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Abstract. Understanding the interaction between different combinato-
rial optimization problems is a challenging task of high relevance for
numerous real-world applications including modern computer and mem-
ory architectures as well as high performance computing. Recently, the
Traveling Thief Problem (TTP), as a combination of the classical travel-
ing salesperson problem and the knapsack problem, has been introduced
to study these interactions in a systematic way. We investigate the under-
lying non-linear Packing While Traveling Problem (PWTP) of the TTP
where items have to be selected along a fixed route. We give an exact
dynamic programming approach for this problem and a fully polynomial
time approximation scheme (FPTAS) when maximizing the benefit that
can be gained over the baseline travel cost. Our experimental investiga-
tions show that our new approaches outperform current state-of-the-art
approaches on a wide range of benchmark instances.

1 Introduction

Combinatorial optimization problems play a crucial role in diverse application
areas such as planning, scheduling, and routing, as well as for the efficient use of
modern cloud-based computer architectures as well as high performance comput-
ing. Many combinatorial optimization problems have been studied extensively
in the literature. Two of the most prominent ones are the traveling salesper-
son problem (TSP) and the knapsack problem (KP). Numerous high performing
algorithms have been designed for these two problems.

Looking at combinatorial optimization problems arising in real-world applica-
tions, one can observe that real-world problems often are composed of different
types of combinatorial problems. For example, delivery problems usually con-
sists of a routing part for the vehicle(s) and a packing part of the goods onto the
vehicle(s). Recently, the Traveling Thief Problem (TTP) [1] has been introduced
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to study the interactions of different combinatorial optimization problems in a
systematic way and to gain better insights into the design of multi-component
problems. The TTP combines the TSP and KP by making the speed that a
vehicle travels along a TSP tour dependent on the weight of the already selected
items. Furthermore, the overall objective is given by the sum of the profits of the
collected items minus the weight dependent travel cost along the chosen route. A
wide range of heuristic search algorithms [2,3,8] and a large benchmark set [12]
have been introduced for the TTP in recent years. However, up to now there
are no high performing exact approaches to deal with the TTP. On the other
hand, the study of non-linear planning problems is an important topic and the
design of efficient approximation algorithms has gained increasing interest in
recent years [6,15].

The non-linear Packing While Traveling Problem (PWTP) has been intro-
duced in [13] to push forward systematic studies on multi-component problems
and deals with the packing part combined with the non-linear travel cost func-
tion of the TTP. The PWTP can be seen as the TTP when the route is fixed
but the cost still depends on the weight of the items on the vehicle.

Problem Definition. The PWTP is formally defined as follows. Given are n
cities 1, . . . , n, distances di ≥ 0, 1 ≤ i ≤ n − 1, from city i to city i + 1, together
with n items, one at each city. The item at city i has a non-negative integer
profit pi and weight wi. A vehicle of capacity W travels through the cities in
the given order 1, . . . , n, and can collect any subset of items S ⊆ {1, . . . , n} of
total weight w(S) :=

∑
i∈S wi ≤ W . When traveling from city i to city i + 1,

the speed v of the vehicle depends on the total weight of so far collected
items Si := S ∩ {1, . . . , i}. More precisely, its speed is an affine linear function
of the weight k = w(Si) given by

v(k) := vmax +
k

W
(vmin − vmax), (1)

where vmax is the given maximum possible speed (for the unloaded vehicle)
and vmin the given minimum speed (for the fully loaded vehicle). The time ti(Si)
to travel from city i to city i + 1 is thus equal to the distance di divided by the
speed vi

(
w(Si)

)
. The objective is to choose a subset of items S ⊆ {1, . . . , n} that

maximizes the total benefit b(S) := p(S) − t(S), where p(S) =
∑

i∈S pi is the
total profit of selected items and t(S) :=

∑n−1
i=1 ti(Si) is the total travel time.

In a slightly more general version of the PWTP, there may be several items
or no item at any city i. Notice, however, that this can be easily reduced to the
special case introduced above. A city with k > 1 items can be split into a subse-
quence of k cities with distances 0 between them. Moreover, at a city with no item
we may place a dummy item of profit and weight zero.1 Further generalizations
and interesting variants of the PWTP include other models of weight-dependent
travel times occurring in a variety of different application contexts discussed
below that can also be handled by the algorithmic techniques introduced in this
paper.
1 Alternatively, an intermediate city with no item might be deleted from the sequence.
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The PWTP is NP -hard even without the capacity constraint usually imposed
on the knapsack. Furthermore, exact and approximate mixed integer program-
ming approaches as well as a branch-infer-and-bound approach [11] have been
developed for this problem.

Applications. The Packing While Traveling Problem is originally motivated
by gaining advanced precision when minimizing transportation costs that may
have non-linear nature, for example, in applications where weight impacts the
fuel costs [4,7]. From this point of view, the problem is a baseline problem in
various vehicle routing problems with non-linear costs. Some specific applications
of the PWTP may deal with a single truck collecting goods in large remote areas
without alternative routes, that is, there may exist a single main route that a
vehicle has to follow while any deviations from it in order to visit particular
cities are negligible [11].

Applications in the area of modern computing systems include the collec-
tion and processing of data by streaming algorithms [16]. Here the sequence of
cities/items 1, . . . , n corresponds to a data stream and the capacity W models
a bound on the available memory. For multi-level memory architectures, the
PWTP’s weight-dependent ‘travel times’ can be interpreted as data processing
and computing times that increase with higher memory load; see, e.g., [9]. Fur-
ther applications in this context include the efficient processing of large amounts
of data in social networks and related contexts.

Our Contribution. We introduce a dynamic programming approach for
the PWTP. The key idea is to consider the items in the order 1, . . . , n they
appear along the route that needs to be traveled and apply dynamic program-
ming similar as for the classical knapsack problem [14]. When considering an
item, the decision has to be made on whether or not to pack the item. The
dynamic programming approach computes for the first i items, 1 ≤ i ≤ n, and
possible subsets of weight w̄ the maximal objective value that can be obtained.
As the programming table that is used depends on the number of different pos-
sible weights, the algorithm runs in pseudo-polynomial time.

After having obtained the exact approach based on dynamic programming,
we consider the design of a fully polynomial approximation scheme (FPTAS) [5].
First, we show that it is NP -hard to decide whether a given instance of the
PWTP has a non-negative objective value. This rules out any polynomial time
algorithm with finite approximation ratio, unless P = NP . Due to this, we design
an FPTAS for the amount that can be gained over the travel cost when the
vehicle travels empty (which is the minimal possible travel cost). Our FPTAS is
based on the observation that the item with the largest benefit leads to an objec-
tive value of at least OPT/n and uses appropriate rounding in the previously
designed dynamic programming approach. An interesting and distinguishing fea-
ture of our FPTAS is the fact that, in contrast to the standard approach in the
area of approximation schemes, we do not explicitly round values to arrive at
a polynomial-size state space of the dynamic program. Instead, an approximate
domination criterion is used to restrict to a polynomial number of intermediate
states.
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We evaluate our two approaches on a wide range of instances from the
TTP benchmark set [12], and compare them to the exact and approximative
approaches given in [11]. Our results show that the large majority of the instances
that can be handled by exact methods, are solved much faster by dynamic
programming than the previously developed mixed integer programming and
branch-infer-and-bound approaches. Considering instances with a larger profit
and weight range, we show that the choice of the approximation guarantee sig-
nificantly impacts the runtime behavior.

Outline. The paper is structured as follows. In Sect. 2 we present the exact
dynamic programming approach, and design an FPTAS in Sect. 3. Our experi-
mental results are discussed in Sect. 4. Finally, we finish with some conclusions.

2 Dynamic Programming

We introduce a dynamic programming approach for solving the PWTP. Dynamic
programming is one of the traditional approaches for the classical knapsack
problem [14]. The dynamic programming table β consists of n rows, indexed by
i = 1, . . . , n, and W + 1 columns, indexed by k = 0, . . . ,W . Items are processed
in the order i = 1, . . . , n they appear along the tour. The entry β(i, k) shall
denote the maximal benefit that can be obtained by considering all subsets of
the first i items {1, . . . , i} of total weight exactly k, for k = 0, . . . ,W . We denote
by β(i, ·) the row containing the entries βi,k. In the case that a subset of total
weight k does not exist, we set β(i, k) := −∞.

Let di,n :=
∑n−1

j=i dj be the distance from city i to the last city n. We denote
by b(∅) := −d1,n/vmax the benefit of the empty set, that is, the travel cost when
the vehicle travels empty. Furthermore, the benefit when only item i is chosen is

b({i}) := b(∅) + pi − di,n
v(wi)

+
di,n
vmax

,

as the vehicle will now only travel at speed v(wi) from city i on. The entries in
the first row can be easily computed as

β(1, k) :=

⎧
⎪⎨

⎪⎩

b(∅) if k = 0 �= w1,

b({1}) if k = w1,

−∞ otherwise.
(2)

For i = 2, . . . , n, based on the row β(i−1, ·) we can compute the next row β(i, ·).
To keep notation simple, we let β(i − 1, q) := −∞ for q < 0. Then,

β(i, k) := max
{

β(i − 1, k), β(i − 1, k − wi) + pi − di,n
v(k)

+
di,n

v(k − wi)

}

. (3)

The correctness of this recursive formula is discussed in the proof of the next
theorem.
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Theorem 1. For each i and k, the entry β(i, k) stores the maximal possible
benefit b(S) over all subsets S of {1, . . . , i} having weight exactly k. In particu-
lar, maxk β(n, k) is the value of an optimal solution, which can be obtained via
backtracking.

Proof. We use induction on i. The statement is true for i = 1 as there are
only the two options of choosing or not choosing the first item, which are both
considered in (2). Now assume that β(i − 1, k) stores the maximal benefit for
each weight k when considering all subsets of {1, . . . , i − 1}. Notice that for a
subset S′ ⊆ {1, . . . , i−1} of weight at most W −wi, the benefit of S′ ∪{i} equals

b(S′ ∪ {i}) = b(S′) + pi −
(

di,n

v
(
w(S′) + wi

) − di,n

v
(
w(S′)

)

)

, (4)

since adding item i to subset S′ leads to the reduced speed v
(
w(S′)+wi

)
of the

vehicle, instead of v
(
w(S′)

)
, from city i on. Consider now a subset S ⊆ {1, . . . , i}

with w(S) = k of maximum benefit b(S). If i �∈ S, then S must obviously be
a maximum benefit subset of {1, . . . , i − 1} of weight k as well. In particular,
b(S) = β(i − 1, k); see the first term on the right-hand side of (3). Otherwise,
if i ∈ S, then S = S′ ∪ {i} for a maximum benefit subset S′ ⊆ {1, . . . , i − 1} of
weight k − wi, that is, b(S′) = β(i − 1, k − wi). Notice that the second term on
the right-hand side of (3) thus coincides with (4). This concludes the proof.

Finally, we investigate the runtime for this dynamic program. If di,n has
been computed for each i, which takes O(n) time in total, then each entry of
the dynamic programming table β can be computed in constant time. Thus, the
running time of the dynamic program is in O(nW ). To empirically speed up
the computation of the dynamic program, it is sufficient to only store an entry
for β(i, k) if it is not dominated by any other entry in β(i, ·), that is, if there is
no k′ < k with β(i, k′) ≥ β(i, k). This is justified by the following lemma.

Lemma 1. The increase in travel cost due to a new item i given by the term
in brackets on the right-hand side of (4) is an increasing function of the
weight w(S′) of so far collected items.

Proof. For v(k) as defined in (1), let t(k) := 1/v(k) denote the travel time per
unit distance when the vehicle has collected items of total weight k. Notice that
the thereby defined function t : [0,W ] → R≥0 is convex and increasing.

3 Approximation Algorithms

We now turn our attention to approximation algorithms. The NP-hardness proof
for the PWTP given in [11] does not rule out polynomial time approximation
algorithms. In this section, we first show that polynomial time approximation
algorithms with a finite approximation ratio do not exist, unless P = NP . This
results motivates the design of an FPTAS for the shifted objective function
given by the amount that can be gained over the baseline cost when the vehicle
is traveling empty.
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3.1 Inapproximability of the Packing While Traveling Problem

The objective function for PWTP can take on positive and negative values.
We show that deciding whether a given PWTP instance has a solution that is
non-negative is already NP-complete.

Theorem 2. Given a PWTP instance, the problem to decide whether there is
a solution S ⊆ {1, . . . , n} with b(S) ≥ 0 is NP-complete.

Proof. The problem is obviously in NP as one can verify in polynomial time for
a given solution S whether b(S) ≥ 0 holds by evaluating the objective function.
It remains to show that the problem is NP-hard.

We reduce the NP -complete Subset Sum Problem (SSP) to our problem.
An instance of SSP is given by n positive integers {s1, . . . , sn} and a positive
integer Q. The question is whether there exists a subset S ⊆ {1, . . . , n} such
that

∑
i∈S si = Q. Given an instance of SSP, we construct an instance of PWTP

consisting of n cities and items of profit and weight pi = wi = si, for i =
1, . . . , n. The distances di between cities are all equal to zero except for the
last distance dn−1 := Q2. Finally, the vehicle has capacity W := Q and its
minimum and maximum speed are vmin := vmax := Q, that is, the speed does
not depend on the weight of collected items. It is easy to see that the benefit
of any solution S ⊆ {1, . . . , n} is equal to b(S) = p(S) − Q =

∑
i∈S si − Q. In

particular, as p(S) = w(S) ≤ W = Q, it holds that b(S) ≥ 0 if and only if S is
a solution to the underlying instance of the SSP.

We can even prove the following slightly stronger complexity result.

Proposition 1. The decision version of the PWTP stated in Theorem 2 is even
NP-hard if the vehicle capacity is large enough to fit all items, that is, if W ≥
w({1, . . . , n}).

Proof. We modify the reduction given in the proof of Theorem 2 as follows. First
of all we restrict to instances of the SSP with

∑n
i=1 si = 2Q (in other words, we

give a reduction from the NP-complete Partition Problem). The vehicle capacity
is then set to W := 2Q, the maximum speed to vmax := 2Q, and the minimum
speed to vmin := 0. Then, the benefit of a subset of items S ⊆ {1, . . . , n} is

b(S) = p(S) − Q2

2Q − w(S)
= w(S) − Q2

2Q − w(S)
.

We consider the right-hand side term as a function of w(S). It is easy to check
that this function attains its unique maximum of value 0 for w(S) = Q.

As a corollary of Theorem 2, we obtain the following non-approximability
result.

Corollary 1. There is no polynomial time approximation algorithm for PWTP
with a finite approximation ratio, unless P = NP .
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3.2 An FPTAS for Amount over Baseline Travel Cost

In view of Corollary 1, we shift the objective function value and consider the
amount that can be gained over the cost when the vehicle travels empty as the
new objective. More precisely, for a subset of items S ⊆ {1, . . . , n} the new
objective is

b′(S) := b(S) − b(∅).

This is motivated by the scenario where the vehicle has to travel along the given
route anyway, and the goal is to maximize the gain over this (negative) baseline
cost b(∅). Notice that an optimal solution for this objective is also an optimal
solution for the original PWTP objective. Approximation results, however, do
not carry over as the objective value is shifted by b(∅).

As in the proof of Lemma 1, let t(k) be the travel time per unit distance
when the vehicle has collected items of total weight k. It follows from the proof
of Lemma 1 that, for each item i and 0 ≤ k ≤ W − wi, we get

t(k + wi) − t(k) ≥ t(wi) − t(0).

This means that the marginal cost (with respect to the travel time) of adding
an item is lowest if there are no other items chosen. As a consequence, we get
for each subset S ⊆ {1, . . . , n} with w(S) ≤ W that

b′(S) ≤
∑

i∈S

b′({i}).

In particular, when choosing an optimal subset S maximizing b′(S) =: OPT,
there is an i ∈ S with b′(i) ≥ OPT/|S| ≥ OPT/n. Thus, L := max1≤i≤n b′({i})
provides an efficiently computable lower bound on the value of an optimal solu-
tion satisfying OPT/n ≤ L ≤ OPT.

In order to obtain a fully polynomial time approximation scheme (FPTAS)
for the problem of maximizing b′(S) over all feasible subsets S ⊆ {1, . . . , n},
we start by carefully modifying the dynamic programming scheme from Sect. 2
given by Eqs. (2) and (3) as follows. Let

β′(1, k) :=

⎧
⎪⎨

⎪⎩

b′(∅) if k = 0 �= w1,

b′({1}) if k = w1,

−∞ otherwise.

Then, for i = 2, . . . , n, let

β′(i, k) := max
{

β′(i − 1, k), β′(i − 1, k − wi) + pi − di,n
v(k)

+
di,n

v(k − wi)

}

.

As discussed at the end of Sect. 2, we can speed up the dynamic program by
setting β′(i, k) := −∞ in case there is a k′ < k with β′(i, k′) ≥ β′(i, k).

The idea of the FPTAS described in Algorithm 1 is to further speed up the
dynamic program by ignoring entries β′(i, k) such that there is a k′ < k with
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Algorithm 1. FPTAS for maximizing b′(S)
1. set L := max1≤i≤n b′({i}), r := εL/n, and di,n :=

∑n−1
j=i dj for 1 ≤ i ≤ n;

2. initially, all values β(i, k) are assumed to be −∞;
3. set β′(1, 0) := b′(∅) and β′(1, w1) := b′({1});
4. for i = 1, . . . , n − 1 do:
5. for each k with �β′(i, k)/r� > max{�β′(i, k′)/r�, −∞} for all k′ < k do:
6. set β′(i + 1, k) := max{β′(i, k), β′(i + 1, k)};
7. if k+ := k + wi+1 ≤ W , set

β′(i + 1, k+) := max{β′(i, k) + pi+1 − di+1,n
v(k+)

+
di+1,n

v(k)
, β′(i + 1, k+)}

8. determine maxk β′(n, k) and corresponding solution S by backtracking;

�β′(i, k)/r > �β′(i, k′)/r for r := εL/n. Due to this, in terms of the objective
function we lose at most r in every row of the dynamic programming table. The
overall loss is thus bounded by nr = εL ≤ εOPT.

Theorem 3. Algorithm 1 is an FPTAS for the problem to maximize b′(S) over
all subsets of items S ⊆ {1, . . . , n} with w(S) ≤ W .

Proof. As argued above, the value of the computed solution is at least (1 −
ε)OPT. It remains to argue that the running time of Algorithm 1 is bounded by
a polynomial in the input size and 1/ε. This can be seen as follows:

Claim. For the dynamic programming table β′ computed by Algorithm 1, there
are at most O(n2/ε) entries of finite value in row β′(i, ·), for i = 1, . . . , n.
Proof of the Claim: We use induction on i. The case i = 1 is clear by Step 3 of
Algorithm 1. Moreover, the for-loop in Step 5 considers at most 1 + OPT/r =
1 + nOPT/(εL) ≤ 1 + n2/ε different values of k. For each such k, at most two
entries in the next row i+1 are modified. This concludes the proof of the claim.
The overall running time is thus polynomial in the input size and 1/ε.

We conclude this section with the following generalizing remark.

Remark 1. The construction of the FPTAS only used the fact that the travel
time per unit distance is monotonically increasing and convex. Hence, the
FPTAS holds for any PWTP problem where the travel time per unit distance
has this property.

4 Experiments and Results

In this section, we investigate the effectiveness of the proposed DP and FPTAS
approaches based on our implementations in Java. We mainly focus on two issues:
(1) studying how the DP and FPTAS perform compared to the state-of-the-art
approaches; (2) investigating how the performance and accuracy of the FPTAS
change when the parameter ε is altered.
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In order to be comparable to the mixed integer programming (MIP) and
the branch-infer-and-bound (BIB) approaches presented in [11], we conduct our
experiments on the same families of test instances. Our experiments are carried
out on a computer with 4 GB RAM and a 3.06 GHz Intel Dual Core processor,
which is also the same as the machine used in the paper mentioned above.

We compare the DP to the exact MIP (eMIP) and the branch-infer-and-
bound approaches as well as the FPTAS to the approximate MIP (aMIP), as
the former three are all exact approaches and the latter two are all approxi-
mations. Table 1 demonstrates the results for a route of 101 cities and various
types of packing instances. For this particular family, we consider three types
of instances: uncorrelated (uncorr), uncorrelated with similar weights (uncorr-s-
w) and bounded strongly correlated (b-s-corr), which are further distinguished
by the different correlations between profits and weights. In combination with
three different numbers of items and three settings of the capacity, we have 27
instances in total, as shown in the column called “Instance”. Similarly to the
settings in [11], every instance with “ 01” postfix has a relatively small capacity.
We expect such instances to be potentially easy to solve by DP and FPTAS
due to the nature of the algorithms. The OPT column shows the optimum of
each instance and the RT(s) columns illustrate the running time for each of
the approaches in the time unit of a second. To demonstrate the quality of an
approximate approach applied to the instances, we use the ratio between the
objective value obtained by the algorithm and the optimum obtained for an
instance as the approximation rate AR(%) = 100 × OBJ

OPT .
In the comparison of exact approaches, our results show that the DP is much

quicker than the exact MIP and BIB in solving the majority of the instances.
The exact MIP is slower than the DP in every case and this dominance is mostly
significant. For example, it spends around 35 min to solve the instance uncorr-s-
w 10 with 1, 000 items, where the DP needs around 15 s only. On the other hand,
the BIB slightly beats the DP on three instances, but the DP is superior for the
rest 24 instances. An extreme case is b-s-corr 01 with 1, 000 items where the BIB
spends above 1.5 h while the DP solves it in 11 s only. Concerning the running
time of the DP, it significantly increases only for the instances having large
amount of items with strongly correlated weights and profits, such as b-s-corr 06
and b-s-corr 10 with 1, 000 items. However, b-s-corr 01 seems exceptional due
to the limited capacity assigned to the instance.

Our comparison between the approximation approaches shows that the
FPTAS has significant advantages as well. The approximation ratios remain
100% when ε equals 0.0001 and 0.01. Only when ε is set to 0.25, the FPTAS
starts to output the results having similar accuracies as the ones of aMIP. With
regard to the performance, the FPTAS takes less running time than aMIP on
the majority of the instances despite the setting of ε. As an extreme case, aMIP
requires hours to solve the uncorr-s-w 01 instance with 1, 000 items, but the
FPTAS takes less than a second. However, the aMIP performs much better on
b-s-corr 06 and b-s-corr 10 with 1, 000 items. This somehow indicates that the
underlying factors that make instances hard to solve by approximate MIP and
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FPTAS have different nature. Understanding these factors more and using them
wisely should help to build a more powerful algorithm with mixed features of
MIP and FPTAS.

In our second experiment, we use test instances which are slightly different
to those in the benchmark used in [11]. This is motivated by our findings that
relaxing ε from 0.0001 to 0.75 improves the runtime performance of FPTAS
by around 50% for the b-s-corr instances, while does not degrade the accu-
racy noticeably. At the same time, there is no significant improvement for other
instances. It’s surprising as shows that the performance improvement can be
easily achieved on complex instances. Therefore, we study how the FPTAS per-
forms if the instances are more complicated. The idea is to use instances with
large weights, which are known to be difficult regarding dynamic programming
based approaches for the classical knapsack problem. We follow the same way to
create TTP instances as proposed in [12] and generate the knapsack component
of the problem as discussed in [10]. Specifically, we extend the range to generate
potential profits and weights from [1, 103] to [1, 107] and focus on uncorrelated
(uncorr), uncorrelated with similar weights (uncorr-s-w), and multiple strongly
correlated (m-s-corr) types of instances. Additionally, in the stage of assigning
the items of a knapsack instance to particular cities of a given TSP tour, we
sort the items in descending order of their profits and the second city obtains
k, k ∈ {1, 5, 10}, items of the largest profits, the third city then has the next k
items, and so on. We expect that such assignment should force the algorithms to
select items in the first cities of a route making the instances more challenging
for the DP and FPTAS. In reality, these instances indeed are harder than the
ones in the first experiment, which forces us to switch to the 128 GB RAM and
8 × (2.8 GHz AMD 6 core processors) cluster machine to carry out the second
experiment.

Table 2 illustrates the results of running the DP and FPTAS on the instances
with the large range of profits and weights. Generally speaking, we can observe
that the instances are significantly harder to solve than those ones from the first
experiment, that is they take comparably more time. Similarly, the instances
with large number of items, larger capacity, and strong correlation between prof-
its and weights are now hard for the DP as well. Oppositely to the results of
the previous experiment, the FPTAS performs much better when dealing with
such instances in the case when ε is relaxed. For example, its performance is
improved by 95% for the instance m-s-corr 10 with 1, 000 items when ε is raised
from 0.0001 to 0.75 while the approximation rate remains at 100%.

5 Conclusion

Multi-component combinatorial optimization problems play an important role in
many real-world applications. We have examined the non-linear Packing While
Traveling Problem which results from the interactions in the Traveling Thief
Problem. We designed a dynamic programming algorithm that solves the prob-
lem in pseudo-polynomial time. Furthermore, we have shown that the original



FPTAS for Packing While Traveling 71

objective of the problem is hard to approximate and have given an FPTAS for
optimizing the amount that can be gained over the smallest possible travel cost.
It should be noted that the FPTAS applies to a wider range of problems as
our proof only assumed that the travel cost per unit distance in dependence
of the weight is increasing and convex. Our experimental results on different
types of knapsack instances show the advantage of the dynamic program over
the previous approaches based on mixed integer programming and branch-infer-
and-bound concepts. Furthermore, we have demonstrated the effectiveness of the
FPTAS on instances with a large weight and profit range.
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