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Abstract. To classify data with missing values, we propose a method
exploiting autoencoders and evidence theory. We augment the complete
data by deleting each feature once and imputing it using the nearest
neighbor to a set of predefined points generated using a new scheme.
We train an autoencoder with the complete data set to get a latent
space representation of the input. The network is retrained with the
augmented data to get a better latent space representation. Now for
each class, we train a support vector machine (SVM) with a one-vs-all
strategy using the latent space representation of the complete data set.
For an r-class problem, the output of each of the r SVMs is used to
define a Basic Probability Assignment (BPA). The BPAs are combined
using Dempster’s rule of combination to make the final decision. Now
to classify any test instance with missing values, we make an initial
guess of the missing values using the nearest neighbor rule. We take
the latent space representation of that imputed instance and pass it
through each trained SVM. As done earlier, using each SVM output,
we generate a BPA and the r BPAs are aggregated to get a composite
BPA. The class label of the test point is then determined using the
Pignistic probabilities. We have compared the proposed method with
four state-of-the-art techniques using three experiments with artificial
and real datasets. The proposed method is found to perform better.

Keywords: Belief functions· Classification· Evidential reasoning· Fuzzy-
c-means· Latent space representation· Missing Data· Neural Network.

1 Introduction

Missing data is a common problem for machine learning and data mining. Let,
xk be the kth data point or datum with p features, xk ∈ X ⊆ Rp, where X is
the data set. So, if xk for some k has q ∈ {1, 2, · · · , p} missing values, then X is
called an incomplete dataset. Many real life systems [3, 9, 11,13,15] are affected
due to missing data [6]. Missing data are typically characterized into three types
[12]: (1) MCAR (missing completely at random), (2) MAR (missing at random)
and (3) NMAR (not missing at random). Most missing value prediction methods
are for MCAR and MAR types of missing data.
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The simplest way to deal with MCAR and MAR type of missing data is to
analyze [12,20] the data points without any missing value. Here, each data point
with a missing value(s) is deleted from the datasets and the rest are analyzed.
This procedure, however, is effective only when a small number of instances have
missing values.

The second family of methods for handling missing data first predicts (im-
putes) missing values, and then, analyses the entire data. In [6] authors catego-
rized imputation techniques into two groups: statistical imputation methods and
machine learning based imputation methods. In statistical imputation methods,
the missing values are replaced by usual statistical techniques [1,12,20]. For ex-
ample, the missing value of a particular feature can be replaced by the average
of the features of the data points without any missing value (mean imputation).
Sometimes, missing values are predicted by a regression model. If k features have
missing values, then we need k-regression models. Cold and hot deck imputation
[10] is another type of statistical technique where a missing value is imputed
using the feature value of the closest complete data point; which is determined
based on the existing features from the same (sometimes from different) data
sources. In multiple imputations, a missing value is replaced by a set of possi-
ble values. Thus, the missing values are imputed multiple times and multiple
datasets are created. Then, these imputed datasets are analyzed by using stan-
dard procedures and the results are combined for imputing missing values.

Machine learning based procedures are also used to impute missing data.
As an example, k−nearest neighbor (k−NN) [4] is a common procedure where
the missing value is replaced by the corresponding value of the nearest neighbor
(k−NNI). Here, distances are computed using the observed subspace. In [16],
the k−NN rule is modified where the distance-weighted k-nearest neighbor rule
is used to classify data with missing values. In singular value decomposition
imputation (SVDI) [4] missing values are imputed using the k-most significant
eigenvectors. Missing values are also imputed using some other machine learning
techniques like self-organizing maps (SOMs), and multilayer perceptron (MLP)
[5, 7, 8, 17,19,23–25].

Evidential reasoning is an effective approach to dealing with different types of
uncertainty. It has been used in many areas including classification, clustering,
and decision-making. Recently, in [14] evidential reasoning has been used to
classify incomplete data. Here, first, for each class, a prototype is formed. Then
the incomplete data are imputed using all prototypes. So, if r is the total number
of classes, for an incomplete data r number of complete data points are generated.
Now, each new data points is classified using a classifier. Then the results of
the classification are fused based on a new prototype-based credal classification
(PCC) method to find the right class label for the incomplete data point. After
imputing missing values, in many cases, a test data point may provide evidence to
belong to more than one class. Considering this, in [14], the authors defined two
types of errors. One is miss-classification error and the other one is belongingness
of a test point to more than one class, which includes the actual class the point
belongs to.
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In this article, we propose an evidential reasoning-based classification tech-
nique to classify the MCAR type of missing data. For this, first, an autoencoder
is trained using the complete data set and then by an augmented complete data
set. Now, if there are the r classes, r classifiers (as SVM is a good classifier for
classification we use r SVMs here) are trained using the latent space represen-
tation of the complete data. When a test point with missing values appears,
we first impute it using our proposed method. Then, we use the latent space
representation of the test data point and classify it using the r trained classi-
fiers. Thus, from each of the r classifiers, we get a probabilistic output for each
test point. We take these probabilistic outputs and combine them using the pro-
posed evidential framework. We compute classification errors as in [14]. We have
done three experiments to check the performance of our algorithm. To check the
efficiency of our algorithm with respect to others, we compared the results of
the proposed algorithm with four state-of-the-art techniques. Our results have
revealed that the performance of the proposed method is better compared to
other methods in most of the cases.

The main contributions of the proposed method are three folds. First, the
traditional 1- nearest-neighbor for imputing missing data is modified here. Then,
the entire dataset is projected into a suitable latent space. Moreover, we have
proposed a new mass function to join r probabilistic outputs from r SVMs.

The remaining part of the article is organized as follows. Basic evidential
reasoning is described in Section 2. Section 3 describes the proposed method.
Experimental results and analysis are demonstrated in Section 4. Section 5 con-
cludes the paper.

2 Basics of evidential reasoning

Consider an r class classification problem where any input x ∈ Rp belongs to one
of the r classes. Let, Ω be the set of classes; Ω = {ω1, ω2, · · · , ωr}. Due to impre-
cision or some other uncertainty asociated with the input, the available evidence
may suggest a data point to belong to more than one class. So, a test point may
belong to one of the 2Ω sets of classes. For example, let there be three classes.
They are Ω = {ω1, ω2, ω3}. Now, a test point may belong to any one of 2Ω possi-
bilities: 2Ω = {∅, {ω1}, {ω2}, {ω3}, {ω1, ω2}, {ω1, ω3}, {ω2, ω3}, {ω1, ω2, ω3}}. Thus,
a test point may belong to meta-classes or in no class.

In evidential reasoning basic belief assignment (BBA) is a function m(·) :
2Ω → [0, 1] satisfying two properties:

∑
A∈2Ω m(A) = 1 and m(∅) = 0. Belief

function Bel(·) and plausibility function Pl(·) are the lower and upper bounds
of imprecise probability associated with BBAs ∀A ∈ 2Ω and are defined as,

Bel(A) =
∑
B⊆Am(B);Pl(A) =

∑
B∩A6=∅m(B). (1)

Bel(·) and Pl(·) may be used for decision-making when it is necessary.
Dempster [22] proposed a rule to combine multiple evidences represented by

BBAs. This is usually known as Dempster–Shafer (DS) rule and denoted by the
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⊕ symbol. Let, m1(·) and m2(·) be two BBAs over 2Ω then the combined basic
probability analysis(BPA) m = m1 ⊕m2 is defined by DS rule as follows:

m(A) = [m1 ⊕m2](A) =
∑
B∩C=Am1(B)m2(C)

1−
∑
B∩C=∅m1(B)m2(C) (2)

The determinator of (2) is used here for normalization, whereas,
∑

B∩C=∅

m1(B)m2(C)

assesses the total conflicting belief mass. This combination rule does not pro-
duce intuitively desirable results in high conflicting cases. To overcome this,
later many other combinational rules have been introduced [21] which we do not
consider for our investigation.

3 Proposed algorithm

Here, we use an autoencoder for feature extraction. First, we use the original
and the modified data sets (which is described later) to train the autoencoder.
Then, we use the extracted features from the autoencoder to train class-wise (one
verses all) SVMs. We use the trained class-wise SVMs to obtain the probabilistic
outputs for a test point. With the obtained probabilistic outputs we construct
mass functions for the test point. Using the mass functions, we find the class
label of the particular test point. Below, we discuss the steps with further details.

3.1 The architecture of the autoencoder

We consider linear nodes in the input layer, which is described as follows:

S (xki) = xki; i = 1, 2, · · · , p; (3)

S (xk0) = 1;∀k. (4)

Here, S(·) denotes the activation function of a node; and xk and p are as defined
earlier. We consider a single hidden layer with sigmoidal nodes as follows:

zkh =

p∑
i=0

wIihS (xki) ;h = 1, 2, · · · , q; (5)

z̃kh = S (zkh) =
1

1 + e−zkh
;h = 1, 2, · · · , q; (6)

S (zk0) = 1,∀k. (7)

Here, for xk, zkh is the net input to the hth hidden node and S (zkh) is the
output from the hth hidden node. Moreover, wIih is the weight connecting the ith

input node to the hth hidden node and wI0h,∀h, is a bias. We consider an output
layer with sigmoidal nodes as follows:

ykj =

q∑
h=0

wHhj z̃kh; j = 1, 2, · · · , p; (8)

S (ykj) =
1

1 + e−ykj
; j = 1, 2, · · · , p. (9)
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Here, for xk, ykj is the net input to the jth output node and S (ykj) is the output
from the jth output node. Furthermore, wHhj is the weight connecting the hth

hidden node to the jth output node and wH0j ,∀j, is a bias. The system error for

the kth training pattern is as follows:

Ek = 1
2

∑p
j=1 (xkj − S (ykj))

2
. (10)

3.2 The learning

Since we are dealing with a classification problem, for every x ∈ Rp, there is an
associated class label l ∈ {1, 2, · · · , r}.

Let XTR be the training data with n instances, which does not have any
missing value. In XTR there are data points from all r classes; XTR = ∪ri=1X̂i,

where X̂i = {x|x ∈ XTR and x belongs to the ith class}. Now we find the ith

class center ṽi as
ṽi = 1

|X̂i|

∑
x∈X̂i x. (11)

In this way, we produce r class centers Ṽ = {ṽ1, ṽ2, · · · , ṽr} ; ṽi ∈ Rp. We also
cluster each X̂i; i = 1, 2, · · · , r; into nc clusters using the k-means algorithm. In
this way, we produce (nc×r) cluster centers V̂ =

{
v̂1, v̂2, · · · , v̂(nc×r)

}
; v̂i ∈ Rp.

Then, by combing V̂ and Ṽ , we obtain V = V̂ ∪ Ṽ . In this way, we produce
(r+nc×r) cluster centers V =

{
v1,v2, · · · ,v(r+nc×r)

}
;vi ∈ Rp. Now from XTR

we generate p modified data sets Xk, k ∈ {1, 2, · · · , p}, as follows. To generate
Xk, for x ∈ XTR, we replace xk by vlk if l = argmink

{
||x− vk||2∗

}
. Here, we

assume that the kth feature is missing. We imputed the missing value by the
kth feature value of the centroid which is closest to x in terms of the distance
measure ||.||∗. Here, ||.||∗ is computed using all but the kth feature. Now, we train
an autoencoder using XTR for N1 epoches. Next, we retrain the same network
for N2 epoches with the data set XTotal = XTR ∪{X1∪X2∪ · · · ∪Xp}. For any
x ∈ XTR as well as any x ∈ Xk, the target vector is taken as x ∈ XTR. Note
that the training of the auto encoder does not use the class labels. We explain
this method of training in Algorithm 1.

After training the autoencoder, we pass xk ∈ XTR, k ∈ {1, 2, · · · , n} to find
the latent space representation z̃k = (z̃k1, z̃k2, · · · , z̃kq)T of xk using (6). It is
indeed the output from the hidden layer of the trained autoencoder. Thus, we
obtain the latent space representation of the entire training data set XTR as
Z̃ = {z̃1, z̃2, · · · , z̃n}. We use Z̃ to train r number of SVMs using the one-verses-
all strategy.

3.3 Decision making for a test point

Let the set of test points be XTE . For each test data point xi ∈ XTE , i ∈
{1, 2, · · · , N};N = |XTE | atmost (p − 1) features may be missing. We impute
the missing values of xi using vl, (l = 1, 2, · · · , (r + nc × r)) as follows. The kth

missing value of xi, xik, is imputed by vlk if l = argminj
{
||xi − vj ||2∗

}
. Here
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Algorithm 1 : Training of the proposed method
INPUT: Training data (XTR), number of features (p), number of clusters in each class (nc), number
of classes (r), number of epochs for the first training phase (N1), number of epochs for the second
training phase (N2).
BEGIN

1: Set V̂ = ∅, Ṽ = ∅.
2: for i=1 to r do
3: Set X̂i = {x|x ∈ XTR and x belongs to the ith class}.
4: Set ṽi = 1

|X̂i|

∑
x∈X̂i

x.

5: Ṽ = Ṽ ∪ ṽi.
6: Using k-means clustering algorithm cluster X̂i into nc clusters and generate nc new cluster

centers V̂i = {v̂i1, v̂i2, · · · , v̂inc} ; v̂i ∈ Rp.

7: V̂ = V̂ ∪ V̂i.
8: end for
9: Set V = V̂ ∪ Ṽ .
10: for k=1 to p do
11: To generate Xk for every x ∈ XTR, replace xk by vlk if l = argmink

{
||x− vk||2∗

}
, where

||.||∗ is computed using all but the kth feature.
12: end for
13: Train an autoencoder using XTR for N1 epoches.
14: Retrain the same network for N2 epoches with the data set XTotal = XTR∪{X1∪X2∪· · ·∪Xp}.

For any x ∈ XTR and its corresponding xk ∈ Xk, the target vector is x ∈ XTR.

END

||.||∗ is computed using all but the missing feature values of xi. We pass xi with
the imputed values through the trained autoencoder and take the output of the
hidden layer, z̃i = (z̃i1, z̃i2, · · · , z̃iq)T as the latent space representation using
(6). Then we use z̃i in the trained r SVMs. Let, the probabilistic outputs [18]
from the kth SVM for the kth class and the remaining (r− 1) classes be P 1

ik and
P 0
ik, respectively. Then, we define the kth BPA as follows:

mk({k}) = P 1
ik and mk({Ω − k}) = P 0

ik; k = 1, 2, · · · , r.
We now use Dempsters rule [22] to combine these r BPAs as discussed in

Section 2 to obtain the composit BPA m(·).
Now for class k, we compute the Pignistic probability [2] as follows:

Pm,x{k} =
∑

A⊆Ω,k∈Am(A)/|A| (12)

Thus, we have a set of Pignistic probabilities P = {Pm,x{1}, Pm,x{2}, · · · , Pm,x{r}}.
Let, l = argmaxi{Pm,x{i};∀i = 1, 2, · · · , r} and d = argmaxi{Pm,x{i};∀i =
1, 2, · · · , r; i 6= l}. Now, if (Pm,x{l} − Pm,x{d}) > ε, we decide that x belongs to
the class l. Otherwise, we say that x belongs to both the classes l and d. Here,
ε is a user defined threshold.

4 Experiments

As in [14], to test the effectiveness of the proposed method, we divide our ex-
periments into three parts and compare our method with four methods. For
this comparison, we use miss-classification error as used in [14] and the results
provided in [14].
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Table 1. Miss-classification error (%) for different methods on the three class synthetic
datasets associated with Experiment 1

Method ε = 0.30 ε = 0.45

Our 1.75 0.87
PCC (EK-NN) 1.75 0.87
FCMI (EK-NN) 4.15
KNNI (EK-NN) 4.15
MI (EK-NN) 8.52

Minimum 0.87

4.1 Experimental set up

Based on a few trial experiments, for all datasets, we use the following architec-
ture of the autoencoder: (p)− (10× p)− (p), where p is the number of features
in the dataset. We consider the learning rate η = 0.9 and the number of clusters
in each class nc = (r × 5). Based on a few trials and errors experiments for all
datasets, we choose N1 = N2 = 10000. We repeat the process 10 times with
10 different weight initializations and report the average results. We compare
the proposed method with four algorithms and with two classifiers: prototype-
based credal classification (PCC) with evidential k-nearest neighbors (EK-NN),
PCC with evidential neural network (ENN), k-nn imputation (KNNI) method
with EK-NN, KNNI method with ENN, FCM imputation (FCMI) with EK-NN,
FCMI with ENN, mean imputation (MI) with EK-NN and MI with ENN. The
detailed description of these methods can be found in [14].

4.2 Experiment 1

Same as experiment-1 in [14] we consider a three-class data set for experiment-
1. Each class contains 305 training and 305 test samples from inside a circular
disk. The radius of each circle is 3 units, and the centers of three circles are
c1 = (3, 3)T , c2 = (13, 3)T and c3 = (8, 8)T . As in [14] the values in the second
dimension corresponding to y-coordinate of test samples are all missing. Thus
there is only one known value, i.e., the first dimension corresponding to the x-
coordinate for each test sample. As in [14] we use different meta-class selection
thresholds ε = 0.30 and ε = 0.45 to show their influence on the results. Using
Fig. 1 we also show the classification results of our method with ε = 0.45. In
Table 1 we report the results with ε = 0.30 and ε = 0.45 for our method and
PCC. These results show that we obtain the best results by our method and
PCC with ε = 0.45. These experiments establish the importance of choosing
the threshold. It also shows the superior performance of the proposed method
compared to FCMI with EK-NN, KNNI with EK-NN, and MI with EK-NN.

4.3 Experiment 2

In this experiment, we use a three-dimensional synthetic dataset generated us-
ing three four-dimensional Gaussian distributions with the following charac-
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Fig. 1. Miss-classification result of our method of three class data set

teristics. The means of the three classes are (1, 5, 10, 10)T , (10, 3, 2, 1)T , and
(15, 15, 1, 15)T . The covariance matrices for the three classes are 6 · I, 5 · I, and
7·I, respectively, where I is the 4×4 identity matrix. Similar to the experiment-3
in [14], we use two datasets. The first one has 100 points from each class and
the second one has 200 points from each class. We consider three cases of miss-
ing values. In these three cases, exactly 1, 2, and 3 values are missing randomly.
Thus, we have six cases: (100, 1), (100, 2), (100, 3), (200, 1), (200, 2), and (200, 3).
Here, the first integer of each tuple indicates the number of points in each class
and the second one indicates the number of missing values in each sample. Ta-
ble 2 shows the results of different methods. For the proposed method, we use
ε = 0.30. With this above process, we generate ten datasets for each of the six
cases and repeat the learning process ten times for each of them. We report the
average misclassification accuracies in Table 2. Table 2 depicts that the proposed
method performs better than other methods.

4.4 Experiment 3

Following experiment-4 in [14], in this experiment, we use the same four real
data sets which are summarized in Table 3. Moreover, following [14], here we
perform two-fold cross-validation and consider the same number of missing values
for different datasets. The last column of Table 3 lists the considered number
of missing values. Similar to Experiment-2, for the proposed method, we use
ε = 0.30. We repeat the experiment ten times and report the obtained average
classification errors in Table 4. Table 4 reveals that our method performs the
best in 10 out of 12 cases. The proposed method performs the worst on the Seed
dataset when five and six values are missing. In these two cases, it ranks the
third and the fifth among the nine competing algorithms.
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Table 2. Miss-classification error (%) for different methods on the three class synthetic
datasets associated with Experiment 2

(100, 1) (100, 2) (100, 3) (200, 1) (200, 2) (200, 3)

Our
0.32

(±0.11)
3.30

(±0.74)
21.77

(±2.12)
0.44

(±0.10)
3.76

(±0.42)
20.95

(±1.58)
PCC (EK-NN) 11.67 16.72 29.00 12.65 15.73 29.82
PCC (ENN) 14.67 16.85 27.70 15.17 18.27 29.67
FCMI (EK-NN) 18.17 24.27 40.06 18.81 24.90 39.59
FCMI (ENN) 17.50 24.13 38.43 17.50 23.22 37.85
KNNI (EK-NN) 18.28 24.57 41.00 18.83 25.00 40.86
KNNI (ENN) 17.99 24.32 39.91 17.60 23.52 38.99
MI (EK-NN) 19.24 25.94 41.85 19.62 28.06 41.34
MI (ENN) 19.33 25.20 40.57 17.83 23.85 39.90

Minimum 0.32 3.30 21.77 0.44 3.76 20.95

We provide standard deviations for the proposed method within parenthsis

Table 3. Data Sets Description

Name Class # Attributes # Instances # Missing Values

Breast 2 9 699 {3, 5, 7}
Seeds 3 7 210 {3, 5, 6}
Wine 3 13 178 {3, 6, 10}
Yeast 3 8 1050 {1, 3, 5}

5 Conclusion

Here, we have presented a new method using the evidential framework to deal
with missing values for the classification problem. For a r class problem, we
train r classifiers using the latent space representation of each training data.
To get the latent space representation first we train an autoencoder with the
complete data. Then, we augment the complete data by deleting each feature
once and imputing it using the nearest neighbor to a set of predefined points
obtained using a clustering-based scheme. Then, we retrain the network using
the modified dataset with a view to getting a better latent space representation.

If a test point suffers from missing values we make an initial guess of the
missing value using the nearest neighbor rule and take the latent space represen-
tation of that test point using the trained autoencoder. Then that representation
is classified using all r trained classifiers. Each classifier gives some confidence
that a given point belongs to the associated class. This confidence is then trans-
lated into a BPA. The BPAs are then aggregated using Dempster rule. Finally,
the Pignistic probability is used to make the final decision. To check the perfor-
mance of the proposed method we compare our method with four state-of-the-art
techniques using three sets of experiments. From these experiments, we find that
overall our method performs better than the compared methods. In the future,
we intend to propose new methods to choose meta-class selection thresholds dy-
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Table 4. Misclassification error (%) considering different number of missing values for
different methods on the four real-world datasets associated with Experiment 3

DataSet B-3 B-5 B-7 Y-1 Y-3 Y-5 S-3 S-5 S-6 W-3 W-6 W-10

Our 0.56 1.26 2.99 7.07 13.70 18.64 4.86 11.67 23.43 1.91 4.66 23.48
PCC (EK-NN) 4.10 4.38 7.91 34.36 34.71 33.46 7.14 9.67 16.79 26.05 26.62 25.84
PCC (ENN) 3.81 3.81 6.88 32.67 34.19 32.29 9.05 9.52 16.19 26.97 27.53 27.53
FCMI (EK-NN) 3.95 5.07 13.00 38.54 45.95 51.11 12.46 20.08 21.75 30.15 32.12 32.30
FCMI (ENN) 3.81 5.27 11.42 36.19 41.33 46.00 13.33 20.00 20.95 26.97 32.02 31.46
KNNI (EK-NN) 6.10 8.15 14.35 38.13 44.29 50.95 9.68 12.54 25.87 26.59 25.84 30.90
KNNI (ENN) 3.95 5.76 11.54 36.70 40.90 49.22 11.19 12.14 25.71 26.97 28.09 31.18
MI (EK-NN) 4.71 8.20 38.33 37.59 45.08 51.16 21.03 33.49 40.71 30.71 34.93 39.23
MI (ENN) 4.25 6.44 14.64 37.71 42.10 49.33 21.43 31.43 39.52 29.78 33.71 37.64

Minimum 0.56 1.26 2.99 7.07 13.70 18.64 4.86 9.52 16.19 1.91 4.66 23.48

B-#: Breast-#; Y-#: Yeast-#; S-#: Seeds-#; W-#: Wine-#; #: No of missing features.

namically. We also like to propose different methods to assign BPAs from the
SVMs outputs.
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