Skip to main content

Graph Grammar Models in Syntactic Pattern Recognition

  • Conference paper
  • First Online:
Book cover Progress in Computer Recognition Systems (CORES 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 977))

Included in the following conference series:

Abstract

The families of graph grammars used in syntactic pattern recognition are characterized in the paper. The reasons for the intractability of the problem of graph language parsing are presented. The methodological principles for the constructing of efficient syntax analysis schemes for graph-based syntactic pattern recognition are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  2. Bunke H (1982) Attributed programmed graph grammars and their application to schematic diagram interpretation. IEEE Trans Pattern Anal Mach Intell 4:574–582

    Article  Google Scholar 

  3. Bunke H, Haller B (1990) A Parser for context free plex grammars. In: Lecture Notes in Computer Science, vol 411. Springer, Heidelberg, pp 136–150

    Chapter  Google Scholar 

  4. Bunke H, Sanfeliu A (eds) (1990) Syntactic and structural pattern recognition - theory and applications. World Scientific, Singapore

    MATH  Google Scholar 

  5. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  6. Earley J (1970) An efficient context-free parsing algorithm. Commun. ACM 13:94–102

    Article  Google Scholar 

  7. Flasiński M (1988) Parsing of edNLC-graph grammars for scene analysis. Pattern Recogn 21:623–629

    Article  MathSciNet  Google Scholar 

  8. Flasiński M (1990) Distorted pattern analysis with the help of nodel label controlled graph languages. Pattern Recogn 23:765–774

    Article  Google Scholar 

  9. Flasiński M (1993) On the parsing of deterministic graph languages for syntactic pattern recognition. Pattern Recogn 26:1–16

    Article  MathSciNet  Google Scholar 

  10. Flasiński M (1995) Use of graph grammars for the description of mechanical parts. Comput-Aided Des 27:403–433

    Article  Google Scholar 

  11. Flasiński M (1998) Power properties of NLC graph grammars with a polynomial membership problem. Theor Comput Sci 201:189–231

    Article  MathSciNet  Google Scholar 

  12. Flasiński M (2007) Inference of parsable graph grammars for syntactic pattern recognition. Fundam Inf 80:379–413

    MathSciNet  MATH  Google Scholar 

  13. Flasiński M (2016) Chapter 1: syntactic pattern recognition: paradigm issues and open problems. In: Chen, C.H. (ed.) Handbook of pattern recognition and computer vision, 5th edn. World Scientific, New Jersey/London/Singapore, pp 3–25

    Google Scholar 

  14. Flasiński M (2016) Introduction to artificial intelligence. Springer, Switzerland

    Book  Google Scholar 

  15. Flasiński M (2019) Syntactic pattern recognition. World Scientific, New Jersey/London/Singapore

    Book  Google Scholar 

  16. Flasiński M, Kotulski L (1992) On the use of graph grammars for the control of a distributed software allocation. Comput J 35:A165–A175

    Google Scholar 

  17. Flasiński M, Myśliński S (2010) On the use of graph parsing for recognition of isolated hand postures of Polish sign language. Pattern Recogn 43:2249–2264

    Article  Google Scholar 

  18. Feder J (1971) Plex languages. Inf Sci 3:225–241

    Article  MathSciNet  Google Scholar 

  19. Fu KS (1982) Syntactic pattern recognition and applications. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  20. Gonzales RC, Thomason MG (1978) Syntactic pattern recognition: an introduction. Addison-Wesley, Reading

    MATH  Google Scholar 

  21. Han F, Zhu SC (2009) Bottom-up/top-down image parsing with attribute grammar. IEEE Trans Pattern Anal Mach Intell 31:59–73

    Article  Google Scholar 

  22. Janssens D, Rozenberg G (1980) On the structure of node-label-controlled graph languages. Inf Sci 20:191–216

    Article  MathSciNet  Google Scholar 

  23. Knuth DE (1965) On the translation of languages from left to right. Inf Control 8:607–639

    Article  MathSciNet  Google Scholar 

  24. Kulikowski JL (1971) Algebraic methods in pattern recognition. Springer, Wien

    Book  Google Scholar 

  25. Lewis PM II, Stearns RE (1968) Syntax-directed transduction. J ACM 15:465–488

    Article  Google Scholar 

  26. Lin L, Wu T, Porway R, Xu Z (2009) A stochastic graph grammar for compositional object representation and recognition. Pattern Recogn 42:1297–1307

    Article  Google Scholar 

  27. Liu X, Zhao Y, Zhu SC (2018) Single-view 3D scene reconstruction and parsing by attribute grammar. IEEE Trans Pattern Anal Mach Intell 40:710–725

    Article  Google Scholar 

  28. Park S, Nie BX, Zhu SC (2018) Attribute And-Or grammar for joint parsing of human attributes, parts and poses. IEEE Trans Pattern Anal Mach Intell 40:1555–1569

    Article  Google Scholar 

  29. Pavlidis T (1977) Structural pattern recognition. Springer, New York

    Book  Google Scholar 

  30. Pei M, Si Z, Yao BZ, Zhu SC (2013) Learning and parsing video events with goal and intent prediction. Comput Vis Image Underst 117:1369–1383

    Article  Google Scholar 

  31. Peng KJ, Yamamoto T, Aoki Y (1990) A new parsing scheme for plex grammars. Pattern Recogn 23:393–402

    Article  Google Scholar 

  32. Rosenkrantz DJ, Stearns RE (1970) Properties of deterministic top-down grammars. Inf Control 17:226–256

    Article  MathSciNet  Google Scholar 

  33. Sanfeliu A, Fu KS (1983) Tree-Graph Grammars for Pattern Recognition. In: Lecture Notes in Computer Science, vol 153. Springer, Heidelberg, pp 349–368

    Google Scholar 

  34. Shi QY, Fu KS (1983) Parsing and translation of attributed expansive graph languages for scene analysis. IEEE Trans Pattern Anal Mach Intell 5:472–485

    Article  Google Scholar 

  35. Zarchi MS, Tan RT, Van Gemeren C, Monadjemi A, Veltkamp RC (2016) Understanding image concepts using ISTOP model. Pattern Recogn 53:174–183

    Article  Google Scholar 

  36. Zhu SC, Mumford D (2006) A stochastic grammar of images. Found Trends Comput Graph Vis 2:259–362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Flasiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Flasiński, M. (2020). Graph Grammar Models in Syntactic Pattern Recognition. In: Burduk, R., Kurzynski, M., Wozniak, M. (eds) Progress in Computer Recognition Systems. CORES 2019. Advances in Intelligent Systems and Computing, vol 977. Springer, Cham. https://doi.org/10.1007/978-3-030-19738-4_1

Download citation

Publish with us

Policies and ethics