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The Power of the “Pursuit” Learning Paradigm

in the Partitioning of Data

Abdolreza Shirvani1 and B. John Oommen1,2
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Abstract. Traditional Learning Automata (LA) work with the under-
standing that the actions are chosen purely based on the “state” in which
the machine is. This modus operandus completely ignores any estimation
of the Random Environment’s (RE’s) (specified as E) reward/penalty
probabilities. To take these into consideration, Estimator/Pursuit LA
utilize “cheap” estimates of the Environment’s reward probabilities to
make them converge by an order of magnitude faster. This concept is
quite simply the following: Inexpensive estimates of the reward prob-
abilities can be used to rank the actions. Thereafter, when the action
probability vector has to be updated, it is done not on the basis of the
Environment’s response alone, but also based on the ranking of these
estimates. While this phenomenon has been utilized in the field of LA,
until recently, it has not been incorporated into solutions that solve par-
titioning problems. In this paper3, we will submit a complete survey of
how the “Pursuit” learning paradigm can be and has been used in Object
Partitioning. The results demonstrate that incorporating this paradigm
can hasten the partitioning by a order of magnitude.

Keywords: Object Partitioning, Learning Automata, Object Migration Au-
tomaton, Partitioning-based Learning.

1 Introduction

The Pursuit Concept in LA: Absolutely Expedient LA are absorbing and
there is always a small probability of them not converging to the best action.
Thathachar and Sastry realized this phenomenon and proposed to use Maximum
Likelihood Estimators (MLEs) to hasten the LA’s convergence. Such an MLE-
based update method would utilize estimates of the reward probabilities in the
update equations. At every iteration, the estimated reward vector was also used
to update the action probabilities, instead of updating it based only on the RE’s
feedback. In this way, the probabilities of choosing the actions with higher re-
ward estimates were increased, and those with lower estimates were significantly
reduced, using which they proposed the family of estimator algorithms.

3 The second author gratefully acknowledges the partial support of NSERC, the Nat-
ural Sciences and Engineering Council of Canada.



The Pursuit strategy of designing LA is a special derivative of the family
of estimator algorithms. Pursuit algorithms “pursue” the currently-known best
action, and increase the action probability associated with this action. The pur-
suit concept was first introduced by Thathachar et al, and the corresponding LA
was proven to be ǫ-optimal. Its discretized version was proposed by Lanctot et
al in [7], who also discretized the original estimator algorithm. Agache et al [10]
then analyzed all the four linear combinations, i.e., the LRI and LRP paradigms.

The Object Partitioning Problem (OPP): Consider the problem of par-
titioning a set A = {A1, · · · , AW } of W physical objects into R groups Ω =
{G1, · · · , GR}. We assume that the true but unknown state of nature, Ω∗,
is a partitioning of the set A into mutually exclusive and exhaustive subsets
{G∗

1, G
∗

2, · · ·G
∗

R}. The composition of {G∗

i } is unknown, and the elements in the
subsets fall together based on some criteria which may be mathematically formu-
lated, or may even be ambiguous. These objects are now presented to a learning
algorithm, for example, in pairs or tuples. The goal of the algorithm is to par-
tition A into a learned partition, Ω+. The hope is to have Ω+ converge to Ω∗.
In most cases, the underlying partitioning of Ω∗ is not known, nor are the joint
access probabilities by which the pairs/tuples of A are presented to the learning
algorithm known. This problem is known to be NP-hard [9]. Clearly, if we in-
crease the number of objects, the number of partitions increases, and in addition
to this quantity, the problem’s complexity grows exponentially. To resolve this,
it is possible to explore all partition combinations, use a ranking index, and to
thereafter, report the best plausible partition. The goal of the OPP is to identify
the best or most likely realizable partitioning. This requires the AI algorithm to
perceive the semantic physical world aspects of the objects, and to then make
local decisions based on the best partition in the abstract domain [4, 5].

Real versus Abstract Objects: If there exists a mutual relation between
the real objects in the semantic domain A, and a domain of abstract objects
O = {O1, · · · , OW }, we define the partitioning of O in such way that the cor-
responding partitions of O map onto the partitions of the real objects in A so
as to mimic the state-of-nature. Thus, while we operate on the abstract objects
in O, the objects in A are not necessarily moved because they constitute real-
life objects which cannot be easily moved. A special case of the OPP is the
Equi-Partitioning Problem (EPP) in which all the partitions are equi-sized.

The Object Migrating Automation (OMA): Due to the poor convergence
of prior OPP/EPP solutions, they were never utilized in real-life applications.
The introduction of an LA-based partitioning algorithm, the OMA, (explained
in Section 2) made real-life applications possible. The OMA resolved the EPP
both efficiently and accurately. This solution is regarded as a benchmark for the
EPP. Indeed, since 19864, it has been applied to variety of real-life problems and
domains which include keyboard optimization, image retrieval, distributed com-
puting, graph partitioning, the constraint satisfaction problems, cryptanalysis,
reputation systems, parallel and distributed mapping etc.

4 The bibliography in this paper is necessarily limited. The majority of the present
results very briefly summarize the results in the Ph.D. thesis of the First Author.



The Intent of this Paper: Although the “Pursuit” learning paradigm has
been utilized in the theory and applications of LA as fundamental machines,
until recently, it has not been incorporated into solutions that solve partitioning
problems. The goal of this paper is to submit a comprehensive survey of how this
paradigm can be used in Object Partitioning, and to optimize various versions of
the OMA. We also include simulation results on benchmark environments that
demonstrate the advantages of incorporating it into the respective machines.

2 The Object Migration Automata

The OMA is a fixed structure LA designed to solve the EPP. It is defined as
a quintuple with R actions5, each of which represents a specific class, and for
every action there exist a fixed number of states, N . Every abstract object from
the set O resides in a state identified by a number, and can move from one state
to another, or migrate from one group to another. If the abstract object Oi is in
state ξi belonging to a group αk, we say that Oi is assigned to class k.

If two objectsOi andOj happen to be in the same class and the OMA receives
a query 〈Ai, Aj〉, they are jointly rewarded by E, the Environment. Otherwise,
they will be penalized. We formalize the movements of {Oi} on reward/penalty.

We shall formalize the LA as follows: For every action αk, there is a set of
states {φk1, · · · , φkN}, where N is the fixed depth of the memory, and where
1 ≤ k ≤ R represents the number of desired classes. We also assume that φk1 is
the most internal state and that φkN is the boundary state for the corresponding
action. The response to the reward and penalty feedback are as follows:

– Reward: Given a pair of physical objects presented as a query 〈Ai, Aj〉,
if both Oi,and Oj happen to be in the same class αk, the reward scenario
is enforced, and they are both moved one step toward the actions’s most
internal state, φk1. This is depicted in Figure 3.2 (a) in [11]6.

– Penalty: If, however, they are in different classes, αk and αm, (i.e., Oi,
is in state ξi where ξi ∈ {φk1, · · · , φkN} and Oj , is in state ξj where ξj ∈
{φm1, · · · , φmN}) they are moved away from φk1 and φm1 as follows:
1. If ξi 6= φkN and ξj 6= φmN , we move Oi and Oj one state toward φkN

and φmN , respectively, as shown in Figure 3.2 (b) in [11].
2. If ξi = φkN or ξj = φmN but not both (i.e., only one of these abstract

objects is in the boundry state), the object which is not in the boundary
state, say Oi, is moved towards its boundary state as shown in Figure
3.2 (c) in [11]. Simultaneously, the object that is in the boundary state,
Oj , is moved to the boundary state of Oj . Since this reallocation will
result in an excess of objects in αk, we choose one of the objects in αk

(which is not accessed) and move it to the boundary state of αm. In this
case, we choose the object nearest to the boundary state of ξi, as shown
in Figure 3.2 (c) in [11].

5 To be consistent with the terminology of LA, we use the terms “action”, “class” and
“group” synonymously.

6 The OMA’s algorithms/figures are in [11], and omitted here in the interest of space.



3. If ξi = φkN and ξj = φmN (both objects are in the boundary states), one
object, say Oi, will be moved to the boundary state of αm. Since this
reallocation, will again, result in an excess of objects in αm, we choose
one of the objects in αm (which is not accessed) and move it to the
boundary state of αk. In this case, we choose the object nearest to the
boundary state of ξj , as shown in Figure 3.2 (d) in [11].

To asses the partitioning accuracy and the convergence speed of any EPP
solution, there must be an “oracle” with a pre-defined number of classes, and with
each class containing an equal number of objects. The OMA’s goal is to migrate
the objects between its classes, using the incoming queries. E is characterized by
three parameters: (a) W , the number of objects, (b) R, the number of partitions,
and (c) a probability ‘p’ quantifying how E pairs the elements in the query.

Every query presented to the OMA by E consists of two objects. E randomly
selects an initial class with probability 1

R , and it then chooses the first object in
the query from it, say, q1. The second element of the pair, q2, is then chosen with
the probability p from the same class, and with the probability (1− p) from one
of the other classes uniformly, each of them being chosen with the probability of

1
R−1 . Thereafter, it chooses a random element from the second class uniformly.
We assume that E generates an “unending” continuous stream of query pairs.

The results of the simulations are given in Table 1, where in OMApX , X
refers to the probability specified above, W , is the number of objects, W/R is
the number of objects per class, and R is the number of classes. The results are
given as a pair (a, b) where a refers to the number of iterations for the OMA to
reach the first correct classification and b refers to the case where the OMA has
fully converged. In all experiments, the number of states of the OMA is set to
10. Also, the OMA’s convergence for a single run and for an ensemble of runs
display a monotonically decreasing pattern (with time) for the latter.

Table 1. Experimental results for the OMA done for
an ensemble of 100 experiments in which we have
only included the results from experiments where
convergence has occurred.

W W/R R OMAp9 OMAp8 OMAp7

4 2 2 (2, 26) (2, 36) (2, 57)
6 2 3 (3, 44) (4, 62) (4, 109)
- 3 3 (22, 66) (20, 88) (26, 153)
9 3 3 (44, 110) (43, 144) (70, 261)
12 2 6 (10, 101) (12, 146) (15, 285)
- 3 4 (82, 172) (84, 228) (128, 406)
- 4 3 (401, 524) (252, 405) (256, 552)
- 6 2 (2240, 2370) (1151, 1299) (1053, 1486)
15 3 5 (152, 265) (155, 325) (191, 607)
- 5 3 (1854, 2087) (918, 1136) (735, 1171)
18 2 9 (17, 167) (24, 252) (29, 582)
- 3 6 (180, 319) (202, 413) (288, 839)
- 6 3 (5660, 5786) (1911, 2265) (1355, 2111)
- 9 2 (11245, 11456) (6494, 7016) (3801, 4450)



3 Developing the Pursuit Concept: The Environment

In an “un-noisy” Environment, we can denote the actual value of the relation
between Ai and Aj (for k ∈ {1, · · · , R}) by the quantity µ∗(i, j), expressed as:

µ∗(i, j) = P (Rk) · P (Aj |Ai) · P (Ai), ∀i, j if 〈Ai, Aj〉 ∈ RK ,

= 0 otherwise,

where P (Rk) is the probability that the first element, Ai, is chosen from the
group Rk, and P (Aj |Ai) is the conditional probability of choosing Aj , which
is also from Rk, after Ai has been chosen. Since E chooses the elements of the
pairs from the other groups uniformly, with a possible re-numbering operation,
the matrix M∗ = [µ∗(i, j)] is a block-diagonal matrix given by Eq. (1).

M∗ =





















M∗

1 0 . . . 0

0 M∗

2

...
...

. . .
...

0 · · · . . . M∗

R

(1)

where 0 represents a square matrix containing only 0’s.

Theorem 1. The matrix M∗

r , (1 ≤ r ≤ R), is a matrix of probabilities of size
W
R × W

R possessing the following form:

M∗

r =













0 R
W (W−R) · · · R

W (W−R)
R

W (W−R) 0 · · · R
W (W−R)

...
. . .

...
R

W (W−R) · · · R
W (W−R) 0













(2)

Proof. The proof of the theorem is omitted here. It is found in [11]. ⊓⊔

In a real-world scenario where E is noisy, i.e., the objects from the different
groups can be paired together in a query, the general form for M∗ is:

M∗ =





















M∗

1 θ . . . θ

θ M∗

2

...
...

. . .
...

θ · · · . . . M∗

R

, (3)

where θ and M∗

rs are specified as per Equations (4) and (5).

Theorem 2. In the presence of noise in E, the entries of the pair 〈Ai, Aj〉 can
be selected from two different distinct classes, and hence the matrix specifying
the probabilities of the accesses of the pairs obeys Equation (3), where:



θ = θo ·







1 1 · · · 1
...

...
. . .

...
1 · · · · · · 1






, (4)

M∗

r = θd ·











0 1 · · · 1
1 0 · · · 1
...
...
. . .

...
1 1 · · · 0











, (5)

where, 0 < θd < 1 is the coefficient which specifies the accuracy of E, and θo is

related to θd as θd =
1−θo(W−

W

R
)

W

R
−1

.

Proof. The proof of the theorem is omitted here and found in [11].

3.1 The Design and Results of the POMA

In a real world scenario, since E’s true statistical model is unknown, the ex-
pressions in Equations (1) and (2) can only be estimated through observing a
set of queries. In the presence of noise though, we need to devise a measurable
quantity which makes the algorithm capable of recognizing divergent pairs.

Observe that whenever a real query 〈Ai, Aj〉 appears, we will be able to obtain
a simple ML estimate of how frequently Ai and Aj are accessed concurrently.
Clearly, by virtue of the Law of Large Numbers, these underlying estimates will
converge to the corresponding probabilities of E actually containing the elements
Ai and Aj in the same group. As the number of queries processed become larger,
the quantities inside M∗

i will become significantly larger than the quantities in
each of the θ matrices. From the plot of these estimates [11], one will observe that
the estimates corresponding to the matrix M∗

i have much higher values than
the off-diagonal entries. This implies that these off-diagonal entries represent
divergent queries which move the objects away from their accurate partitions.

Intuitively, the pursuit concept for the OPP can be best presented by a matrix
of size W ×W where every entry will capture the same statistical measure about
the stream of the input pairs. For the sake of simplicity, we use a simple averaging
and denote this matrix by P . Every block represents a pair and the height of
the block is set to the frequency count of the reciprocal pair. To obtain the
average frequency of each pair, we let the OMA iterate for a sufficient time, say J
iterations, and at every incident we update the value of the matrix P respectively.
In this way, at the end of the J-th iteration, we have simply estimated the
frequency of each pair. At this point, by observing the values of the matrix, the
user can determine an appropriate threshold (τ > 0) to be adopted as the accept
or reject policy for any future occurrence of this particular pair of objects. If we
permit the algorithm to collect a large enough number of pairs, we see that
∃θ∗ | ∀θo ≤ θ∗, and that ∀ i, j : µi,j ≫ θ∗i,j .

If we utilize a user-defined threshold, τ , (which is reasonably close to 0), we
will be able to compare every estimate to τ and make a meaningful decision about



the identity of the query. In other words, by merely comparing the estimate to
τ we can determine whether a query pair 〈Ai, Aj〉 should be processed, or quite
simply, be ignored. This leads us to algorithm POMA on Page 74 of [11] in which
every query which is inferred to be divergent is ignored. Otherwise, one invokes
the Reward and Penalty functions of the original OMA algorithm. The issue of
determining the parameters of the POMA algorithm are detailed in [11], and
omitted here in the interest of space.

In the initial phase of the algorithm, the estimates for the queries are un-
available. Thus, it only makes sense to consider every single query and to pro-
cess them using the OMA’s Reward and Penalty functions. Since the objects
in each class are equally-likely to happen and the classes are equi-probable,

k ≥
[

(

W
R

)2
− W

R

]

×R, is chosen as the lower-bound of the number of iterations

for any meaningful initialization.

We have compared our results with those presented in [5] and those reported
for the original OMA for various values of R and W . The number of states in
every action was set to 10, and the convergence was expected to have taken
place as soon as all the objects in the POMA fell within the last two internal
states. The results (specified using the same notation as in Table 1) obtained are
outstanding and are summarized in Table 2. The simulation results are based
on an ensemble of 100 runs with different uncertainty values, (i.e., values of p).

Table 2. Experimental results for the POMA ap-
proach done for an ensemble of 100 runs.

W W/R R POMAp9 POMAp8 POMAp7

4 2 2 (2, 25) (3, 30) (3, 38)
6 2 3 (4, 44) (4, 52) (5, 67)
- 3 2 (20, 65) (22, 77) (24, 106)
9 3 3 (44, 105) (70, 148) (85, 169)
12 2 6 (10, 88) (12, 103) (20, 173)
- 3 4 (77, 166) (105, 205) (292, 462)
- 4 3 (328, 417) (228, 372) (202, 487)
- 6 2 (1563, 1836) (945, 1091) (1088, 1395)
15 3 5 (112, 213) (142, 274) (179, 315)
- 5 3 (1534, 1655) (766, 998) (556, 931)
18 2 9 (20, 151) (26, 161) (29, 566)
- 3 6 (245, 410) (198, 417) (226, 395)
- 6 3 (3146, 3270) (2182, 2371) (1145, 1542)
- 9 2 (5500, 5621) (5064, 5523) (4104, 4711)

To observe the efficiency of the POMA, consider an easy-to-learn Environ-
ment of 6 groups with 2 objects in each group and where p = 0.9. It took the
OMA 599 iterations to converge. As opposed to this, the POMA converged in
only 69 iterations, which represents a ten-fold improvement. On the other hand,
given a difficult-to-learn Environment with 12 objects in 2 groups, the OMA
needs 6, 506 iterations to converge. The POMA required only 2, 112 iterations
to converge, which is more than a three-fold improvement.



4 Enhanced OMA (EOMA)

The learning of an enhanced LA proposed by Gale et al. [5], is based on the
same principles of the OMA and leads to the Enhanced OMA (EOMA). They
introduced three enhancements to improve its efficiency and speed as below:

1. Initial Boundary State Distribution: All of the objects are initially
distributed at the respective boundary states of their respective classes;

2. Redefinition of Internal States: They diminished the vulnerability of the
convergence criterion of the OMA by redefining the internal state to include
“the two innermost states of each class”, rather than a single innermost state.

3. Breaking the Deadlock: The original OMA possesses a deadlock-prone
infirmity (please see Section 4.3 of [11]) in which the machine can cycle
between two identical configurations by virtue of a sequence of query pairs.
Thus is especially evident in noise-free Environments. The EOMA remedies
this as follows. Give a query pair of objects 〈Oi, Oj〉, let us assume that Oi,
is in the boundary state, and Oj is in a non-boundary (internal) state of
another class. If there exists an object in the boundary state of the same
class, we propose that it gets swapped with the boundary object Oj to
bring both of the queried objects together in the same class. Simultaneously,
a non-boundary object has to be moved toward the boundary state of its
class. Otherwise, if there is no object in the boundary state of the class that
contained Oj , the algorithm performs identically to the OMA.

The simulation results obtained by introducing all of the three above-mentioned
modifications are given in Table 3. In this table, we have reported the results
from various Environments, with probabilities p = 0.9, 0.8 and 0.7, where p = 0.9
is the near-optimal Environment. Such an Environment is easy to learn from.
On the other hand, for the case where p = 0.7, we encounter a difficult-to-learn
scenario. Our results have also compared our own implementation of the OMA
algorithm described in [5] with the EOMA’s simulation results. These are the
results displayed in Table 3. All the simulations reported were done on an ensem-
ble of 100 experiments to guarantee statistically stable results. From the table
we clearly see that as the value of p increases, the queries are more informative,
and the convergence occurs at a faster rate. As before, the complexity of the
classification problem has two criteria which are both observable in the tables,
i.e., the number of objects in every group, W

R , and the number of groups, R. As
the number of objects and groups increase, the problem becomes increasingly
complex to solve. The reader will easily observe the advantages gleaned by the
above three modifications in the EOMA, by comparing Tables 1 and 3.

The convergence of the EOMA with respect to time starts with a large num-
ber of objects which are located in random partitions. This number steadily
decreases with time to a very small value. This graph is not monotonic for any
given experiment. But from the perspective of an ensemble, the performance is
much more monotonic in behavior.



Table 3. Experimental results for the En-

hanced OMA (EOMA) done for an ensem-
ble of 100 runs.

W W/R R EOMAp9 EOMAp8 EOMAp7

4 2 2 (2, 26) (2, 30) (3, 60)
6 2 3 (4, 46) (4, 65) (5, 106)
- 3 2 (6, 50) (8, 74) (11, 127)
8 2 4 (6, 64) (7, 95) (8, 158)
- 4 2 (14, 75) (20, 110) (32, 185)
9 3 3 (18, 91) (24, 132) (35, 233)
10 5 2 (8, 85) (10, 118) (13, 226)
- 2 5 (25, 106) (33, 153) (70, 277)
12 2 6 (10, 102) (12, 154) (17, 291)
- 3 4 (43, 136) (56, 207) (81, 380)
- 4 3 (54, 150) (66, 196) (99, 388)
- 6 2 (40, 133) (64, 208) (105, 405)
15 3 5 (65, 187) (92, 284) (134, 554)
- 5 3 (75, 191) (108, 295) (192, 617)
18 2 9 (19, 170) (26, 253) (36, 630)
- 3 6 (106, 258) (140, 389) (242, 827)
- 6 3 (114, 255) (167, 392) (261, 857)
- 9 2 (112, 246) (142, 363) (311, 854)

5 Enhancing the EOMA with a Pursuit Paradigm

The methodology by which we incorporated the pursuit concept into the OMA
required us to formally model noise-free and noisy queries in Section 3. However,
this is the precise dilemma that the EOMA faces. On the one hand, it would be
advantageous, from a partitioning perspective, to have a noise-free Environment.
However, it is precisely such noise-free Environments that lead to deadlock sit-
uations. Consequently, an attempt to elevate a noisy Environment to become
noise-free would only defeat the purpose by exaggerating deadlock scenarios.
However, rather than seeking to make the Environment noise-free, we will again
accept or reject queries from the incoming stream. To accomplish this, we again
apply the same “Pursuit” paradigm, explained below for this specific setting.

To design the PEOMA, as before, we again incorporate the pursuit principle
by estimating the Environment’s reward/penalty probabilities. This could, of
course, be done based on either a ML or Bayesian methodology. As these esti-
mates become more accurate, we force the LA to converge to the superior actions
at the faster rate. In all brevity, the PEOMA utilizes the exact same Pursuit
principles explained in Section 3.1. Essentially, the EOMA which mitigates the
“deadlock” situation is now augmented with the Pursuit concept, and thus:

– The stream of queries is processed using an estimation phase;

– The divergent queries are filtered using a thresholding phase, that serves as
a filter for the above estimates;

– The deadlock scenarios are resolved using the enhancements of the EOMA
over the OMA;

– The convergence criterion of making the two most internal states of every
group to report convergence, makes the entire process converge even faster.



The experimental results compared the PEOMA with the EOMA, and we
were able to show how the PEOMA out-performed the EOMA and the OMA.
The results are given in Table 4 which uses the same notation and for the same
settings as in the Tables 1 and 2. One can also compare its performance with
the results presented in [5] and those reported in Table 3 for various values of
R and W and in different Environments. The number of states in every action
was set to be 10 as in Table 4. The convergence condition was also identical to
the one specified in Section 4, and was assumed to have taken place when all the
objects in the PEOMA fell within the last two internal states. Further, the query
probability approximations were updated after receiving every single query.

The performance significance of the PEOMA is, really, not noticeable for
easy problems where we had a small number of objects and groups, and where
the noise level was low. But this becomes invaluable when we encounter a large
number of actions as well as a stream of divergent queries (when p is “smaller”)
throughout the simulation, especially if we factor in the number of iterations
used to obtain an estimate of τ . Indeed, the PEOMA’s performance can be up
to more than two times better than the EOMA. But if we compare the results
with the original OMA, the immense performance gain leads to about forty
times less number of iterations for a complete convergence – which is by no
means insignificant. It is fascinating to note that the reduction in the number of
iterations required by the PEOMA can again be seen to be a consequence of a
Pursuit-like filtering phase in all problem domains.

Table 4. Experimental results for the PEOMA
approach done for an ensemble of 100 runs.

W W/R R PEOMAp9 PEOMAp8 PEOMAp7

4 2 2 (2, 23) (2, 37) (3, 44)
6 2 3 (4, 42) (4, 52) (5, 73)
- 3 2 (7, 47) (8, 62) (10, 91)
8 2 4 (6, 59) (6, 76) (8, 102)
- 4 2 (15, 73) (23, 100) (36, 145)
9 3 3 (20, 85) (24, 110) (40, 146)
10 2 5 (8, 79) (10, 102) (12, 141)
- 5 2 (26, 100) (36, 140) (54, 213)
12 2 6 (10, 97) (12, 129) (17, 181)
- 3 4 (38, 126) (55, 165) (74, 222)
- 4 3 (44, 134) (58, 165) (87, 241)
- 6 2 (34, 127) (60, 182) (110, 310)
15 3 5 (72, 174) (88, 228) (147, 308)
- 5 3 (76, 185) (105, 249) (155, 348)
18 2 9 (19, 166) (26, 218) (36, 323)
- 3 6 (98, 231) (139, 310) (207, 419)
- 6 3 (118, 246) (162, 328) (239, 472)
- 9 2 (100, 236) (133, 330) (280, 553)



6 Cohesiveness in the EPP: The Transitive PEOMA

The first issue that we encounter when we want to advance the field of resolving
the EPP is to see if we can use new criteria to identify which objects belong to
the same partition. We intend to investigate how this can be inferred without
considering the issues that have been analyzed earlier. It is easy to see that all the
objects within an underlying partition should be strongly and directly related
to each other, and that they should frequently co-appear in the queries. Such
structural patterns are, in turn, based on so-called casual propositions which
should lead towards relational “interactions” between the objects themselves.
This is the avenue that we now investigate.

Structural relations that are imposed by the Environment can orient the
objects towards a uniformity when there is an “interaction” between a pair
of objects. Such relations may be “transmitted” through intermediaries even
when two objects are not explicitly examined at any given time instant. This
interconnection is directly associated with the relational bonds that these objects
possess. We shall now investigate whether this property, which already relates
subgroups and not just pairs, can be quantified by various specific properties
that can be extracted from the Environment. They can be seen to be:

1. The frequency of objects co-occurring;
2. The relative frequency of the objects in a pair belonging to distinct parti-

tions;
3. The symmetric property of the queries in any pair presented by E;
4. The reachability of the objects in a partition within the graph representing

the set of all objects.

We first formalize the partitioning problem’s symmetry and transitivity prop-
erties proven in [11].

Theorem 3. The model of E and the solution invoked by any pursuit-based
paradigm of the EPP possess the property of symmetry.

Theorem 4. The model of E proposed for the EPP possesses the property of
transitivity from a probabilistic perspective.

Since E is transitive, our aim is now to have the LA infer this transitivity and
to further enhance the PEOMA. Indeed, if the pursuit matrix is appropriately
thresholded, the entries become unity and zero, which allows us to demonstrate
transitivity and thus, invoke reward/penalty operations even while the environ-
ment is dormant and not generating any new queries. Without going into the
explicit details (omitted due to space limitations), this is essentially done by
invoking the assertion: ∀Oi, Oj , Ok ∈ W : (OiROj ∧OjROk) =⇒ OiROk. This
leads us to the Transitive PEOMA (TPEOMA). The experimental results for
the PEOMA are given in Table 5 for the same settings as in the previous tables.

By way of example, if the TPEOMA is compared with the previously best-
reported algorithm, the PEOMA reported in Section in 5, one can see that the



PEOMA can solve the partitioning problem with p = 0.9 and 3 groups with 3
objects in each group, in 85 iterations. For the same problem, the TPEOMA
required only 65 iterations to converge. For a difficult-to-learn Environment
(p = 0.7) and a more complex partitioning problem with 18 objects in 3 groups,
the PEOMA needed 472 iterations to converge. The TPEOMA required only 244
iterations to converge, which is nearly two times better than the PEOMA. It is
certainly the fastest partitioning algorithm reported to date, and its behavior
is monotonically decreasing for an ensemble of many experiments. The reader
should observe the considerable performance that is gained by a very little addi-
tional computational cost. Again, by comparing Tables 4 and 5, one observes that
although the gain is not significant for simple problems and easy Environments,
it becomes remarkably high for complex partitioning experiments.

Table 5. Experimental results for the TPEOMA ap-
proach done for an ensemble of 100 runs.

W W/R R TPEOMAp9 TPEOMAp8 TPEOMAp7

4 2 2 (2,24) (2,30) (3,40)
6 2 3 (4,41) (4,51) (5,64)
- 3 2 (6,37) (8,50) (13,74)
8 2 4 (7,57) (7,71) ( 8,91)
- 4 2 (14,50) (25,78) (41,125)
9 3 3 (19,65) (21,78) (29,113)
10 2 5 (8,75) (10,95) (14,121)
- 5 2 (26,69) (41,92) (76,178)
12 2 6 (12,95) (15,123) (18,155)
- 3 4 (30,91) (37,110) (52,155)
- 4 3 (34,86) (47,107) (66,157)
- 6 2 (43,86) (62,121) (111,209)
15 3 5 (48,123) (61,159) (81,203)
- 5 3 (51,101) (71,133) (105,205)
18 2 9 (20,156) (28,199) (36,275)
- 3 6 (66,153) (85,194) (126,283)
- 6 3 (63,126) (95,170) (136,244)
- 9 2 (77,129) (148,222) (268,391)

7 Conclusions

In this paper we have shown how we can utilize the “Pursuit” concept to enhance
solutions to the general problem of partitioning. Unlike traditional Learning Au-
tomata (LA), which work with the understanding that the actions are chosen
purely based on the “state” in which the machine is, the “Pursuit” concept has
been used to estimate the Random Environment’s (RE’s) reward probabilities
and to take these into consideration to design Estimator/Pursuit LA. They, uti-
lize “cheap” estimates of the Environment’s reward probabilities to make them
converge by an order of magnitude faster. This is achieved by using inexpensive
estimates of the reward probabilities to rank the actions. Thereafter, when the
action probability vector has to be updated, it is done not on the basis of the
Environment’s response alone, but also based on the ranking of these estimates.



In this paper we have shown how the “Pursuit” learning paradigm can be and
has been used in Object Partitioning. The results demonstrate that incorporating
this paradigm can hasten the partitioning by a order of magnitude. This paper
comprehensively describes all the Object Migration Automaton (OMA)-related
machines to date, including the Enhanced OMA [5]. It then incorporates the
Pursuit paradigm to yield the Pursuit OMA (POMA), the Pursuit Enhanced
OMA (PEOMA) and the Pursuit Transitive Enhanced OMA (PTOMA).

Apart from the schemes themselves, the papers reports the experimental
results that have been obtained by testing them on benchmark environments.
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