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Road Tracking Using Deep Reinforcement
Learning for Self-Driving Car Applications ?
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Abstract. Deep reinforcement learning has received wide attentions re-
cently. It combines deep learning with reinforcement learning and shows
to be able to solve unprecedented challenging tasks. This paper proposes
an efficient approach based on deep reinforcement learning to tackle the
road tracking problem arisen from self-driving car applications. We pro-
pose a new neural network which collects input states from forward car
facing views and produces suitable road tracking actions. The actions
are derived from encoding the tracking directions and movements. We
perform extensive experiments and demonstrate the efficacy of our ap-
proach. In particular, our approach has achieved 93.94% driving accu-
racy, outperforming the state-of-the-art approaches in literature.
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1 Introduction

Road tracking is one of the most challenging tasks emerged from key applications
such as autonomous driving. It aims to automatically guide a car through the
correct track without crashing other cars or objects. Reinforcement learning
(RL), in a nutshell, is concerned with an agent interacting with the environment,
learning an optimal policy, by trial and error, for sequential decision making
problems. The combination of deep neural networks and reinforcement learning
gives rise to deep reinforcement learning (deep RL, DRL). We hypothesise that
DRL can be one of the most promising methods to address the road tracking
challenge, and this paper reports our approaches and results to apply DRL to
accomplish some typical tasks in road tracking.

One of the primary tasks in road tracking is to track objects, e.g., walk-
ing people, buildings, cars, etc [1–4]. Other tracking tasks include tracking and
controlling velocity [5], tracking periodic gene repressilator [6], tracking single
and double pendulum [7], and tracking maximum powers for wind speed conver-
sion systems [8]. Applying DRL techniques to road tracking has been reported,
but has not been explored thoroughly. For instance, Perot et al. [9] investigated

? T. Chen is supported by EPSRC grant (EP/P00430X/1), ARC Discovery Project
(DP160101652, DP180100691), and NSFC grant (No. 61662035). R. Al-Nima and
T. Han are supported by EPSRC grant (EP/P015387/1).



tracking roads of a driving car where DRL was used. The main problem thereof
is that the driving car oscillates around the main road track. This is due to
the selected reward in the study, where it utilised the oriented angle of the road
with the car speed. More generally, Yun et al. [10, 11] proposed an action-decision
network (ADNet) to track objects (not necessarily for road tracking purposes),
where a pre-trained Convolutional Neural Network (CNN) was firstly employed
followed by the reinforcement learning.

Our work contributes to this area by suggesting an effective road tracking
procedure based on the deep reinforcement learning and by employing notions
from Markov Decision Processes, where states are used as inputs; rewards are
utilised to evaluate the tracking policy and actions are predicted to provide new
states. Effective coding for various road tracking possibilities of actions has been
considered such as turning to the left or right and recognising crossing object(s).
The established codes have been used as regression information in the proposed
DRL to train the neural network and maintain the actions.

Related work. Due to space restriction, we can only discuss related work briefly,
focusing on those pertinent to applying reinforcement learning for tracking ob-
jects purpose. For tracking objects, Grigore and Grigore [1] proposed a tracking
system controller by using a recurrent neural network combined with the rein-
forcement learning. Cohen and Pavlovic [2] suggested an effective and vigorous
real-time tracker, which utilised reinforcement learning and was applied to track-
ing personal faces. Liu and Su proposed an object tracking method to determine
the features of the tracking object [3]. Supančič and Ramanan constructed a
learning policy for tracking objects. The reinforcement learning was applied to
video streams to provide on-line decision [4].

2 Modelling

In this section, we address various essential issues to model the road tracking,
such as how to identify road crossing object(s), how to encode different track-
ing directions, and how to design the deep reinforcement learning network to
determine the next action, etc.

The database. Our research is based on the SYNTHIA-SEQS-05 database [12].
Video sequences were recorded and saved, from which one extracted front, rear,
left and right view road images around the car for both right and left steering
cars. Each view covers a range of angle up to 100 degrees. As a result, a large
number of simulated image frames were provided, each has a resolution of 760×
1, 280 × 3 pixel.

The images were taken in four different environments: (1) clear environment
in spring, (2) fog, (3) rain and (4) heavy-rain environment. Examples from the
four databases are given in Table 1. In our study, we look at forward view road
frames for a right steering car in all four environments.
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Table 1: Examples of the four employed environments

2.1 Road tracking

To differentiate the main objects on the road, the databases provide specific
colours for certain objects in the images, e.g., sky is grey, buildings are brown,
roads are purple, side walks are blue and road markings are green. Overall, the
purple and green colours refer to the allowed driving regions.

Based on the images, we further divide each view (image) into a safety zone
and a danger zone. If objects are spotted in the safety zone the car can keep
moving, as the zone is further away, allowing ample time to stop or slow down
if necessary. The danger zone is the area that a car must stop if any objects are
recognised. Such zones can be found in Fig. 1.
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Fig. 1: The suggested front view road tracking
zones, lines and anchor point

To determine a safety zone
or a danger zone, a virtual
triangle and trapezoid are
drawn. The base of the tri-
angle and trapezoid moves in
the road direction, and the
crossing lines slope toward
the tracking direction. The
height of the triangle (and the
trapezoid) is two thirds of the

image. The top one third of the trapezoid is the safety zone and the bottom two
thirds is the danger zone. The shared point of the triangle and the trapezoid is
called an anchor point. It denotes the road tracking direction by following the
track centre.



By drawing the virtual triangle in the trapezoid area we can divide the region
into left, right and centre region, with which the direction of any crossing objects
can be specified. The car can, for instance, avoid an object crossing from the left
side by moving to the right, if the space is empty there. If objects are identified
from both sides in the danger zone, then the car has to stop.

2.2 Actions codes

At each decision point, a car can take one of the following actions: straight on,
turn left or right, reverse and stop. In our work, we use a 5-digit binary number
to encode each action, see Table 2.

Action sign
Binary
code

Equivalent
decimal code

Description

Straightforward 01110 14 follow the straight track

Turn left 11100 28 follow the track to the left

Turn right 00111 7 follow the track to the right

Stop 00000 0 object(s) identified from both sides

Backwards 11111 -31 reverse

Table 2: The road tracking actions with their suggested codes and descriptions

When a crossing object is detected, it will change the code from that side
with a “0”. For instance, a car is moving forward with action 01110, then an
object appears in the danger zone from left, the action code becomes 00111,
indicating that the car should turn right to avoid the object. If another object
appears from the right, the code will be 00110 and the car will have to stop.
A car has to stop as long as there are no three consecutive 1’s. We model all
such cases as 00000 to reduce the number of coding values. Fig. 2 shows various
coding cases. The cases in the red dashed box are all coded as 00000.

The binary codes can be converted to desired equivalent decimal codes in the
standard way. The only exception is the backward direction, where a negative
sign (-) is added to refer to the reverse movement. The reverse action will only
be considered if the car is out of the track. The decimal codes are used in the
regression layer of the proposed network as will be explained later.

2.3 Proposed DRL-RT

In this section, we present the neural network (NN) used in the Deep Reinforce-
ment Learning framework for Road Tracking (DRL-RT), which consists of eight
layers: two convolution layers, two Rectified Linear Unit (ReLU) layers, a pool-
ing layer, a fully connected layer, a regression layer and a classification layer.
Theoretical explanations of the main deep NN layers can be found in [13]. Fig. 3
depicts the proposed DRL-RT network.

We now elaborate the NN architecture as follows: (a)The input of the NN
is an image of a car facing view which is considered as the current state. The
dimension of the input image is reduced to 254 × 427 × 3 pixels to speed up
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Fig. 2: Segmented images for road tracking: (a) straightforward, (b) turning left, (c) turning right,
(d) reverse or backward, (e-g) stopping action because of a single crossing object, (h-j) stopping
action because of two crossing objects and (k) stopping action because of three crossing objects
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Fig. 3: The main design of the proposed DRL-RT. It consists of two convolution layers, two ReLU
layers, a pooling layer, a fully connected layer, a regression layer and a classification layer

the training. (b) The first layer is a convolution layer which consists of 5 filters,
each of which has a filter size of 10× 10 pixels. This layer is to extract the main
features of the input image. This is followed by a ReLU layer which removes
the negative values and maintains the positive values of the previous layer. (c)
The third layer is again a convolution layer, consisting of 5 filters, each of which
has a filter size of 5 × 5 pixels. This layer extracts more features from the input
images. A ReLU layer is employed, which rectifies the negative values. We note
that it has empirically been established that using two convolution layers with
two ReLU layers can well analyse the information before being compressed by
applying the next layer. (d) A pooling layer of a maximum type is applied as the
fifth layer. The filter size here is 3 × 3 pixels with a stride of 3 pixels. (e) The
sixth layer is a fully connected layer. It collects the outputs (2 dimensional) from
the previous layer and produces a series (1 dimensional) of values for the next
layer. (f) In the seventh regression layer, a series of directional road tracking
codes are generated. The successful tracking codes in this layer produce positive
rewards, whereas, unsuccessful tracking codes generate negative rewards.

The network should propagate the information forward and backward to
update the network weights during the training stage to obtain as many positive
rewards as possible. Given the codes in the regression layer, it is the classification
layer’s task to generate a new action—one of the five as in Table 2.



For the theory underpinning the DRL-RT network, the underlying model of
the network is essentially cast into a Markov Decision Process (MDP) frame-
work with the following instantiations: (i)States. The states in the MDP are the
views (images). (ii)Rewards. The reward R takes a simple form, i.e., the correct
tracking is considered as (+1), whereas, the reward R of the incorrect tracking
is considered as (−1). The correct and incorrect tracking are specified by com-
paring the regression layer outputs with the desired tracking codes. Measuring
the successful process of the road tracking will be based on obtaining as many
positive rewards as possible. (iii)Policy search. The DRL-RT network is based on
the policy search. DRL-RT collects input images as current states St (or current
views) and gets advantages from rewards R to generate actions A. The actions
then predict new states St+1 by following the track of the road. The process will
be repeated in a multi-episodic manner.

3 Results

All implementations were performed on a PC with 8 GB RAM and Intel Core i5
processor (3.2 GHz). Only the microprocessor was used for training and testing.
The databases have 264, 284, 268 and 248 frames for spring, fog, rain and heavy-
rain environments, respectively. The following experiments were carried out:
(1) Training 2/3 of all the frames and testing the remaining 1/3 frames. The
frames are randomly selected. Consequently, the testing stage is repeated several
times after adding different types of noises to the testing frames.
(2) Training and testing each database individually. Here, the frames are equally
divided between the training and testing stages (50% each), where the odd-
indexed frames are used in the training stage and the even-indexed frames are
used in the testing stage.

3.1 Training and testing stages

Training stage. The suggested DRL-RT network has been separately trained for
each environment. The following parameters have been assigned for the trainings:
Adaptive Moment Estimation (ADAM) optimizer [14], learning rate equal to
0.0003, gradient decay factor (β1) equal to 0.9, squared gradient decay factor
(β2) equal to 0.99 and mini batch size equal to 128.

Testing stage. In the testing stage we use (driving) accuracy to measure how
well our model performs. The driving accuracy is defined as the percentage of
appropriate tracking actions by the driving car.

Group (1) Implementation: In this group, 709 out of 1064 (i.e., 2/3) frames
are randomly chosen for training and the remaining 355 (i.e., 1/3) frames are
used for testing. We then repeat the experiment by adding various types of noises
to the testing frames.

It can be seen from Table 3 that a remarkable driving accuracy of 95.49%
is achieved with no additional noises. The accuracy decreases after applying



Testing specification Parameters Driving Accuracy

No noises — 95.49%

+ Gaussian noise Mean=0.1, Var=0.001 89.86%

+ Poisson noise — 94.37%

+ Salt & Pepper noise density=0.001 94.93%

+ Salt & Pepper noise density=0.005 93.80%

+ Speckle noise Mean=0, Var=0.01 94.65%

Table 3: The driving accuracies of Group (1) Implementation

different types of noises, but is still reasonably acceptable. Gaussian noise has
the worst effect, where the driving accuracy attained 89.86% (for Mean = 0.1
and Var = 0.001). This type of noise distributes the noise over to all the pixels
of the input image, so it significantly affects the DRL-RT inputs. Nevertheless,
the driving accuracy is still high. Other types of noises (Poisson, Salt & Pepper
and Speckle) have reported high and comparable results. The driving accuracy
achieved 94.37% after adding the Poisson noise, which was generated from the
input data instead of adding artificial noise to the data [15]. By adding Salt
& Pepper noise, the accuracies obtained 94.93% and 93.80% for the densities of
0.001 and 0.005, respectively. This type of noise influences some pixels, depending
on the density. Therefore, the performance is still high after adding this noise.
Finally, the speckle method multiplies a uniform noise with the original data
and adds the noise back on [15]. We still attain a high accuracy (94.65%) in our
models.

The above experiments confirm that our proposed approach can deal with
different types of noises and produce acceptable outcomes.

Group (2) Implementation: The training performance of the DRL-RT for
the four databases is given in Fig. 4. This figure demonstrates the relationships
between the Root Mean Square Error (RMSE) and the training iterations during
the NN training stages. The RMSE values are usually exploited to demonstrate
the differences between desired values and output values. These differences are
usually reduced along with the training iterations.

The first row of Table 4 shows that the driving accuracy attained its high-
est value of 93.94% by using the spring environment database. This is because
that the DRL-RT has analysed very clear provided images. The fog environment
database obtained a high driving accuracy of 93.66%. Here, the overall views
are blurred (or in a low quality) but all the input information can still be dis-
tinguished, so the accuracy is only slightly reduced with respect to the spring
views. The driving accuracy of the rain environment database achieved 89.55%
and this is due to the noise effects of rain drops on image views. Finally, the
inferior driving accuracy of 84.68% was recorded for the heavy-rain environment
database as the amount of rain drops (or noise) is increased there.

In Group (2) experiments, we also explored the effects of adding noises to
the test cases, see Row 2-6 in Table 4. Noticeably, the results here are lower than
the experiment of the Group (1) counterparts (Table 3). This is because (i) the
number of frames in Table 4 (individual database) is smaller than that in Table 3
(all four databases); (ii) Group (1) used 2/3 of the frames for training, and Group
(2) only used 1/2. A larger and more diverse training set would usually result in



Fig. 4: The training RMSE vs #iterations for the four environments

Testing specification Parameters Spring Fog Rain H-Rain

No noises — 93.94% 93.66% 89.55% 84.68%

+ Gaussian noise Mean=0.1, Var=0.001 79.55% 65.49% 59.70% 66.94%

+ Poisson noise — 88.64% 90.14% 91.04% 83.87%

+ Salt & Pepper noise density=0.001 90.91% 91.55% 89.55% 84.68%

+ Salt & Pepper noise density=0.005 90.91% 86.62% 82.84% 84.68%

+ Speckle noise Mean=0, Var=0.01 88.64% 90.14% 92.54% 83.87%

Table 4: The driving accuracies of Group (2) Implementation

a higher accuracy. If we compare different environments in Table 4, spring has a
high or comparable value because there were already noises (fog or rain) in the
other three environments.

3.2 Comparisons

We have investigated and simulated various deep learning approaches to establish
a fair comparison between our DRL-RT method and other work. Table 5 shows
the accuracies of different deep learning networks by applying the SYNTHIA-
SEQS-05-SPRING database. (Some parameters were adapted to allow accept-
able comparisons.) The reason of selecting this database is that it has the clear
environment, which is suitable to eliminate undesired effects and ensure a fair
judgement.

The suggested CNN in [16] obtained an inferior tracking accuracy of 67.42%.
This is due to the architecture of this network, where it was constructed to
classify directions of traffic signs. More specifically, a pooling layer was applied
after each convolution layer and no ReLU layers were used. This caused com-
pressing and wasting useful extracted features after each convolution layer. The
CNN used in [17] attained a low accuracy of 74.24%. The main drawback of this
network is that it considers steering angles to be tracked, which increases the



Reference Neural networks Accuracy

Karaduman and Eren [16] CNN 67.42%

Bojarski et al. [17] CNN 74.24%

George and Routray [18] CNN 83.33%

Yun et al. [10, 11] ADNet 83.33%

Mnih et al. [19] DQN 88.64%

This work DRL-RT 93.94%

Table 5: A comparison between the DRL-RT method and other suggested networks

errors of obtaining precise outputs. The CNN used in [18] achieved 83.33%. This
is also due to the architecture of this network, which was designed for classifying
eye gaze directions. The ADNet used in [10, 11] attained the same accuracy of
83.33%. The essential problem lies in the rewards used there, which were basi-
cally designed for recognising moved objects, as the rewards are updated in the
stop action. In addition, the ADnet architecture is not entirely appropriate for
road tracking tasks.

The work which is closest to ours is the influential Deep Q-Network (DQN)
used in [19] and illustrated in [20], which achieved a reasonable accuracy of
88.64%. We believe that this is due to the introduction of DRL (i.e., the deep
network and the Q-learning). Our proposed method has shown superior per-
formance by attaining the accuracy of 93.94%. This may be due to the overall
structure of our road tracking method including the network architecture, track-
ing policy and designed codes.

4 Conclusion

In this paper, a deep reinforcement neural network DRL-RT has been proposed
for road tracking. This network was trained and tested to guide driving cars un-
der different weather environments. Different tracking instances were coded to
represent the appropriate road tracking. The MDP concept is used here, where
the network accepted states and produced actions by taking advantages from
rewards. This study has been compared with other work and showed superior
performance. In particular, we have achieved an accuracy of 93.94% in a clear
environment, and accuracies 93.66%, 89.55% and 84.68% nder unclear environ-
ments of fog, rain and heavy-rain respectively. These would set up a new baseline
for further studies.
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