HR image and s the output of the CNN. The best
performance is such that the residual image is the zero matrix. As it is difficult
to distinguish dark values, we subtracted the constant 0.5 to the residual images
in order to see the performance differences. Thus, the residual images appear in
gray.

3.3 Results

First, we evaluate each convolutional neural network from a quantitative point of
view. Performance results in terms of PSNR and SSIM for each image applying
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Fig. 2. Comparison of the PSNR and SSIM for the p-norms (p ∈ {1.5, 1.6, 1.75, 1.9, 2})
and the six tested images, using a scale factor equal to 2.

a zoom factor of 2, are depicted in Fig. 2. Each color bar represents one value of
p. The higher is the bar, the better is the network. In both metrics, for five of the
six tested images the “winner” is the 1.9-norm. If we focus on the difference with
respect to the euclidean norm, there are great improvements for MPRAGE11
and CIMES images. p = 1.5 also shows good performance in PSNR compared to
p = 2, so it is shown that it is not always the best and we can get better results
with a different minimization. However, there are irregularities for p = 1.6 and
p = 1.75, as for some images performs better but for others worse. This analysis
can be extrapolated to the SSIM metric too, where the differences between nets
are smaller but similar.

Fig. 3 shows the results for zoom factor 3. In general, the performance is
worse because we are trying to infer more information from the LR image, and
and difference between images is greater. Here again the pattern is the same. The
networks based on the 1.5-norm and the 1.9-norm carried out a better prediction
of most of the images, being p = 1.9 the best one in both PSNR and SSIM.

The general behaviour of each neural network across all images is summa-
rized in Fig. 4. We computed a ranking sorting each p-norm according to its
performance with respect each image and we assigned points from 1 to 5. The
less punctuation the better is the network. For scale 2, shown in Fig. 4a, the best
method is that one based on the 1.9-norm loss layer. The performance of p = 1.6
in terms of both PSNR and SSIM is clearly the worst, followed by the 2-norm,
specially in PSNR. For the similarity metric there are not great differences be-
tween 2, 1.5 and 1.75. Rank of zoom 3 is depicted in Fig. 4b. Here the differences
with respect to zoom 2 go in favour of p = 2, which is situated in the second
place of our SSIM rank. Nevertheless, p = 1.9 is still the best method, followed
closely by p = 1.5 in PSNR.
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Fig. 3. Comparison of the PSNR and SSIM for the p-norms (p ∈ {1.5, 1.6, 1.75, 1.9, 2})
and the six tested images, using a scale factor equal to 3.
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(a) Zoom 2
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Fig. 4. Rank of the PSNR and SSIM for the p-norms for scale factors 2 and 3, taking
into account all the images.

On the other hand, we compare the output of the networks from a qualitative
point of view in Fig. 5 and 6. Residual images are also displayed to have a better
discrimination between methods.

Firstly, in Fig. 5 is shown a three-dimensional perspective of the CNN’s out-
come of image 11 of the Kirby dataset. The differences can be seen on the third
row, where the intensity of gray varies from one p-norm to other. The darkest
images are the ones corresponding to p = 1.6 and p = 2, which indicates that
the difference between the output of the net and the ground truth is greater.
On the other hand, the image where less structures are removed, that is, the
most gray uniform one, corresponds to p = 1.9. This results matches with the
previous quantitative analysis, where its values of PSNR and SSIM are the best.

An axial section of the image 1 of the OASIS dataset is compared in Fig. 6.
In this case, a zoom factor of 3 is used. The main differences can be seen in
the borders of the lateral ventricle (the uniform centered region). The output
with less dark border is the one produced using p = 1.9, followed by p = 2
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(a) Original HR
image

(b) LR image

(c) p = 1.5 (d) p = 1.6 (e) p = 1.75 (f) p = 1.9 (g) p = 2

(h) p = 1.5 (i) p = 1.6 (j) p = 1.75 (k) p = 1.9 (l) p = 2

Fig. 5. Qualitative results for MPRAGE11 image for each p-norm, applied with zoom
factor 2. Second row shows the reconstructed image by each algorithm and third row
shows residual images between the reconstructed and the original HR image.

and p = 1.5.This can indicates that the structural surcus of the cerebrum are
restored in a proper way. Moreover, some dark spots are conserved better since
they appear clearer in the residual image of our proposed method, which is
fundamental to not carry on a bad diagnostic.

4 Conclusion

This work presents a robust three-dimensional super-resolution method for mag-
netic resonance images. It is based on the use of a p-norm loss layer instead of
the usual Euclidean formulation. High-resolution images are obtained by learn-
ing a map between an interpolated low-resolution image and the ground truth,
where the optimization function is defined as the p-norm to reduce the overall
error in the training. T1 structural images from different origins were used to
evaluate the efficiency of each variant of the network, achieving better perfor-
mance. Results show that the Euclidean loss layer is not always the best norm,
since PSNR and SSIM have increased for most images and zoom factors. Quali-
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(a) Original HR
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Fig. 6. Qualitative results for a section of the axial view of the OASIS1 image for
each p-norm, applied with zoom factor 3. Second row shows the reconstructed image
by each algorithm and third row shows residual images between the reconstructed and
the original HR image.

tatively, restored images look more refined and with less structural degradation.
The proposed approach could be extended to another neural networks in order
to improve the quality of the outputs.
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