Skip to main content

Lattice Auto-Associative Memories Induced Multivariate Morphology for Hyperspectral Image Spectral-Spatial Classification

  • Conference paper
  • First Online:
Progress in Computer Recognition Systems (CORES 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 977))

Included in the following conference series:

  • 614 Accesses

Abstract

The simultaneous use of spatial and spectral information for the classification-based analysis of hyperspectral images improves classification results and image segmentation quality. In this paper pixel spectra are individually classified by conventional support vector machines (SVM). The result of an innovative watershed transformation is used to postprocess the SVM result, imposing the homogeneity of the watershed region, i.e. classification disagreements inside the watershed region are solved by majority voting. This paper introduces several approaches to define reduced supervised orderings based on the recall distance of lattice auto-associative memories (LAAM). The automatic unsupervised selection of the foreground/background training sets from the hyperspectral image data is performed by the use of endmember induction algorithms (EIA). The proposed approach is compared with a recent state-of-the-art spectral-spatial approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beucher S (1990) Segmentation dā€™images et morphologie mathematique. Ph.D. thesis, Ecole Nationale Superioure des Mines de Paris, Paris

    Google ScholarĀ 

  2. Birkhoff G (1995) Lattice theory. AMS Bookstore

    Google ScholarĀ 

  3. Dellā€™Acqua F, Gamba P, Ferrari A, Palmason J, Benediktsson J, Arnason K (2004) Exploiting spectral and spatial information in hyperspectral urban data with high resolution. IEEE Geosci Remote Sens Lett 1(4):322ā€“326. https://doi.org/10.1109/LGRS.2004.837009

    ArticleĀ  Google ScholarĀ 

  4. Goutsias J, Heijmans H (2000) Mathematical morphology. IOS Press, Amsterdam

    MATHĀ  Google ScholarĀ 

  5. Grana M (2008) A brief review of lattice computing. In: IEEE international conference on fuzzy systems, FUZZ-IEEE 2008 (IEEE world congress on computational intelligence), pp 1777ā€“1781

    Google ScholarĀ 

  6. GraƱa M, Chyzhyk D (2016) Image understanding applications of lattice autoassociative memories. IEEE Trans Neural Netw Learn Syst 27(9):1920ā€“1932. https://doi.org/10.1109/TNNLS.2015.2461451

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  7. GraƱa M, Chyzhyk D, Garcia-Sebastian M, Hernandez C (2011) Lattice independent component analysis for functional magnetic resonance imaging. Inf Sci 181(10):1910ā€“1928

    ArticleĀ  Google ScholarĀ 

  8. GraƱa M, Villaverde I, Maldonado J, HernĆ”ndez C (2009) Two lattice computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72:2111ā€“2120. https://doi.org/10.1016/j.neucom.2008.06.026

    ArticleĀ  Google ScholarĀ 

  9. Gratzer G (2003) General lattice theory, 2 edn. Birkhauser Basel

    Google ScholarĀ 

  10. Gratzer (2011) Lattice theory: foundation, 1st edn. Springer Basel

    Google ScholarĀ 

  11. Haralick R, Sternberg S, Zhuang X (1987) Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell PAMI-9(4):532ā€“550. https://doi.org/10.1109/TPAMI.1987.4767941

    ArticleĀ  Google ScholarĀ 

  12. Hawkes P, Heijmans H, Kazan B (1993) Morphological image operators. Academic Press, Cambridge

    Google ScholarĀ 

  13. Li CH, Kuo BC, Lin CT, Huang CS (2012) A spatial-contextual support vector machine for remotely sensed image classification. IEEE Trans Geosci Remote Sens 50(3):784ā€“799. https://doi.org/10.1109/TGRS.2011.2162246

    ArticleĀ  Google ScholarĀ 

  14. Li J, Bioucas-Dias J, Plaza A (2012) Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Trans Geosci Remote Sens 50(3):809ā€“823. https://doi.org/10.1109/TGRS.2011.2162649

    ArticleĀ  Google ScholarĀ 

  15. Prieto A, Bellas F, Duro R, LĆ³pez-PeƱa F (2010) An adaptive approach for the progressive integration of spatial and spectral features when training ground-based hyperspectral imaging classifiers. IEEE Trans Instrum Meas 59(8):2083ā€“2093. https://doi.org/10.1109/TIM.2009.2030872

    ArticleĀ  Google ScholarĀ 

  16. Richards J, Jia X (1999) Remote sensing digital image analysis: an introduction, 3rd edn. Springer, Heidelberg

    BookĀ  Google ScholarĀ 

  17. Ritter G, Diaz-de-Leon J, Sussner P (1999) Morphological bidirectional associative memories. Neural Netw 12(6):851ā€“867

    ArticleĀ  Google ScholarĀ 

  18. Ritter G, Sussner P, Diaz-de-Leon J (1998) Morphological associative memories. IEEE Trans Neural Netw 9(2):281ā€“293

    ArticleĀ  Google ScholarĀ 

  19. Ronse C (1990) Why mathematical morphology needs complete lattices. Sig Process 21(2):129ā€“154

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  20. Serra J (1984) Image analysis and mathematical morphology, vol 1, Image analysis & mathematical morphology series. Academic Press

    Google ScholarĀ 

  21. Serra J (1988) Image analysis and mathematical morphology, vol 2, 1st edn. Theoretical advances. Academic Press, Cambridge

    Google ScholarĀ 

  22. Soille P (2004) Morphological image analysis: principles and applications, 2nd edn. Springer, Heidelberg

    BookĀ  Google ScholarĀ 

  23. Sussner P, Valle M (2006) Gray-scale morphological associative memories. IEEE Trans Neural Netw 17(3):559ā€“570

    ArticleĀ  Google ScholarĀ 

  24. Tarabalka Y, Chanussot J, Benediktsson J (2010) Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recogn 43(7):2367ā€“2379

    ArticleĀ  Google ScholarĀ 

  25. Veganzones M, GraƱa M (2012, submitted) Lattice auto-associative memories induced supervised ordering defining a multivariate morphology on hyperspectral data. In: 2012 4th workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS). IEEE

    Google ScholarĀ 

  26. Velasco-Forero S, Angulo J (2011) Supervised ordering in \({R}^{p}\): application to morphological processing of hyperspectral images. IEEE Trans Image Process 20(11):3301ā€“3308

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  27. Zhang B, Li S, Jia X, Gao L, Peng M (2011) Adaptive markov random field approach for classification of hyperspectral imagery. IEEE Geosci Remote Sens Lett 8(5):973ā€“977. https://doi.org/10.1109/LGRS.2011.2145353

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

M.A. Veganzones carried some of the computational experiments reported in this paper. The work has been partially funded by the Basque Government grant IT874-13 for the GIC research group and by FEDER funds through MINECO project TIN2017-85827-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel GraƱa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

GraƱa, M. (2020). Lattice Auto-Associative Memories Induced Multivariate Morphology for Hyperspectral Image Spectral-Spatial Classification. In: Burduk, R., Kurzynski, M., Wozniak, M. (eds) Progress in Computer Recognition Systems. CORES 2019. Advances in Intelligent Systems and Computing, vol 977. Springer, Cham. https://doi.org/10.1007/978-3-030-19738-4_32

Download citation

Publish with us

Policies and ethics